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Preface to the Third Edition

The first edition of Basic Semiconductor Physics was published in 2001 and the
second edition in 2010. After the publication of the first edition, many typo-
graphical errors have been pointed out and the corrected version was published in
2006. The publisher and my friends persuade me to revise the book adding new
chapters, keeping the subject at the appropriate level. When I started writing the first
edition, I decided not to include the physics of semiconductor devices such as p-n
junction diode, bipolar transistor, and metal oxide semiconductor field-effect tran-
sistor (MOSFET). This decision is kept in the new (third) edition.

Although many books on semiconductor physics and technology have been
published, the basic physics of semiconductor laser is not properly described. When
the readers of my book understand the characteristics of two-dimensional electron
gas and strain effect of semiconductors, they feel easy to understand double
heterostructure lasers and strained quantum well lasers, but it is easier if they study
some more detailed discussion on the laser action. Another subject is physics of
low-dimensional semiconductors. Basic Semiconductor Physics, second edition,
deals with two-dimensional electron gas and zero dimensional or quantum dot
structure. The physics of quantum dot includes very important physics of artificial
atoms and gives a good information of few electron systems. These subjects are
included in the second edition published in 2010. Some new topics are also
included in the second edition such as electron motion in an external field dis-
cussing the derivation of effective mass (Sect. 3.5), the physics of quantum dots
(Sect. 8.8), and new Chap. 9 devoted to the discussion on the physics of semi-
conductor laser, where Einstein coefficients A and B, spontaneous and stimulated
emission, luminescence, double heterostructure, and quantum well lasers are dis-
cussed. The strain effect of the quantum well laser is described in detail because it is
well known that the effect is very important to understand the modes (TE and TM
modes) of quantum well laser oscillations.
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This new edition (third edition) is revised in various aspects of semiconductor
physics as described below.

1. This third edition deals very in detail with the most important subjects of
semiconductor physics such as the energy band calculations, transport of car-
riers, and semiconductor lasers. In Chap. 1, energy band calculations of various
semiconductors with spin-orbit interaction are discussed in the full band zone
using the local pseudopotential method, nonlocal pseudopotential method, and
k � p perturbation method. Once the readers understand the methods, numerical
calculations are straight forward because all the matrix elements are given in this
textbook.

2. Spin-orbit interaction plays an important role in the electronic states, especially
the valence band splitting. The effect is described in Appendix and the matrix
elements of the spin-orbit interaction are properly included in the energy band
calculations.

3. In Chap. 6, we present the numerical calculations of relaxation times and
mobilities limited by the scattering processes as a function of electron energy
and temperature, including scatterings by various kinds of phonons (lattice
vibrations), impurity density, electron density, and so on. In addition, deter-
mination of the deformation potentials is discussed by comparing the calcula-
tions with the experimental data. The results help our understanding of electron
transport and help to understand semiconductor device physics.

4. Recently, LED’s and LD’s based on nitrides such as GaN and GaInN are
playing the most important role in the optical devices. However, the energy
band structures of the nitrides are not well determined. In Chap. 9, energy band
calculations of the nitrides, GaN, InN, and AlN are discussed by using the
pseudopotential method. In addition, new method to calculate the energy bands
of ternary alloys of nitrides such as GaInN, AlGaN, and AlInN is discussed in
which the bowing of the band gaps is well explained by introducing only one
additional parameter.

5. Entirely new sets of about 70 problems (exercises) and detailed treatments of the
answers are provided for better understanding. In order to avoid misleading,
most of the curves in this book have been carefully computed and plotted.
Calculations use SI units throughout.

In addition to these subjects, errors in the second edition are corrected properly.
Especially, actual calculations of electron mobilities are very important and provide
detailed information on the transport in semiconductors. Therefore, calculations
of the relaxation times and mobilities due to various scattering processes are carried
out. These results will provide readers to manage calculations of the electron
mobilities in various semiconductors. Also, the physical properties of semicon-
ductors are tabulated in the text.

The author would like to express his special thanks to Professor Nobuya Mori,
Osaka University, for his contribution to the energy band calculations of nitrides
and for many stimulated discussions on the basic physics. The author is thankful to
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his wife Wakiko for her patience during the work of this textbook and also his
parents Masaru and Saiye Hamaguchi for their support to his higher education. The
author expresses his gratitude to Professor Dr. Klaus von Klitzing for inviting him
to Max Planck Institute, Stuttgart, to finish the full band k � p perturbation theory,
providing him a chance to discuss this subject with Professor Dr. Manuel Cardona.
Finally, we want to thank Dr. Claus E. Ascheron and the staff of the Springer
Verlag for their help and for the valuable suggestions for clarification of this book.

Osaka, Japan
March 2017

Chihiro Hamaguchi
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Preface to the Second Edition

When the first edition of Basic Semiconductor Physics was published in 2001, there
were already many books, review papers, and scientific journals dealing with
various aspects of semiconductor physics. Since many of them were dealing with
special aspects of newly observed phenomena or with very fundamental physics, it
was very difficult to understand the advanced physics of semiconductors without
the detailed knowledge of semiconductor physics. For this purpose, the author
published the first edition for the readers who are involved with semiconductor
research and development. Basic Semiconductor Physics deals with details of
energy band structures, effective mass equation, and k � p perturbation, and then
describes very important phenomena in semiconductors such as optical, transport,
magnetoresistance, and quantum phenomena. Some of my friends wrote to me that
the textbook is not only basic but advanced, and that the title of the book does not
reflect the contents. However, I am still convinced that the title is appropriate
because the advanced physics of semiconductor may be understood with the
knowledge of the fundamental physics. In addition, new and advanced phenomena
observed in semiconductors at an early time are becoming well known and thus
classified in basic physics.

After the publication of the first edition, many typographical errors have been
pointed out and the corrected version was published in 2006. The publisher and my
friends persuade me to revise the book adding new chapters, keeping the subject at
the appropriate level. When I started writing the first edition, I decided not to
include physics of semiconductor devices such as p-n junction diode, bipolar
transistor, and metal oxide semiconductor field-effect transistor (MOSFET). This is
because the large numbers of books dealing with the subjects are available and a big
or bulky volume is not accepted by readers. On the other hand, many researchers
are involved with optoelectronic devices such as LED (Light Emitting Diode) and
LD (Laser Diode) because memory devices such as DVD and blue ray disks are
becoming important for writing and reading memory devices. In such devices,
semiconductor laser diodes are used. In addition, the communication system based
on the optical fiber plays a very important role in network, where laser diode is the
key device. Although many books on semiconductor physics and technology have
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been published, the basic physics of semiconductor laser is not properly described.
When the readers of my book understand the characteristics of two-dimensional
electron gas and strain effect of semiconductors, they feel easy to understand double
heterostructure lasers and strained quantum well lasers, but it is easier if they study
some more detailed discussion on the laser action. Another subject is physics of
low-dimensional semiconductors. Basic Semiconductor Physics deals with
two-dimensional electron gas but zero-dimensional or quantum dot structure is not
included. The physics of quantum dot includes very important physics of artificial
atoms, and gives a good information of few electron systems.

In this revised version I included three main topics. The first one is Sect. 3.5,
where electron motion in an external field is discussed with the derivation of
effective mass. The most important relation for transport equation is the velocity
(group velocity) of an electron in a periodic crystal. In this section, the expectation
value of the velocity operator is evaluated and shown to be proportional to the
gradient of the electron energy with respect to the wave vector. Then the classical
motion of equation is proved to be valid for an electron in a crystal when we use the
effective mass. In Sect. 8.8 the physics of quantum dots is discussed in connection
with the charging energy (addition energy) required to add an extra electron in a
quantum dot. The treatment is very important to understand Coulomb interaction of
many electron system. In this section the exact diagonalization method based on
Slater determinants is discussed in detail. Chapter 9 is devoted to the discussion on
the physics of semiconductor laser, where Einstein coefficients A and B, sponta-
neous and stimulated emission, luminescence, double heterostructure, and quantum
well lasers are discussed. The strain effect of the quantum well laser is described in
detail because it is well known that the effect is very important to understand the
modes (TE and TM modes) of quantum well laser oscillations.

I would like to express my special thanks to Professor Nobuya Mori for helping
me to clarify the subject and providing me his calculated results used in Chap. 9,
and also to my colleagues at Sharp Corporation with whom I have had many
stimulated discussions on the basic physics of semiconductor lasers. It was very sad
that Professor Tatsuya Ezaki of Hiroshima University died very recently, who made
the detailed analysis of quantum dot physics for his Ph.D thesis (see Sect. 8.8).

Finally, I want to thank Dr. Claus E. Ascheron and the staff of the Springer
Verlag for their help and for the valuable suggestions for clarification of this book.

Osaka Chihiro Hamaguchi
September 2009
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Preface to the First Edition

More than 50 years have passed since the invention of the transistor in December
1947. The study of semiconductors was initiated in the 1930s but we had to wait for
30 years (till the 1960s) to understand the physics of semiconductors. When the
transistor was invented, it was still unclear whether germanium had a direct gap or
indirect gap. The author started to study semiconductor physics in 1960 and the
physics was very difficult for a beginner to understand. The best textbook of
semiconductors at that time was “Electrons and Holes in Semiconductors” by
W. Shockley, but it required a detailed knowledge of solid state physics to
understand the detail of the book. In that period, junction transistors and Si bipolar
transistors were being produced on a commercial basis, and industrialization of
semiconductor technology was progressing very rapidly. Later, semiconductor
devices were integrated and applied to computers successfully, resulting in a
remarkable demand for semiconductor memories in addition to processors in the
late 1970–1980s. Now, we know that semiconductors play the most important role
in information technology as the key devices and we cannot talk about the age of
information technology without semiconductor devices.

On the other hand, the physical properties of semiconductors such as the elec-
trical and optical properties were investigated in detail in the 1950s, leading to the
understanding of the energy band structures. Cyclotron resonance experiments and
their detailed analysis first reported in 1955 were the most important contribution to
the understanding of the energy band structures of semiconductors. From this work,
it was revealed that the valence bands consist of degenerate heavy-hole and
light-hole bands. Another important contribution comes from energy band calcu-
lations. Energy band calculations based on the empirical pseudopotential method
and the k � p perturbation method reported in 1966 enabled us to understand the
fundamental properties of semiconductors. In this period, high-field transport and
current instabilities due to the Gunn effect and the acoustoelectric effect attracted
great interest. In addition, modulation spectroscopy and light scattering were
developed and provided detailed information of the optical properties of semi-
conductors. These contributions enabled us to understand the physical properties of
bulk semiconductors almost completely.
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At the same time, late in the 1960s and early 1970s, Leo Esaki and his
co-workers developed a new crystal growth method, molecular beam epitaxy, and
initiated studies of semiconductor heterostructures such as quantum wells and
superlattices. This led to a new age of semiconductor research which demonstrated
phenomena predicted from quantum mechanics. This approach is completely dif-
ferent from the past research in that new crystals and new structures are being
created in the laboratory. This field is therefore called “band gap engineering”. It
should be noted here that such a research was not carried out up to fabricate devices
for real applications but to investigate new physics. The proposal of modulation
doping in the late 1970s and the invention of the high electron mobility transistor
(HEMT) in 1980 triggered a wide variety of research work related to this field.
Later, HEMTs have been widely used in such applications as the receivers for
satellite broadcasting. Although the commercial market for LSI memories based on
Si technologies is huge, metal semiconductor field-effect transistors (MESFETs)
based on GaAs have become key devices for mobile phones (cellular phones) in the
1990s and it is believed that their industrialization will play a very important role in
the twenty-first century.

Klaus von Klitzing et al. discovered the quantum Hall effect (later called the
integer quantum Hall effect) in the two-dimensional electron gas system of a
Si MOSFET in 1980, and this discovery changed semiconductor research dra-
matically. The discovery of the fractional quantum Hall effect followed the integer
quantum Hall effect and many papers on these subjects have been reported at
important international conferences. At the same time, attempts to fabricate
microstructures such as quantum wires and metal rings were carried out by using
semiconductor microfabrication technologies and led to the discovery of new
phenomena. These are the Aharonov–Bohm effect, ballistic transport, electron
interference, quasi-one-dimensional transport, quantum dots, and so on. The sam-
ples used for these studies have a size between the microscopic and macroscopic
regions, which is thus called the “mesoscopic region”. The research in cmesoscopic
structures is still progressing.

The above overview is based on the private view of the author and very
incomplete. Those who are interested in semiconductor physics and in device
applications of new phenomena require a deep understanding of semiconductor
physics. The situation is quite different for the author who had to grope his own
way in semiconductor physics in the 1960s, while the former are requested to begin
their own work after understanding the established semiconductor physics. There
have been published various textbooks in the field of semiconductors but only few
cover the field from the fundamentals to new phenomena. The author has published
several textbooks in Japanese but they do not cover such a wide range of semi-
conductor physics. In order to supplement the textbooks, he has used printed texts
for graduate students in the last 10 years, revising and including new parts.

This textbook is not intended to give an introduction to semiconductors. Such
introductions to semiconductors are given in courses on solid state physics and
semiconductor devices at many universities in the world. It is clear from the con-
tents of this textbook that electron statistics in semiconductors, pn junctions, pnp or
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npn bipolar transistors, MOSFETs, and so on are not dealt with. This textbook is
written for graduate students or researchers who have finished the introductory
courses. Readers can understand such device-oriented subjects easily after reading
this textbook. A large part of this book has been used in lectures several times for
the solid state physics and semiconductor physics courses for graduate students at
the Electronic Engineering Department of Osaka University and then revised. In
order to understand semiconductor physics, it is essential to learn energy band
structures. For this reason, various methods for energy band calculations and
cyclotron resonance are described in detail. As far as this book is concerned, many
of the subjects have been carried out as research projects in our laboratory.
Therefore, many figures used in the textbook are those reported by us in scientific
journals and from new data obtained recently by carrying out experiments so that
digital processing is possible. It should be noted that the author does not intend to
disregard the priorities of the outstanding papers written by many scientists.
Important data and their analysis are referred to in detail in the text, and readers who
are interested in the original papers are advised to read the references. This book
was planned from the beginning to be prepared by LATEX and the figures are
prepared in EPS files. Figures may be prepared by using a scanner but the quality is
not satisfactory compared to the figures drawn by software such as PowerPoint.
This is the main reason why we used our own data much more than those from
other groups. Numerical calculations such as energy band structures were carried
out in BASIC and FORTRAN. Theoretical curves were calculated using
Mathematica and equations of simple mathematical functions were drawn by using
SMA4 Windows. The final forms of the figures were then prepared using
PowerPoint and transformed into EPS files. However, some complicated figures
used in Chap. 8 were scanned and then edited using PowerPoint.

The author would like to remind readers that this book is not written for those
interested in the theoretical study of semiconductor physics. He believes that it is a
good guide for experimental physicists. Most of the subjects are understood within
the framework of the one-electron approximation and the book requires an
understanding of the Schrödinger equation and perturbation theory. All the equa-
tions are written using SI units throughout, so that readers can easily estimate the
values. In order to understand solid state physics, it is essential to use basic theory
such as the Dirac delta function, Dirac identity, Fourier transform, and so on. These
are explained in the appendices. In addition, a brief introduction to group theoretical
analysis of strain tensors, random phase approximations, boson operators, and the
density matrix is given in the appendices. With this background, the reader is
expected to understand all the equations derived in the text book.

The author is indebted to many graduate students for discussions and the use
of their theses. There is not enough space to list all the names of the students. He is
also very thankful to Prof. Dr. Nobuya Mori for his critical reading of the manu-
script and valuable comments. He thanks Dr. Masato Morifuji for his careful
reading of the text. Dr. Hideki Momose helped the author to prepare the LaTeX
format and Prof. Dr. Nobuya Mori revised it. Also, thanks are due to Mr. Hitoshi
Kubo, who took the Raman scattering data in digital format. He is also very
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thankful to Prof. Dr. Laurence Eaves and Prof. Dr. Klaus von Klitzing for their
encouragement from the early stage of the preparation of the manuscript. A large
part of the last chapter, Chap. 8, was prepared during his stay at the Technical
University of Vienna and he would like to thank Prof. Dr. Erich Gornik for pro-
viding this opportunity and for many discussions. Critical reading and comments
from Prof. L. Eaves, Prof. K. von Klitzing, Prof. G. Bauer and Prof. P. Vogl are
greatly appreciated. Most of the book was prepared at home and the author wants to
thank his wife Wakiko for her patience.

Osaka, Japan Chihiro Hamaguchi
March 2001

xiv Preface to the First Edition



Contents

1 Energy Band Structures of Semiconductors . . . . . . . . . . . . . . . . . . 1
1.1 Free-Electron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Bloch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Nearly Free Electron Approximation . . . . . . . . . . . . . . . . . . . . 5
1.4 Reduced Zone Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Free–Electron Bands (Empty–Lattice Bands) . . . . . . . . . . . . . . 10

1.5.1 First Brillouin Zone . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.2 Reciprocal Lattice Vectors of fcc Crystal . . . . . . . . . . . 12
1.5.3 Free Electron Bands . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Pseudopotential Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.1 Local Pseudopotential Theory . . . . . . . . . . . . . . . . . . . 16
1.6.2 Pseudopotential Form Factors . . . . . . . . . . . . . . . . . . . 20
1.6.3 Nonlocal Pseudopotential Theory . . . . . . . . . . . . . . . . 23
1.6.4 Energy Band Calculation by Local Pseudopotential

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6.5 Spin–Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6.6 Energy Band Calculations by Nonlocal

Pseudopotential Method with Spin–Orbit
Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.7 k � p Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.7.1 k � p Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.7.2 Derivation of the k � p Parameters . . . . . . . . . . . . . . . . 41
1.7.3 15–band k � pMethod . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.7.4 Antisymmetric Potentials for Zinc Blende Crystals . . . . 50
1.7.5 Spin–orbit Interaction Hamiltonian . . . . . . . . . . . . . . . 51
1.7.6 30–band k � p Method with the Spin–Orbit

Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.8 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xv



1.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2 Cyclotron Resonance and Energy Band Structures . . . . . . . . . . . . . 65
2.1 Cyclotron Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2 Analysis of Valence Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.3 Spin–Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.4 Non-parabolicity of the Conduction Band . . . . . . . . . . . . . . . . . 87
2.5 Electron Motion in a Magnetic Field and Landau Levels . . . . . . 90

2.5.1 Landau Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.5.2 Density of States and Inter Landau

Level Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.5.3 Landau Levels of a Non-parabolic Band . . . . . . . . . . . 98
2.5.4 Effective g Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.5.5 Landau Levels of the Valence Bands . . . . . . . . . . . . . . 104
2.5.6 Magneto–optical Absorption . . . . . . . . . . . . . . . . . . . . 110

2.6 Luttinger Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2.7 Luttinger Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3 Wannier Function and Effective Mass Approximation . . . . . . . . . . 125
3.1 Wannier Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2 Effective-Mass Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.3 Shallow Impurity Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.4 Impurity Levels in Ge and Si . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.4.1 Valley–Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . 138
3.4.2 Central Cell Correction . . . . . . . . . . . . . . . . . . . . . . . . 139

3.5 Electron Motion Under an External Field . . . . . . . . . . . . . . . . . 141
3.5.1 Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3.5.2 Electron Motion Under an External Force . . . . . . . . . . 145
3.5.3 Electron Motion and Effective Mass . . . . . . . . . . . . . . 148

3.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4 Optical Properties 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.1 Reflection and Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.2 Direct Transition and Absorption Coefficient . . . . . . . . . . . . . . 158
4.3 Joint Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.4 Indirect Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.5 Exciton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.5.1 Direct Exciton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.5.2 Indirect Exciton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.6 Dielectric Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.6.1 E0, E0 þD0 Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xvi Contents



4.6.2 E1 and E1 þD1 Edge . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.6.3 E2 Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.6.4 Exciton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

4.7 Piezobirefringence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.7.1 Phenomenological Theory of Piezobirefringence . . . . . 192
4.7.2 Deformation Potential Theory . . . . . . . . . . . . . . . . . . . 193
4.7.3 Stress-Induced Change in Energy Band Structure . . . . . 196

4.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5 Optical Properties 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.1 Modulation Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.1.1 Electro-Optic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.1.2 Franz–Keldysh Effect . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.1.3 Modulation Spectroscopy . . . . . . . . . . . . . . . . . . . . . . 211
5.1.4 Theory of Electroreflectance and Third-Derivative

Form of Aspnes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.2 Raman Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.2.1 Selection Rule of Raman Scattering . . . . . . . . . . . . . . . 225
5.2.2 Quantum Mechanical Theory of Raman

Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
5.2.3 Resonant Raman Scattering . . . . . . . . . . . . . . . . . . . . . 235

5.3 Brillouin Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
5.3.1 Scattering Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
5.3.2 Brillouin Scattering Experiments . . . . . . . . . . . . . . . . . 244
5.3.3 Resonant Brillouin Scattering . . . . . . . . . . . . . . . . . . . 246

5.4 Polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
5.4.1 Phonon Polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
5.4.2 Exciton Polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

5.5 Free–Carrier Absorption and Plasmon . . . . . . . . . . . . . . . . . . . 257
5.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

6 Electron–Phonon Interaction and Electron Transport . . . . . . . . . . 265
6.1 Lattice Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6.1.1 Acoustic Mode and Optical Mode . . . . . . . . . . . . . . . . 265
6.1.2 Harmonic Approximation . . . . . . . . . . . . . . . . . . . . . . 270

6.2 Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . 279
6.2.1 Collision Term and Relaxation Time . . . . . . . . . . . . . . 281
6.2.2 Mobility and Electrical Conductivity . . . . . . . . . . . . . . 284

6.3 Scattering Probability and Transition Matrix Element . . . . . . . . 289
6.3.1 Transition Matrix Element . . . . . . . . . . . . . . . . . . . . . 289
6.3.2 Deformation Potential Scattering

(Acoustic Phonon Scattering) . . . . . . . . . . . . . . . . . . . 292

Contents xvii



6.3.3 Ionized Impurity Scattering . . . . . . . . . . . . . . . . . . . . . 294
6.3.4 Piezoelectric Potential Scattering . . . . . . . . . . . . . . . . . 299
6.3.5 Non-polar Optical Phonon Scattering . . . . . . . . . . . . . . 302
6.3.6 Polar Optical Phonon Scattering . . . . . . . . . . . . . . . . . 303
6.3.7 Inter–Valley Phonon Scattering . . . . . . . . . . . . . . . . . . 308
6.3.8 Deformation Potential in Degenerate Bands . . . . . . . . . 309
6.3.9 Theoretical Calculation of Deformation Potentials . . . . 311
6.3.10 Electron–Electron Interaction

and Plasmon Scattering . . . . . . . . . . . . . . . . . . . . . . . . 316
6.3.11 Alloy Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

6.4 Scattering Rate and Relaxation Time . . . . . . . . . . . . . . . . . . . . 325
6.4.1 Acoustic Phonon Scattering . . . . . . . . . . . . . . . . . . . . 329
6.4.2 Non-polar Optical Phonon Scattering . . . . . . . . . . . . . . 334
6.4.3 Polar Optical Phonon Scattering . . . . . . . . . . . . . . . . . 335
6.4.4 Piezoelectric Potential Scattering . . . . . . . . . . . . . . . . . 337
6.4.5 Inter–Valley Phonon Scattering . . . . . . . . . . . . . . . . . . 339
6.4.6 Ionized Impurity Scattering . . . . . . . . . . . . . . . . . . . . . 341
6.4.7 Neutral Impurity Scattering . . . . . . . . . . . . . . . . . . . . . 343
6.4.8 Plasmon Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
6.4.9 Alloy Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

6.5 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
6.5.1 Acoustic Phonon Scattering . . . . . . . . . . . . . . . . . . . . 347
6.5.2 Non-polar Optical Phonon Scattering . . . . . . . . . . . . . . 347
6.5.3 Polar Optical Phonon Scattering . . . . . . . . . . . . . . . . . 351
6.5.4 Piezoelectric Potential Scattering . . . . . . . . . . . . . . . . . 353
6.5.5 Inter–Valley Phonon Scattering . . . . . . . . . . . . . . . . . . 353
6.5.6 Ionized Impurity Scattering . . . . . . . . . . . . . . . . . . . . . 356
6.5.7 Neutral Impurity Scattering . . . . . . . . . . . . . . . . . . . . . 358
6.5.8 Plasmon Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
6.5.9 Alloy Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
6.5.10 Electron Mobility in GaN . . . . . . . . . . . . . . . . . . . . . . 361

6.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

7 Magnetotransport Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
7.1 Phenomenological Theory of the Hall Effect . . . . . . . . . . . . . . . 365
7.2 Magnetoresistance Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

7.2.1 Theory of Magnetoresistance . . . . . . . . . . . . . . . . . . . . 372
7.2.2 General Solutions for a Weak Magnetic Field . . . . . . . 372
7.2.3 Case of Scalar Effective Mass . . . . . . . . . . . . . . . . . . . 374
7.2.4 Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

7.3 Shubnikov–de Haas Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
7.3.1 Theory of Shubnikov–de Haas Effect . . . . . . . . . . . . . . 380

xviii Contents



7.3.2 Longitudinal Magnetoresistance Configuration . . . . . . . 384
7.3.3 Transverse Magnetoresistance Configuration . . . . . . . . 387

7.4 Magnetophonon Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
7.4.1 Experiments and Theory of Magnetophonon

Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
7.4.2 Various Types of Magnetophonon Resonance . . . . . . . 398
7.4.3 Magnetophonon Resonance Under High Electric

and High Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . 403
7.4.4 Polaron Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

7.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

8 Quantum Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
8.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
8.2 Two-Dimensional Electron Gas Systems . . . . . . . . . . . . . . . . . 416

8.2.1 Two-Dimensional Electron Gas in MOS Inversion
Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

8.2.2 Quantum Wells and HEMT . . . . . . . . . . . . . . . . . . . . 426
8.3 Transport Phenomena of Two-Dimensional Electron Gas . . . . . 433

8.3.1 Fundamental Equations . . . . . . . . . . . . . . . . . . . . . . . . 433
8.3.2 Scattering Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
8.3.3 Mobility of a Two-Dimensional Electron Gas . . . . . . . 464

8.4 Superlattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
8.4.1 Kronig–Penney Model . . . . . . . . . . . . . . . . . . . . . . . . 471
8.4.2 Effect of Brillouin Zone Folding . . . . . . . . . . . . . . . . . 474
8.4.3 Tight Binding Approximation . . . . . . . . . . . . . . . . . . . 477
8.4.4 sp3s� Tight Binding Approximation . . . . . . . . . . . . . . . 479
8.4.5 Energy Band Calculations for Superlattices . . . . . . . . . 481
8.4.6 Second Nearest-Neighbor sp3 Tight Binding

Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
8.5 Mesoscopic Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

8.5.1 Mesoscopic Region . . . . . . . . . . . . . . . . . . . . . . . . . . 494
8.5.2 Definition of Mesoscopic Region . . . . . . . . . . . . . . . . 496
8.5.3 Landauer Formula and Büttiker–Landauer

Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
8.5.4 Research in the Mesoscopic Region . . . . . . . . . . . . . . 504
8.5.5 Aharonov–Bohm Effect (AB Effect) . . . . . . . . . . . . . . 504
8.5.6 Ballistic Electron Transport . . . . . . . . . . . . . . . . . . . . . 506

8.6 Quantum Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
8.7 Coulomb Blockade and Single Electron Transistor . . . . . . . . . . 520
8.8 Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

8.8.1 Addition Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
8.8.2 Exact Diagonalization Method . . . . . . . . . . . . . . . . . . 531

Contents xix



8.8.3 Hamiltonian for Electrons in a Quantum Dot . . . . . . . . 532
8.8.4 Diagonalization of N Electrons Hamiltonian

Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
8.8.5 Electronic States in Quantum Dots . . . . . . . . . . . . . . . 537
8.8.6 Quantum Dot States in Magnetic Field . . . . . . . . . . . . 538
8.8.7 Electronic States in Elliptic and Triangular

Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
8.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

9 Light Emission and Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
9.1 Einstein Coefficients A and B . . . . . . . . . . . . . . . . . . . . . . . . . 548
9.2 Spontaneous Emission and Stimulated Emission . . . . . . . . . . . . 550
9.3 Band Tail Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
9.4 Luminescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

9.4.1 Luminescence Due to Band to Band Transition . . . . . . 561
9.4.2 Luminescence Due to Excitons . . . . . . . . . . . . . . . . . . 562
9.4.3 Luminescence via Impurities . . . . . . . . . . . . . . . . . . . . 565
9.4.4 Luminescence in GaP and GaAsP via N Traps . . . . . . . 570
9.4.5 Luminescence from GaInNAs . . . . . . . . . . . . . . . . . . . 574
9.4.6 Light Emitting Diodes (LEDs) in Visible Region . . . . . 576

9.5 Heterostructure Optical Waveguide . . . . . . . . . . . . . . . . . . . . . 576
9.5.1 Wave Equations for Planar Waveguide . . . . . . . . . . . . 577
9.5.2 Transverse Electric Modes . . . . . . . . . . . . . . . . . . . . . 582
9.5.3 Transverse Magnetic Modes . . . . . . . . . . . . . . . . . . . . 583
9.5.4 Effective Refractive Index . . . . . . . . . . . . . . . . . . . . . . 585
9.5.5 Confinement Factor . . . . . . . . . . . . . . . . . . . . . . . . . . 586
9.5.6 Laser Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

9.6 Stimulated Emission in Quantum Well Structures . . . . . . . . . . . 592
9.6.1 Confinement in Quantum Well . . . . . . . . . . . . . . . . . . 593
9.6.2 Optical Transition in Quantum Well Structures . . . . . . 597
9.6.3 Reduced Density of States and Gain . . . . . . . . . . . . . . 602
9.6.4 Strain Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

9.7 Wurtzite Semiconductor Lasers . . . . . . . . . . . . . . . . . . . . . . . . 610
9.7.1 Energy Band Structure of Wurtzite Crystals . . . . . . . . . 611
9.7.2 Bowing of the Band Gaps and the Effective Masses

in the Ternary Alloys . . . . . . . . . . . . . . . . . . . . . . . . . 619
9.7.3 Valence Band Structure in the Presence of Strain . . . . . 624
9.7.4 Optical Gain of Nitride Quantum Well Structures . . . . . 631

9.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

xx Contents



10 Answers for Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Contents xxi



Chapter 1
Energy Band Structures of Semiconductors

Abstract Thephysical properties of semiconductors canbeunderstoodwith the help
of the energy band structures. This chapter is devoted to energy band calculations
and interpretation of the band structures. Bloch theorem is the starting point for
the energy band calculations. Bloch functions in periodic potentials is derived here
and a periodic function is shown to be expressed in terms of Fourier expansion by
means of reciprocal wave vectors. Brillouin zones are then introduced to understand
energy band structures of semiconductors. The basic results obtained here are used
throughout the text. Nearly free electron approximation is shown as the simplest
example to understand the energy band gap (forbidden gap) of semiconductors and
the overall features of the energy band structure. The energy band calculation is
carried out first by obtaining free-electron bands (empty lattice bands) which are
based on the assumption of vanishing magnitude of crystal potentials and of keeping
the crystal periodicity. Next we show that the energy band structures are calculated
with a good approximation by the local pseudopotential method with several Fourier
components of crystal potential. The nonlocal pseudopotential method, where the
nonlocal properties of core electrons are taken into account, is discussed with the
spin–orbit interaction. Also k · p perturbation method for energy band calculation
is described in detail. The method is extended to obtain the full band structures
of the elementary and compound semiconductors. Another method “tight binding
approximation” will be discussed in connection with the energy band calculation of
superlattices in Chap.8.

1.1 Free-Electron Model

It is well known that the physical properties of semiconductors are understood with
the help of energy band structures. The energy states or energy band structures
of electrons in crystals reflect the periodic potential of the crystals and they can be
calculated when we know the exact shape and themagnitude of the crystal potentials.
The shape and the magnitude of the potential are not determined directly from any
experimental methods, and thus we have to calculate or estimate the energy bands by
using the assumed potentials. Many different approaches to calculations of energy
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C. Hamaguchi, Basic Semiconductor Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-66860-4_1

1

http://dx.doi.org/10.1007/978-3-319-66860-4_8


2 1 Energy Band Structures of Semiconductors

Fig. 1.1 One-dimensional crystal with periodic potential

bands have been reported, but in this textbook we will deal with several methods,
which are not so difficult to understand. We begin with the most simplified method
to calculate electronic states in a model crystal.

For simplicity we consider a one-dimensional crystal with a periodic potential as
shown in Fig. 1.1, and assume that each atom provides one free electron and that the
atom has a charge of +e, forming an ion.

The ion provides potential energy V (r) = −e2/4πε0r , where r is the distance
from the central position of the ion. Therefore, the one-dimensional crystal has a
potential energy consisting of the superposition of that of each atom, as shown in
Fig. 1.1. From the figure we find the potential energy of the walls is higher than the
inside potential and thus the electrons are confined between the walls. However, we
have to note that the above results are derived from a very simplified assumption
and the potential distribution is obtained without electrons. In a crystal there are
many electrons and thus electron–electron interactions play a very important role in
the potential energy distribution. Electron–electron interaction will be discussed in
the case of plasmon scattering in Chap.2 and in calculating the electronic states in
quantum dots in Sect. 8. In the discussion of the energy band structure we will not
deal with the electron–electron interactions and consider a simplified case where we
calculate the electronic states for a single electron and then put many electrons in
the energy states by taking the Pauli exclusion principle into account.

The large conductivity in metals is understood to arise from the fact that many
free electrons exist in the conduction band. Therefore such electrons have an energy
higher than the potential maxima and lower than the confining wall potentials. In
the extreme case we can make an approximation that the electrons are confined in a
square potential well, as shown in Fig. 1.2, where we assume the potential is infinite
at x = 0 and x = L . In such a case the electron energy may be obtained by solving
the one-dimensional Schrödinger equation

[
− �

2

2m

d2

dx2
+ V (x)

]
Ψ (x) = EΨ (x) , (1.1)

and the solutions are given by the following relations:
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Fig. 1.2 Simplified quantum
well model and electronic
states
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, (1.2)

kn = π

L
· n (n = 1, 2, 3, . . .)

Eigenfunctions and their energy level for n = 1, 2, 3, . . . are shown in Fig. 1.2. It
is very easy to extend this one-dimensional model to the three-dimensional model,
which will not be given here. We have to note that energy band structures are well
understood by introducing periodic boundary conditions and the Bloch theorem.

1.2 Bloch Theorem

When we introduce a translational vector T , the crystal potential has the periodicity
V (r) = V (r + T ), and thus the squared wave function of the electron |Ψ (r)|2 has
the same periodicity. The amplitude of the wave function Ψ (r) has an ambiguity
of a phase factor exp(ik · r). The cyclic boundary condition in the case of a one-
dimensional crystal requires the condition that the wave function including the phase
factor is the same at x and at x + L , and thus Ψ (x) = Ψ (x + L), where L is the
length of the crystal. The results are summarized as follows [1]:

Ψ (r) = exp(ik · r)uk(r) , (1.3)

uk(r + T ) = uk(r) , (1.4)
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k = 2π

N
(nxa∗ + nyb

∗ + nzc∗) , (1.5)

where k is called the electron wave vector and T = n1a + n2b + n3c is the trans-
lational vector defined by using the fundamental vectors a, b, c with n1, n2, n3 =
0,±1,±2, . . .. The function Ψ (r) is called the Bloch function and the function u(r)
is the periodic function of the translational vector,

u(r + T ) = u(r) . (1.6)

The wave vector k is expressed in terms of the reciprocal lattice [1],

a∗ = b × c
a · (b × c)

, (1.7)

b∗ = c× a
a · (b × c)

, (1.8)

c∗ = a × b
a · (b × c)

, (1.9)

which satisfy the following relations [1]:

a∗ · a = b∗ · b = c∗ · c = 1 , (1.10)

a∗ · b = a∗ · c = · · · = c∗ · a = c∗ · b = 0 . (1.11)

The reciprocal lattice vector is defined by

Gn = 2π(n1a∗ + n2b
∗ + n3c∗) , where n1, n2, n3are integers. (1.12)

Periodic functions with the lattice vectors a, b, c are Fourier expanded with the
reciprocal lattice vectors,

uk(r) =
∑
m

A(Gm) exp(−iGm · r) , (1.13)

V (r) =
∑
n

V (Gn) exp(−iGn · r) , (1.14)

where A(Gm) and V (Gn) are Fourier coefficients. The coefficients are obtained by
the inverse Fourier transformation,

A(Gi ) = 1

Ω

∫
Ω

exp(+iGi · r)uk(r)d3r , (1.15)

V (G j ) = 1

Ω

∫
Ω

exp(+iG j · r)V (r)d3r , (1.16)
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where Ω is the volume of the unit cell of the crystal. From the definition of the
reciprocal lattice vector (1.12), we can easily prove the following important relation
(see Appendix A.2),

1

Ω

∫
Ω

exp [i (Gm − Gn) · r] d3r = δmn . (1.17)

Here we have used the Kronecker delta function defined by

δmn =
{
1 for m = n
0 for m �= n

. (1.18)

1.3 Nearly Free Electron Approximation

For simplicity we begin with the one-dimensional case. From (1.16) we obtain

V (Gn) = 1

a

∫ a

0
V (x) exp(iGnx)dx , (1.19)

which gives the following zeroth-order Fourier coefficient, V (0), when we put Gn =
0 in the above equation

V (0) = 1

a

∫ a

0
V (x)dx . (1.20)

The coefficient V (0) gives the average of the potential energy. In the case of three-
dimensional crystals, the coefficient

V (0) = 1

Ω

∫
Ω

V (r)d3r (1.21)

also gives the average value of the potential energy V (r) in the unit cell Ω . In
the following we measure the energy from V (0) and thus we put V (0) = 0. The
electronic states of an electron in the periodic potential V (r) are given by solving
the Schrödinder equation,

[
− �

2

2m
∇2 + V (r)

]
Ψ (r) = E(k)Ψ (r) . (1.22)

Putting (1.13) into (1.3), we obtain
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Ψ (r) = 1√
Ω

exp(ik · r)
∑
n

A(Gn) exp(−iGn · r) ,

= 1√
Ω

∑
n

A(Gn) exp [i (k − Gn) · r] , (1.23)

where the factor 1/
√

Ω is introduced to normalize the wave function Ψ (r) in the
unit cell. Putting (1.14) and (1.23) into (1.22), the following result is obtained:

1√
Ω

∑
n

[
�
2

2m
(k − Gn)

2 − E(k) +
∑
m

V (Gm) exp(−iGm · r)
]

×A(Gn) exp [i(k − Gn) · r] = 0 . (1.24)

Multiplying (1/
√

Ω) exp[−i(k−Gl) · r] to the both sides of the above equation and
integrating in the unit cell with the help of (1.17), we find that the first and the second
terms are not 0 for n = l, and that the third term is not 0 for −(Gm + Gn) = −Gl

(or Gl − Gn = Gm). Therefore, the integral is not 0 only in the case of m = l − n,
and we obtain the following result:

[
�
2

2m
(k − Gl)

2 − E(k)
]
A(Gl) +

∑
n

V (Gl − Gn)A(Gn) = 0 . (1.25)

In the free-electron approximation of Sect. 1.1, we assumed the potential is given by
the square well shown in Fig. 1.2, and thus the Fourier coefficients are V (Gm) = 0
(m �= 0). As stated above, we take the energy basis at V (0) and put V (r) = 0. Then
(1.22) gives the following solution:

E(k) = �
2k2

2m
, (1.26)

Ψ (r) = 1√
Ω

A(0) exp(ik · r) . (1.27)

In the nearly free electron approximation, the potential energy is assumed to be
very close to the square well shown in Fig. 1.2 and the Fourier coefficients V (Gl)

are assumed to be negligible except for V (0). Therefore, we replace the energy E(k)
by (1.26) in (1.25) and only the term including A(0) is kept in the second term. This
assumption results in

[
�
2

2m
(k − Gl)

2 − �
2k2

2m

]
A(Gl) + V (Gl)A(0) = 0 . (1.28)

From this equation we obtain
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A(Gl) = V (Gl)A(0)

(�2/2m)
[
k2 − (k − Gl)2

] . (1.29)

In the nearly free electron approximation, the electron wave function may be approx-
imated by (1.27). In other words, the terms A(Gl) are very small except Gl = 0.
From the result given by (1.29), however, we find that the term A(Gl) is very large
when (k − Gl)

2 ≈ k2. The condition is shown by the following equation:

(k − Gl)
2 = k2 , (1.30)

which gives rise to Bragg’s law (law of Bragg reflection) and determines the Brillouin
zones of crystals. When the electron wave vector ranges close to the value given by
(1.30), we keep the term A(Gl) in addition to the term A(0), and neglect the other
terms. Then we obtain the following relations from (1.25):[

�
2

2m
k2 − E(k)

]
A(0) + V (−Gl)A(Gl) = 0 , (1.31a)

[
�
2

2m
(k − Gl)

2 − E(k)
]
A(Gl) + V (Gl)A(0) = 0 . (1.31b)

The solutions of the above equations are obtained under the condition that the coef-
ficients A(0) and A(Gl) are both not equal to 0 at the same time. The condition is
satisfied when the determinant of (1.31a) and (1.31b) is 0, which is given by

[
(�2/2m)k2 − E(k) V (−Gl)

V (Gl) (�2/2m)(k − Gl)
2 − E(k)

]
= 0 . (1.32)

From this we obtain

E(k) = 1

2

[
�
2

2m

{
k2 + (k − Gl)

2
}

±
√(

�2

2m

)2 {
k2 − (k − Gl)2

}2 + 4|V (Gl)|2
]

, (1.33)

where the relation V (−Gl) = V ∗(Gl) is used. When k2 = (k − Gl)
2 and thus

2k · Gl = G2
l , we find

E(k) = �
2k2

2m
± |V (Gl)| , (1.34)

which means that there exists an energy gap of 2|V (Gl)|.
Here we will apply the results to a one-dimensional crystal. Replacing Gl by Gn

in (1.33) and using the relation Gn = 2πn/a(n = 0,±1,±2,±3, · · · ), we have the
following equation:
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E(k) = 1

2

[
�
2

2m

{
k2 +

(
k − 2πn

a

)2
}

±
√(

�2

2m

)2 {
k2 −

(
k − 2πn

a

)2}2

+ 4|V (Gn)|2
]

. (1.35)

Therefore, E(k) ∼= �
2k2/2m is satisfied, except in the region close to the condition

k2 = G2
n = (k − 2πn/a)2 or k = nπ/a. This result gives the choice of ± in (1.35).

Taking account of the sign of the square root, in the region k < (k −Gn)
2 we should

choose the minus sign and in the region k > (k − Gn)
2 we have to choose the

plus sign in (1.35). Therefore, in the region k ≈ nπ/a > 0, we find we obtain the
following relations:

k ≤ nπ

a
: E(k) = �

2k2

2m
− |V (Gn)| , (1.36)

k ≥ nπ

a
: E(k) = �

2k2

2m
+ |V (Gn)| . (1.37)

Using the above relations and plotting E(k) as a function of k, we obtain the results
shown in Fig. 1.3a. Such a plot of energy in the whole region of the k vector shown
in Fig. 1.3a is called the “extended zone representation”. In such a one-dimensional
crystal model with N atoms, however, the electron system has N degrees of freedom
and thus the wave vector of the electron may take N values in the range −π/a <

k ≤ π/a, corresponding to the first Brillouin zone. When we take this fact into
account, the energy can be shown in the first Brillouin zone −π/a < k ≤ π/a. This
may be understood from the fact that the wave vectors k and k + Gm are equivalent
because of the equivalence of the wave functions with these two wave vectors from

(a) (b) (c)

Fig. 1.3 Energy band structure of one-dimensional crystal obtained from the nearly free electron
approximation. a extended zone representation, b reduced zone representation, and c energy bands
in real space. Energy in units of (�2/2m)(π/a)2
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the result shown by (1.23) (see Sect. 1.4). Using this result we easily find that the
region −2π/a < k ≤ −π/a in Fig. 1.3a is moved in the region 0 ≤ k ≤ π/a of
the first Brillouin zone by adding G = 2π/a and that π/a ≤ k ≤ 2π/a is moved
into −π/a ≤ k ≤ 0 by adding G = −2π/a. The region −2π/a < k ≤ −π/a and
π/a ≤ k ≤ 2π/a is called the second Brillouin zone. The 3rd Brillouin zone, 4th
Brillouin zone, . . . are defined in the samemanner and they can be reduced to the first
Brillouin zone. The energy plotted in the first Brillouin zone is shown in Fig. 1.3b and
this is called the “reduced zone representation”. Usually the energy band structure is
shown in the reduced zone scheme. Figure1.3c shows the allowed energy regionwith
the shaded portion and the region is called the “allowed band”, while electrons cannot
occupy the region in between the allowed bands, which is called the “forbidden band”
or “energy band gap”, where the horizontal axis corresponds to the coordinate of real
space.

1.4 Reduced Zone Scheme

The Bloch function in a crystal is given by

ψ(r) = 1√
Ω

∑
l

A(Gl)e
i(k−Gl )·r . (1.38)

Let us examine the phase between two Bloch functions with k-vectors k − Gl and
k. The phase difference at r between exp[ik · r] and exp[i(k − Gl) · r] is Gl · r .
The phase difference of the Bloch functions at a point displaced by the translational
vector T , r +T , is easily obtained in the following way. Since we have the relations

T = n1a + n2b + n3c , (1.39)

Gl = 2π(m1a∗ + m2b
∗ + m3c∗) , (1.40)

Gl · T = 2π(m1n1 + m2n2 + m3n3) = 2πn , (1.41)

and we obtain

k · (r + T ) − (k − Gl) · (r + T ) = Gl · r + Gl · T
= Gl · r + 2πn, (1.42)

where n is an integer and the relation a∗ · a = 1 is used.
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From the above considerationswefind the following results. The phase differences
between the two functions exp[ik · r] and exp[i(k−Gl) · r] at two different positions
r and r + T differs by the amount 2πn and thus the Bloch function ψ(r) behaves in
the same way at the position displaced by the translational vector T . In other words,
we can conclude that electrons with k and k − Gl are equivalent. Therefore, we can
reduce the electronic state of an electron with wave vector k into the state k − Gl ,
and represent the electronic states in the first Brillouin zone. This procedure is called
the reduced zone scheme and the energy band representation in the reduced zone
scheme. On the other hand, the energy band representation over the whole k region
is called the extended zone scheme.

1.5 Free–Electron Bands (Empty–Lattice Bands)

1.5.1 First Brillouin Zone

In order to calculate energy band structures of a semiconductor the following proce-
dures are required to carry out the calculations. These are

1. Calculate the first Brillouin zone.
2. Calculate the energy band structures in the limit of zero potential energy. This

procedure is to obtain the free-electron bands or empty-lattice bands and plot the
energy as a function of wave vector k in the reduced zone scheme.

3. Then calculate the energy bands using an appropriate method.

In the energy band calculation the most important procedure is to obtain the empty-
lattice bands, which are calculated by assuming zero lattice potential V (r) = 0
and keeping the lattice periodicity. In other words we assume the wave functions
are given by the free-electron model with the wave vectors of the electrons in the
periodic potential. Such an energy band structure is called empty-lattice bands or
free-electron bands and thus the band structure exhibits the characteristics of the
lattice periodicity.

Here we will show an example of empty-lattice bands in the case of the face-
centered cubic (fcc) lattice. First, we calculate the Brillouin zone of the fcc lattice.
Figure1.4a shows the fcc structure. The diamond structure is obtained by displac-
ing the lattice atoms by the amount (a/4, a/4, a/4), which is shown in Fig. 1.4b.
Therefore, the diamond structure belongs to the fcc structure. Diamond (C), Si and
Ge have this diamond structure. On the other hand, the displaced lattice atoms are
different from the original atoms, and the structure is called the zinc-blende structure,
which is shown in Fig. 1.4c. Crystals such as GaAs, GaP, AlAs, InAs, InSb belong
to the zinc-blende structure. The fundamental vectors and volume v of a fcc lattice
are defined by
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a a a

(a) (b) (c)

Fig. 1.4 a face-centered cubic lattice, b the diamond crystal lattice is obtained by displacing the
lattice atoms of a by (a/4, a/4, a/4), c when the displaced lattice atoms are different from the
original lattice atoms, the crystal structure is called the zinc-blende crystal structure

a = a

2
(ex + ey) , b = a

2
(ey + ez) , c = a

2
(ez + ex ) ,

v = a · (b × c)

=
(a
2

)3
(ex + ey) · [(ey + ez) × (ez + ex )] = 2

(a
2

)3 = 1

4
a3 , (1.43)

where e is the unit vector. The reciprocal vectors of the fcc structure are obtained as
follows:

a∗ = b × c
v

=
(a
2

)2 (ey + ez) × (ez + ex )
v

=
(a
2

)2 (ex − ez + ey)
a3/4

= 1

a
(ex + ey − ez) , (1.44)

b∗ = 1

a
(−ex + ey + ez) , (1.45)

c∗ = 1

a
(ex − ey + ez) . (1.46)

From these results we find that the reciprocal lattices of the fcc lattice form body-
centered cubic lattices. Therefore, the reciprocal lattice vectors G of the fcc lattice
are given by

G = 2π(n1a∗ + n2b
∗ + n3c∗) . (1.47)

The Brillouin zone of the fcc lattice is defined by

k2 = (k − Gl)
2 (1.48)

or

2k · Gl = G2
l . (1.49)
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(a) (b)

Fig. 1.5 The first Brillouin zone of a face-centered cubic lattice and b body-centered cubic lattice

Using the above equation the first Brillouin zone is easily calculated, as shown in
Fig. 1.5a. For comparison the first Brillouin zone of body-centered cubic lattices,
which form face-centered cubic lattices, is shown in Fig. 1.5b.

Since the lattice potential is 0 in the empty-lattice model, the energy of an electron
is given by the free-electron model:

E(k) = �
2

2m
k2 . (1.50)

We plot the energy E(k) versus wave vector k curves in the reduced zone scheme,
using the relation

k′ = k − G , (1.51)

and choose k′ in the first Brillouin zone. Then the empty lattice bands are given by

E(k′) = �
2

2m

(
k′ + G

)2
. (1.52)

1.5.2 Reciprocal Lattice Vectors of fcc Crystal

In the next Sect. 1.6, we discuss detailed treatment of pseudopotential method for
energy band calculations and show how to program the energy band calculation. For
this purpose we evaluate the matrix elements of the pseudopotential Hamiltonian
of a face centered cubic (fcc) crystal. First, we calculate the reciprocal lattice vec-
tors. Inserting (1.44) ∼ (1.46) into (1.47), we obtain the following relations for the
reciprocal vectors



1.5 Free–Electron Bands (Empty–Lattice Bands) 13

G = 2π

a

[
(n1 − n2 + n3)ex + (n1 + n2 − n3)ey

+ (−n1 + n2 + n3)ez
]

(1.53)

and thus the x , y, z components of G, and G2 are

Gx = 2π

a
(n1 − n2 + n3) , (1.54)

Gy = 2π

a
(n1 + n2 − n3) , (1.55)

Gz = 2π

a
(−n1 + n2 + n3) , (1.56)

G2 = [
G2

x + G2
y + G2

z

]
(1.57)

≡
(
2π

a

)2 [
(n1 − n2 + n3)

2 + (n1 + n2 − n3)
2

+ (−n1 + n2 + n3)
2
]

. (1.58)

Using these relations the reciprocal wave vectors of a face–centered cubic lattice
are easily evaluated, by putting n1, n2, n3 = ±0, ±1, ±2, ±4, ±5, . . .. It is very
convenient to introduce dimensionless lattice vectors K defined by,

K =
( a

2π

)
G . (1.59)

The calculated reciprocal lattice vectors K are listed in Table1.1, whereGx , Gy, Gz

are obtained by multiplying K by (2π/a) and they are tabulated for K 2 = K 2
x +

K 2
y + K 2

z = 0 ∼ 27.

1.5.3 Free Electron Bands

Free electron bands (empty lattice bands) are easily calculated using the results of
Table1.1, which are shown in Fig. 1.6 in the range of electron energy less than 200
in units of [�2/2ma2].

For better understanding we list several reciprocal lattice vectors from the lowest
orders, which are given by (see (1.53) and Table1.1)
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Table 1.1 Reciprocal lattice vectors of a face-centered cubic lattice calculated from (1.53), where
Kx = (a/2π)Gx , Ky = (a/2π)Gy , Kz = (a/2π)Gz . Here the vectors are obtained for K 2 =
K 2
x + K 2

y + K 2
z from 0 to 27

[K ] Permutations K 2

[000] [000] 0

[111] [1̄1̄1̄] [1̄1̄1] [11̄1̄] [1̄11̄] [11̄1] [1̄11] [111̄] [111] 3

[200] [02̄0] [2̄00] [002̄] [002] [200] [020] 4

[220] [2̄2̄0] [02̄2̄] [2̄02̄] [02̄2] [2̄02] [22̄0] [2̄20] [202̄] 8

[022̄] [202] [022] [220]
[311] [1̄3̄1̄] [3̄1̄1̄] [1̄3̄1] [3̄1̄1] [1̄1̄3̄] [13̄1̄] [13̄1] [3̄11̄] 11

[3̄11] [1̄1̄3] [11̄3̄] [1̄13̄] [11̄3] [1̄13] [113̄] [31̄1̄]
[31̄1] [1̄31̄] [1̄31] [113] [311̄] [131̄] [311] [131]

[222] [2̄2̄2̄] [2̄2̄2] [22̄2̄] [2̄22̄] [22̄2] [2̄22] [222̄] [222] 12

[400] [04̄0] [4̄00] [004̄] [004] [400] [040] 16

[331] [3̄3̄1̄] [3̄3̄1] [1̄3̄3̄] [3̄1̄3̄] [1̄3̄3] [3̄1̄3] [13̄3̄] [3̄13̄] 19

[13̄3] [3̄13] [33̄1̄] [33̄1] [3̄31̄] [3̄31] [31̄3̄] [1̄33̄]
[31̄3] [1̄33] [313̄] [133̄] [133] [331̄] [331] [313]

[420] [2̄4̄0] [4̄2̄0] [04̄2̄] [4̄02̄] [04̄2] [4̄02] [02̄4̄] [2̄04̄] 20

[24̄0] [4̄20] [02̄4] [2̄04] [204̄] [024̄] [42̄0] [2̄40]
[204] [024] [402̄] [042̄] [402] [042] [420] [240]

[422] [2̄4̄2̄] [422] [2̄4̄2] [4̄2̄2] [2̄2̄4̄] [2̄2̄4] [24̄2̄] [24̄2] 24

[4̄22̄] [4̄22] [22̄4̄] [2̄24̄] [22̄4] [2̄24] [42̄2̄] [42̄2]
[2̄42̄] [2̄42] [224̄] [224] [422̄] [242̄] [422] [242]

[511] [511̄] [1̄5̄1̄] [1̄5̄1] [5̄1̄1̄] [5̄1̄1] [115] [15̄1̄] [15̄1] 27

[5̄11̄] [5̄11] [1̄1̄5̄] [1̄1̄5] [11̄5̄] [51̄1̄] [1̄15̄] [51̄1]
[11̄5] [1̄15] [115̄] [1̄51̄] [1̄51] [511] [151̄] [151]

[333] [333] [3̄3̄3] [33̄3̄] [3̄33̄] [3̄33] [33̄3] [333̄] [3̄3̄3̄] 27

Fig. 1.6 Free electron bands
(empty lattice bands) of a
face-centered lattice are
plotted as a function of
electron wave vector along
the direction shown in
Fig. 1.22, where the energy
range is 0 ∼ 200 in units of
[�2/2ma2]

0

50

100

150

200

Wave Vector
L  X U K  W

E  
/ (
ħ2

/2
m
a2

)
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G0 = 2π

a
[0, 0, 0] , (1.60a)

G3 = 2π

a
[±1,±1,±1] , (1.60b)

G4 = 2π

a
[±2, 0, 0] , (1.60c)

G8 = 2π

a
[±2,±2, 0] , (1.60d)

G11 = 2π

a
(±3,±1,±1) . (1.60e)

Putting these values in (1.52), the empty-lattice bands (free-electron bands) are easily
calculated. In the following we use k instead of k′ and take account of k in the first
Brillouin zone. As an example we calculate the energy bands along the direction
〈100〉 in the k-space shown in Fig. 1.5. In other words, we calculate the energy band
structures E versus k from the Γ point to the X point. Since ky = kz = 0 in this
direction, putting the reciprocal lattice vectors into (1.50), the energy is given by the
following equations:

G0 : E = k2x , (1.61a)

G3 : E = (kx ± 1)2 + (±1)2 + (±1)2 ,

=
{

(kx − 1)2 + 2 (4-fold degeneracy)
(kx + 1)2 + 2 (4-fold degeneracy)

, (1.61b)

G4 : E =
⎧⎨
⎩
k2x + 4 (4-fold degeneracy)
(kx − 2)2 (single state)
(kx + 2)2 (single state)

, (1.61c)

where the energy is measured in the units �
2(2π/a)2/2m and the wave vector k in

the units 2π/a. When we plot these relations, we obtain the curves shown in Fig. 1.7.
Next we calculate the E versus k curves in the 〈111〉 direction of k-space, or along

the direction from the Γ point to the L point. The results are

Fig. 1.7 Empty–lattice
bands (free-electron bands)
of a face-centered cubic
lattice. 〈000〉, 〈111〉, 〈200〉,
and 〈220〉 represent the
reciprocal lattice vectors G0,
G3, G4, and G8,
respectively, and the
numbers in ( ) show the
degeneracy of the wave
functions
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G0 : E = k2x + k2y + k2z ≡ k2111 , (1.62a)

G3 : E = (kx ± 1)2 + (ky ± 1)2 + (kz ± 1)2 , (1.62b)

G4 : E =

⎧⎪⎨
⎪⎩

(kx ± 2)2 + k2y + k2z (2-fold degeneracy)
k2x + (ky ± 2)2 + k2z (2-fold degeneracy)

k2x + k2y + (kz ± 2)2 (2-fold degeneracy)
, (1.62c)

where k2x + k2y + k2z = k2111 and kx = ky = kz = k111/
√
3. Using these results we

obtain the energy bands, E − −k curves in the direction 〈111〉, which are shown in
the left half of Fig. 1.7. In Fig. 1.7, the notation of the point group for Oh is used
to represent the symmetry properties of the Brillouin zone edge. Note here that the
energy E is expressed in units of �

2(2π/a)2/2m.

1.6 Pseudopotential Method

In this section we will concern with the energy band calculations based on the
pseudopotential method. First we introduce local pseudopotential theory in which
the nonlocality of the core states are ignored, and we will show how to calculate
the energy band structures of the diamond and zinc blende semiconductors by using
small number of the pseudopotentials. In the later section we will discuss the nonlo-
cal pseudopotential theory in which the core potential of the occupied states is taken
into account.

1.6.1 Local Pseudopotential Theory

The electronic states in a crystal are obtained by solving the following non-relativistic
Schrödinger equation in the one-electron approximation:

[
− �

2

2m
∇2 + V (r)

]
Ψn(r) = En(k)Ψn(r) . (1.63)

However, it is possible onlywhenweknow the crystal potentialV (r). In the following
we will express the wavefunction Ψn(r) by the ket vector as |Ψn(r)〉 and show how
the Schrödinger equation is solved to a good approximation by using empirical
parameters, known as pseudopotentials, and the orthogonality of the wave functions
[2–7]. The idea of the pseudopotential method is based on the assumption that the real
crystal potential V (r) is given by the sum of the attractive core potential and theweak
repulsive potential (to keep the valence electrons out of the core). The addition of the
repulsive potential to the core potential cancels the real potential, resulting in a weak
net potential (pseudopotential). The introduction of the pseudopotential enables us to
treat valence electrons as nearly free electron approximation or to solve Schödinger
equation with a small number of Fourier components of the pseudopotential.
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First, we assume the electron wave functions of the core states and their energies
are given by |φ j 〉 and E j , respectively. We then have

H |φ j 〉 = [H0 + Vc(r)] |φ j 〉 = E j |φ j 〉 , (1.64)

where Vc(r) is the attractive core potential, and

H0 = − �
2

2m
∇2 . (1.65)

The true wave function |Ψ 〉 of an electron is then expressed as the sum of a smooth
wave function |χn(r)〉 of a valence electron (subscript n is the band index) and a sum
over occupied core states |φ j 〉;

|Ψ 〉 = |χn〉 +
∑
j

b j |φ j 〉 . (1.66)

Since the truewave function is orthogonal to the core states, the expansion coefficient
b j ′ is determined by the orthogonality 〈φ j |Ψ 〉 = 0 as follows.

〈φ j ′ |Ψ 〉 = 〈φ j ′ |χn〉 +
∑
j

〈φ j ′ |b jφ j 〉

= 〈φ j ′ |χn〉 + b j ′ = 0 , (1.67)

which gives b j ′ = −〈φ j ′ |χn〉 and thus we obtain

|Ψ (k, r)〉 = |χn(k, r)〉 −
∑
j

〈φ j |χn〉|φ j 〉 . (1.68)

We have to note here that |χn〉 is defined as a smooth wave function for a valence
electron and called as the pseudo-wave-function. As in the case of nearly free elec-
tron approximation, we calculate energy band structures by using plane waves for
|χn(k, r)〉 and in this scheme (1.68) is called the OPW (orthogonalized plane wave).
Substituting (1.68) into (1.63) we find

H |χn〉 −
∑
j

〈φ j |χn〉H |φ j 〉 = En(k)
{
|χn〉 −

∑
j

〈φ j |χn〉|φ j 〉
}

, (1.69)

and then we obtain the following relation:

H |χn〉 +
∑
j

[En(k) − E j ]|φ j 〉〈φ j |χn〉 = En(k)|χn〉 . (1.70)

We introduce a new parameter according to the definition of Cohen and Chelikowsky
[2]
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Vr(r) =
∑
j

[En(k) − E j ]|φ j 〉〈φ j | , (1.71)

or

Vr(r)|χn〉 =
∑
j

[En(k) − E j ]|φ j 〉〈φ j |χn〉 . (1.72)

This term acts like a short-ranged non-Hermitian repulsive potential. Using this
definition we obtain the following equation.

[H + Vr(r)]|χn〉 = En(k)|χn〉 . (1.73)

If H is separated into a kinetic energy H0 = −(�2/2m)∇2 and attractive core
potential Vc(r), then (1.73) becomes

[
− �

2

2m
∇2 + Vc(r) + Vr(r)

]
|χn〉 = En(k)|χn〉 , (1.74)

where En(k) is the energy of the band we are interested in. There exists the following
inequality between the energies of the core states, E j , and the energies of the valence
and conduction bands, En(k):

En(k) > E j , (1.75)

and thus we find from (1.72) that

Vr(r) > 0 . (1.76)

We may rewrite (1.74) as

[H0 + Vps(r)]|χn〉 = En(k)|χn〉 , (1.77)

Vps(r) = Vc(r) + Vr(r) , (1.78)

and it may be possible to make Vps small enough, since the attractive core potential
Vc(r) < 0 and the repulsive potential Vr(r) > 0 cancel each other. The new potential
Vps(r) is called the pseudopotential. Since the pseudopotential Vps is the sum of
the attractive long–range potential Vc and a short–range repulsive potential Vr , Vps

becomesweak long–range attractive regions away from the core andweakly repulsive
or attractive regions near the core (see Fig. 1.8 [2]).

The pseudopotential Vps(r) is also periodic, and we can expand it as the Fourier
series

Vps(r) =
∑
j

Vps(G j )e
−iG j ·r , (1.79)
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Fig. 1.8 Schematic plot of
pseudopotential in real space
(after Cohen and
Chelikowsky [2])

where the Fourier coefficients Vps(G j ) are given by

Vps(G j ) = 1√
Ω

∫
Ω

Vps(r)eiG j ·rd3r . (1.80)

For the reason stated above the potentialVps(r)maybe chosen as small as possible,
and thus we choose Vps(G j ) so that the potential Vps(G j ) is expressed with a small
number of the Fourier coefficients Vps(G j ); in other words, we may keep several
values of Vps(G j ) and neglect the other values because of their smallness. We should
note that |Vps(r)| is smaller than |V (r)|, but it does not mean that V (r) converges
with only a small number of its Fourier coefficients. The empirical pseudopotential
method is based on the approximation that the Fourier coefficients of Vps(r) are
empirically chosen so that the shape of the critical points and their energies show
good agreement with experimental observation.

Energy band calculations based on the empirical pseudopotential method take into
account as few the pseudopotentials Vps(G j ) as possible and use the Bloch functions
of the free-electron bands for the wave functions |χn〉. The energy bands are obtained
by solving

[
− �

2

2m
∇2 + Vps(r)

]
|χn(r)〉 = En|χn〉(r) , (1.81)

|χn(r)〉 = 1√
Ω

∑
j

ei(k+G j )·r , (1.82)

Vps(r) =
∑
j ′

Vps(G j ′)e
iG j ′ ·r . (1.83)
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Then the energy band structures are calculated by solving the following equation,
where the j-th component is given by dropping the factor (1/

√
Ω)

∑
j :

[
− �

2

2m
∇2 +

∑
j ′

Vps(G j ′)e
iG j ′ ·r

]
ei(k+G j )·r = En(k)ei(k+G j )·r . (1.84)

The eigenvalues and eigen functions of the above equation are easily obtained by
solving the following matrix equation. First, we introduce pseudopotential Hamil-
tonian by

Hps = − �
2

2m
∇2 + Vps(r) , (1.85)

and rewrite (1.84) as

Hps|k + G j 〉 = En(k)|k + G j 〉 , (1.86)

|k + G j 〉 = 1√
Ω

ei(k+G j )·r . (1.87)

Then the solutions are equivalently obtained by solving the determinant

||〈|k + Gi |Hps|k + G j 〉 − E(k)δi, j || = 0 , (1.88)

where the matrix elements of the Hamiltonian Hps are written as

〈k + Gi |Hps|k + G j 〉 = �
2

2m
(k + Gi )

2δGi ,G j + Vps(G j − Gi ) . (1.89)

When we know the pseudopotential form factors Vps(G j − Gi ), the energy band
calculations are straightforward by solving the eigen equation (1.88). In the next
subsection we will deal with the evaluation of non–vanishing pseudopotential form
factors.

1.6.2 Pseudopotential Form Factors

Once we know the Fourier coefficients Vps(G j ), the solutions of (1.88) are easily
calculated with a personal computer. It is very interesting to point out that the cal-
culated energy bands using the reciprocal wave vectors given by (1.60a)–(1.60e)
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Table 1.2 Pseudopotentials for several semiconductors in units of Rydberg [Ry] and lattice con-
stants a in [Å] (from [5])

a[Å] V S
3 V S

8 V S
11 VA

3 VA
4 VA

11

Si 5.43 −0.21 +0.04 +0.08 0 0 0

Ge 5.66 −0.23 +0.01 +0.06 0 0 0

Sn 6.49 −0.20 0.00 +0.04 0 0 0

GaP 5.44 −0.22 +0.03 +0.07 +0.12 +0.07 +0.02

GaAs 5.64 −0.23 +0.01 +0.06 +0.07 +0.05 +0.01

AlAs 5.66 −0.221 0.025 0.07 0.08 0.05 −0.004

AlSb 6.13 −0.21 +0.02 +0.06 +0.06 +0.04 +0.02

InP 5.86 −0.23 +0.01 +0.06 +0.07 +0.05 +0.01

GaSb 6.12 −0.22 0.00 +0.05 +0.06 +0.05 +0.01

InAs 6.04 −0.22 0.00 +0.05 +0.08 +0.05 +0.03

InSb 6.48 −0.20 0.00 +0.04 +0.06 +0.05 +0.01

ZnS 5.41 −0.22 +0.03 +0.07 +0.24 +0.14 +0.04

ZnSe 5.65 −0.23 +0.03 +0.06 +0.18 +0.12 +0.03

ZnTe 6.07 −0.22 0.00 +0.05 +0.13 +0.10 +0.01

CdTe 6.41 −0.20 0.00 +0.04 +0.15 +0.09 +0.04

and the free-electron Bloch functions show very reasonable results, where only sev-
eral pseudopotential parameters derived by Cohen and Bergstresser [5] shown in
Table1.2 are taken into account.

First we explain the pseudopotential parameters. In general a unit cell of a crystal
contains a single atom or multi–atoms and thus the pseudopotential is expressed as
[6]

Vps(r) =
∑
j

V (G j )e
−iG j ·r , (1.90a)

V (G j ) =
∑

α

Sα(G j )Vα(G j ) , (1.90b)

Sα(G j ) = 1

Nα

∑
cellm

e−iG j ·Rα
m , (1.90c)

Vα(G j ) = 1

Ωα

∫
eiG j ·rV α

ps(r)d
3r . (1.90d)

Derivation of the above relations is understood by taking account of multi–atoms in
the unit cell

∑
j

V (G j )e
−iG j ·r →

∑
j

∑
α

∑
cellm

Vα(G j )e
−iG j ·(r+Rα

m) ,
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where Sα(G) is called a structure factor, Nα is the number of atomic species α
present, Rα

m is the position of the m–th atom of the α–th species, and Ωα is the
atomic volume. Here the crystalline potential is assumed to be a sum of local atomic
pseudopotential V α

ps(r).
The diamond-type crystal structure such as Ge and Si contains two atoms A and B

(A = B) in the unit cell (Nα = 2), and the zinc-blende-type crystal structure has two
different atoms A and B (A �= B) (Nα = 2). When a new vector τ = (a/8)(111)
is defined, the atomic positions of A and B are given by RA = −τ and RB = +τ ,
respectively. Taking the origin of coordinates to be the center of those two atoms,
the structure factors are written as

SA(G j ) = 1

2
eiG j ·τ , SB(G j ) = 1

2
e−iG j ·τ (1.91)

and thus the pseudopotential form factor V (G) is given by

V (G j ) = 1

2

[
VA(G j )e

iG j ·τ + VB(G j )e
−iG j ·τ ]

= V S(G j ) cos(G j · τ ) + iVA(G j ) sin(G j · τ ) . (1.92)

Here we introduce following new parameters

V S(G j ) = [VA(G j ) + VB(G j )]/2 , (1.93a)

V A(G j ) = [VA(G j ) − VB(G j )]/2 , (1.93b)

where V S and VA are called the symmetric and antisymmetric form factors, respec-
tively. The structure factor plays an important role in electronic properties such as
energy band structure, diffraction effect and so on. SS(G j ) = cos(G j · τ ) and
SA(G j ) = sin(G j · τ ) are the real part and imaginary part of the structure factor.
From the definition of diamond-type crystal we have VA(G j ) = 0 and the structure
factor reduces to cos(G j · τ ). In Table1.2 the pseudopotentials are defined by using
the relations V S(G j ) = V A

j and V A(G j ) = V A
j , where G j is defined by (1.60a)–

(1.60e). As shown in Table1.2 some of the pseudopotentials V S(G j ) and VA(G j )

vanish. This may be understood from the following considerations. The symmetric
component of the pseudopotential is written as

V S(G j ) cos
(
G j · τ

) = V S(G j ) cos
(a
8

[
G jx + G jy + G jz

])
. (1.94)

Let’s examine the pseudopotentials for the reciprocal vectors (1.60a)–(1.60e). The
pseudopotentials for smaller values of G j are evaluated as
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V S(G0) cos (G0 · τ ) = V S(G0) ,

V S(G3) cos (G3 · τ ) = V S(G3) cos
(π

4
[±1 ± 1 ± 1]

)
�= 0 ,

V S(G4) cos (G4 · τ ) = V S(G4) cos
(π

4
[±2]

)
= 0 ,

V S(G8) cos (G8 · τ ) = V S(G8) cos
(π

4
[±2 ± 2]

)
�= 0 ,

V S(G11) cos (G11 · τ ) = V S(G11) cos
(π

4
[±3 ± 1 ± 1]

)
�= 0 .

Therefore the symmetric components of the pseudopotentials V S(G0) = V S
0 ,

V S(G3) = V S
3 , V

S(G8) = V S
8 , V

S(G11) = V S
11 remain and V S(G4) = V S

4 will
not contribute. In a similar fashion, there is no contribution from the antisymmetric
components of the pseudopotential V A(G0) = V A

0 and V A(G8) = V A
8 . These results

give the pseudopotentials for smaller values of |G j | in Table1.2, where we find that
pseudopotentials of large |G j | are diminished. Since the energy bands calculatedwith
these pseudopotentials given in Table1.2 show good agreement with experimental
observation, higher order components of the pseudopotentials are usually neglected.
The term V S(G0) = V S

0 results in a shift of the energy reference and thus we put
V S
0 = 0.

1.6.3 Nonlocal Pseudopotential Theory

Here we will be concerned with the energy band calculations by the pseudopoten-
tial method where the nonlocality of the core potential is considered. The method
described above is called local pseudopotential method, where the core potential is
assumed to be uniform neglecting the angular orbitals of the core electrons.

The nonlocal pseudopotential method takes account of nonlocal properties of the
core electrons. The core potential Vc(r) consists of a sum over the occupied core
states φ j , and it consists of the various states with the respective angular momentum
symmetry as discussed by Cohen and Chelikowsky [2, 6, 7] (see also the references
listed there). Therefore the core potential is given by the sum of s–, p–, and d–
components of the respective angular momentum quantum number l = 0, 1, 2, . . .

Vc(r) = Vs + Vp + Vd + . . . . (1.95)

As an example we consider carbon atom C. Its core states are (1s)2 and thus carbon
has no p–repulsive potential. The (2p) electrons of the valence states (2s)2)(2p)2

are affected by the core potential. This repulsive core potential is expected to be
stronger because of its closer distance to the core than in Si and Ge. In general, the
core potential is energy dependent and the nonlocal (NL) correction term to the local
atomic potential term is expressed as the following [2, 4, 7]
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V α
NL(r, E) =

∞∑
l=0

Aα
l (E) fl(r)Pl , (1.96)

and

f α
l (r) =

{
1, r ≤ Rm

0, r ≥ Rm
, (1.97)

where Aα
l (E) is an energy-dependent well depth of the α species, Rm is the model

radius, which is taken to be the same for all l, and Pl is projects out the l-th angular
momentum component of the wave function.

When we assume a square well for the model potential defined by (1.97), the
matrix element of the nonlocal potential is given by

VNL(K , K ′) = 4π

Ωα

∑
l,α

Aα
l (E)(2l + 1)

×Pl
(
cos

(
θK ,K ′

))
Sα(K − K ′)Fα

l (K , K ′) , (1.98)

where Sα(K ) is the structure factor defined by (1.90c) with K = k + G and K ′ =
k + G′, θK ,K ′ is the angle between K and K ′, and the sum of α is carried out over
the atomic species present.

Fl(K , K ′) =⎧⎪⎨
⎪⎩

R3
m

2

{[ jl(K Rm)]2 − jl−1(K Rm) jl+1(K Rm)
}
, K = K ′ ,

R2
m

K 2 − K ′2
[
K jl+1(K Rm) jl(K ′Rm) − K ′ jl+1(K ′Rm) jl(K Rm)

]
, K �= K ′ .

Pl(x) is a Legendre polynomial and jl(x) is a spherical Bessel function, which are
given for smaller values of the subscript l:

P0(x) = 1, P1(x) = x, P2(x) = (1/2)(3x2 − 1) ,

j0(x) = x−1 sin x , J1(x) = x−2 sin x − x−1 cos x ,

j2(x) = (3x−3 − x−1) sin x − 3x−2 cos x , j3(x) = 5x−1 j2(x) − j1(x) .

Energy band calculations require the estimation of energy dependent term Aα
l (E)

and radii Rm = R0, which are reported by Cohen and Chelikowsky [7]. They make
the approximation for A0(E) for the s state as

A0(E) = α0 + β0
{[E0(K )E0(K ′)]1/2 − E0(KF)

}
, (1.99)

where E0(K ) = �
2K 2/2m, KF = (6π2Z/Ω)1/3 and Z is the valence of the atomic

species of interest [6, 7].
Now the energy band calculations with local and nonlocal pseudopotentials are

straight forward.The eigenvalues and eigenvectors are obtainedby solving the secular
equation
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det
∣∣HG,G′(k) − E(k)δG,G′

∣∣ = 0 . (1.100)

For the local pseudopotential approximation, we have

HL
G,G′ = �

2

2m
(k + G)2 + Vps(|G − G′|) . (1.101)

When we include the nonlocal pseudopotential term we obtain

HG,G′ = HL
G,G′ + VNL(K , K ′)

= HL
G,G′ + 4π

Ωα

∑
l,α

Aα
l (E)(2l + 1)Pl

(
cos

(
θK ,K ′

))

×Sα(G − G′)Fα
l (K , K ′) , (1.102)

where the sum is carried out over the atomic species α.
Nonlocal pseudopotential parameters reported by Chelikowsky and Cohen [7] are

listed in Table1.3. In their calculations, the model radius of the Rl for the pseudopo-
tential is taken to be the same for all l and α0 = 0 for the cations. Energy band
calculations based on the nonlocal pseudopotentials require many parameters, but
the calculated results differ only a little compared to the simple local pseudopoten-
tial method. We will present only the energy band structure of GaAs calculated by
the nonlocal pseudopotential method in Sect. 1.6.6. Before dealing with the energy
band calculations by nonlocal pseudopotential, we present energy band structures
calculated by th local pseudopotential method for diamond and zinc blende semi-
conductors without spin–orbit interaction in Sect. 1.6.4. Later in Sect. 1.6.6 we

Table 1.3 Nonlocal pseodopotential parameters for the diamond and zinc blende semiconductors
(after Chelikowsky and Cohen [7])

Materials Pseudopotential form factors [Ry] Lattice constant [Å]

V S
3 V S

8 V S
11 VA

3 VA
4 VA

11

Si −0.257 −0.040 0.033 5.43

Ge −0.221 0.019 0.056 5.65

GaP −0.230 0.020 0.057 0.100 0.070 0.025 5.45

GaAs −0.254∗ 0.014 0.067 0.055 0.038 0.010∗ 5.65

GaSb −0.220 0.005 0.045 0.040 0.030 0.000 6.10

InP −0.235 0.000 0.053 0.080 0.060 0.030 5.86

InAs −0.230 0.000 0.045 0.055 0.045 0.010 6.05

InSb −0.200 −0.010 0.044 0.044 0.030 0.015 6.47

The pseudopotential values of GaAs with asterisk differ from the values V S
3 = −0.214 and VA

11 =
0.001 of Chelikowsky and Cohen [7]
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Nonlocal parameters for Si and Ge
Material α0 [Ry] β0 A2 [Ry] R0 [Å] R2 [Å]

Si 0.55 0.32 0 1.06 0
Ge 0 0 0.275 0 1.22

Nonlocal parameters for zinc blende semiconductors
(R0 = 1.27 for the cation and 1.06 Åfor the anion)

(α0 = 0 for the cation)
Cation Anion

Material α0 [Ry] β0 A2 [Ry] α0 [Ry] β0 A2 [Ry]
GaP 0 0.30 0.40 0.32 0.05 0.45
GaAs 0 0 0.125 0 0 0.625
GaSb 0 0.20 0.20 0 0.30 0.60
InP 0 0.25 0.55 0.30 0.05 0.35
InAs 0 0.35 0.50 0 0.25 1.00
InSb 0 0.45 0.55 0 0.48 0.70

will show calculated results for Ge and GaAs with the spin–orbit interaction for
comparison, and finally we present the energy band calculation of GaAs by the
nonlocal pseudopotential method.

1.6.4 Energy Band Calculation by Local Pseudopotential
Method

In this section we show the calculated results of the energy band structures with
the local pseudopotential method by neglecting the spin–orbit interaction. After the
discussion of the spin–orbit interaction in Sect. 1.6.5 wewill present energy band cal-
culations with the spin–orbit interaction in Sect. 1.6.6. As discussed by Chelikowsky
andCohen [6, 7], the overall feature of the calculated results by the local pseudopoten-
tial method shows a good agreement with the results by the nonlocal pseudopotential
method, except a small change in the region near some critical points. Instead, the
spin–orbit interaction plays a more important role in the energy regions near the criti-
cal points. In order to understand the energy band calculation by the pseudopotential,
first we will concern with the energy band calculation by the local pseudopotential
method.

Since we have only few numbers of the pseudopotential form factors, the energy
band calculations are straight forward.However, the accuracyof the calculated energy
band structures depends on the number of plane waves used for the pseudopotential
Hamiltonian matrix. When the number of plane waves are increased, a large com-
putation time is required to diagonalize the matrix. Therefore we have to limit the
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number of the plane waves. One of the most popular method is to limit the number of
plane waves to form the matrix elements in a reasonable size and the higher energy
states are taken into account by using the perturbation method proposed by Löwdin
[8] as reported by Brust [9] and Cohen and Bergstresser [5]. Now high performance
PC’s such as Windows 7 with Intel core i–7 are available and 200 × 200 matrix is
solved to give the eigen energies and eigenstates in a reasonable time. In the next
section we will deal with k · p perturbation method to calculate energy bands, where
15 eigenstates are used. In this textbook the energy band structures are calculated
by the empirical pseudopotential method with 113 plane waves and thus 226 plane
waves with spin–up and –down states, and higher energy states up to 169 are treated
by Löwdin’s perturbation which are believed to be enough number to get accurate
energy band structures. The energy bands without the spin–orbit interaction with 59
plane waves and Löwdin’s perturbation for the higher states exhibit no noticeable
difference with the present results and thus we recommend the readers to use 59
plane waves for the purpose of time saving.

It is very interesting to compare two different results with 15 plane waves and 169
plane waves because these results provide an information of the convergence of the
energy band calculation by the pseudopotential method. A beginner for the energy
band calculations is recommended to calculate the energy bands of Si for example
using 15 plane waves [000], [111] and [200] (K 2 ≤ 4 in Table1.1) and disregarding
the spin–orbit interaction. The overall features of the calculated energy band structure
of Si are quite similar to the result obtained by 169 plane waves as shown in Fig. 1.9,

(a) (b)

Fig. 1.9 Energy bands of Si calculated by the local empirical pseudopotential method with 15
plane waves (a) and 169 plane waves (b). The curves of (b) are obtained by diagonalizing 113
plane waves 0 ≤ E(K ) ≤ E(K ) = 20 (where E(K ) = (�2/2m)(2π/a)2)K 2) exactly and 56 higher
energy states of 20 < E(K ) ≤ E(K ) = 27 by Löwdin’s perturbation method. Note the curves of
(a) exhibit discontinuity at U, K points and a curve of higher conduction band in the region K1 to
Γ is missing



28 1 Energy Band Structures of Semiconductors

where energy band structures calculated by 15 plane waves are shown by the curves
in (a) and the curves in (b) are calculated by 169 plane waves. We find here that
overall features are in good agreement but some disagreement exists as follows. The
curves obtained by 169 plane waves show smooth continuity at the points U and
K (at K2). The points U and K in the Brillouin zone are equivalent because of
the symmetry of the representation as seen in Figs. 1.5 and 1.22 and thus obtained
bands are expected to be continuous through the points U and K . In addition to the
discontinuity, a higher conduction band obtained by 169 plane waves is missing in
the bands of 15 plane waves calculation in the region K1 to Γ and the conduction
bands of Γ15 and Γ2′ are almost degenerate in Fig. 1.9a. This will be discussed in
Sect. 1.7, where energy band calculations by k · p perturbation method of 15 states
will be discussed.

The energy band calculations carried out byCohen andBergstresser [5] reveal that
the choice of appropriate values for the pseudopotentials V S

3 , V
S
8 , V

S
11, V

A
3 , V A

8 , VA
11

and the neglect of higher-order values give the band structures in good agreement
with experimental results. The pseudopotential values determined by Cohen and
Bergstresser [5] for typical semiconductors are given in Table1.2. As discussed by
Brust [9], and Cohen and Bergstresser [5], the energy bands are obtained by limited
number of plane waves to form pseudopotential Hamiltonian matrix and plane waves
with higher free electron energies are taken into account by the perturbation method
proposed by Löwdin [8]. Energy band structures calculated by (1.84) with 169 plane
waves are shown for Ge and Si in Fig. 1.10, for GaAs, GaP, AlAs and AlSb in
Fig. 1.11, for InP, InAs, GaSb and InSb in Fig. 1.12, and for ZnS, ZnSe, ZnTe and
CdTe in Fig. 1.13. In the calculations, the pseudopotential matrix of the 113 free-
electron states of 0 ≤ E(K ) ≤ E(K ) = 20 (where E(K ) = (�2/2m)(2π/a)2)K 2)
are exactly diagonalized. For example, the calculated band gap of GaAs is 1.42 [eV]

Fig. 1.10 Energy band structures calculated by the empirical pseudopotential method for Si and
Ge. The spin–orbit interaction is not included
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Fig. 1.11 Energy band structures calculated by the empirical pseudopotential method for a GaAs,
b GaP, c AlAs, and d AlSb. The spin–orbit interaction is not included

which is obtained without spin–orbit interaction (compare the results with spin–
orbit interaction shown in Fig. 1.21, where we obtain 1.52eV for the direct band
gap). We have to note here that energy band calculations with 59 plane waves of
0 ≤ E(K ) ≤ E(K ) = 12 give quite reasonable results. This is understood from the
fact that the next higher levels of the free electron states are E(K ) = 16 and well
high compared with E(K ) = 12. The energy band calculations mentioned above
is sometimes called the “local pseudopotential method”, and later Chelikowsky and
Cohen reported the “nonlocal pseudopotential method” as described in Sect. 1.6.3 in
which the spin–orbit interaction is taken into account [6, 7].
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Fig. 1.12 Energy band structures calculated by the empirical pseudopotential method for a InP,
b InAs, c GaSb, and d InSb. The spin–orbit interaction is not included

1.6.5 Spin–Orbit Interaction

Once the reciprocal vectors are calculated, the free-electron wave functions (1.87)
(called as plane waves in this textbook) are easily formulated. Then putting the wave
functions into (1.84) we obtain (1.88) which is called eigen-value equation and easily
diagonalized to give eigenvalues and eigen functions. The matrix element in (1.84)
is written as

〈(k + Gi )|Hps|(k + G j )〉 = T (k)Gi ,G j + VGi ,G j + Δ(k)Gi ,G j , (1.103)
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Fig. 1.13 Energy band structures calculated by the empirical pseudopotential method for a ZnS,
b ZnSe, c ZnTe, and d CdTe. The spin–orbit interaction is not included

where we included spin–orbit interaction by introducing the term Δ(k)Gi ,G j . The
derivation of spin–orbit interaction term is shown in Appendix H. The three terms
of (1.103) are given by
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T (k)Gi ,G j = �
2

2m
(k + Gi )

2δGi ,G j , (1.104)

VGi ,G j = [
V S(Q) cos(Q · τ ) + iVA(Q) sin(Q · τ )

]
Q=Gi−G j

, (1.105)

Δ(k)Gi ,G j = iσ · [
Gi × G j − k × (Gi − G j )

]
× [

λS cos(Q · τ ) + iλA sin(Q · τ )
]

, (1.106)

where

Q = Gi − G j ≡ 2π

a
K . (1.107)

The term T (k)Gi ,G j has diagonal elements only and is easily formulated by using
the reciprocal wave vectors listed in Table1.1. The pseudopotential term VGi ,G j is
separated in symmetric parts and antisymmetric parts (for zinc blende crystal) and
theirmatrix elements are evaluated as follows.Using K = (a/2π)Q = (a/2π)(G j−
Gi ), and τ = (a/8)[111], the symmetric parts of the pseudopotentials are

V S(Q) cos(Q · τ ) = V S
3 cos

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 3 (1.108a)

= V S
8 cos

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 8 (1.108b)

= V S
11 cos

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 11 (1.108c)

= 0 if |K |2 > 11 , (1.108d)

and in a similar fashion we obtain the antisymmetric parts of the pseudopotentials
for a zinc blende crystal

V A(Q) sin(Q · τ ) = V A
3 sin

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 3 (1.109a)

= V A
4 sin

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 4 (1.109b)

= V A
11 sin

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 11 (1.109c)

= 0 if |K |2 > 11 . (1.109d)

The matrix elements of the spin–orbit Hamiltonian are easily evaluated by using the
results shown in Appendix H (see also Sect. 1.7.5 for the evaluation of the matrix ele-
ments of the spin–orbit Hamiltonian), and the manipulation similar to the pseudopo-
tential term leads to the following relations

λS cos(Q · τ ) = λS cos
[π

4
(Kx + Ky + Kz)

]
, (1.110)

λA sin(Q · τ ) = λA sin
[π

4
(Kx + Ky + Kz)

]
. (1.111)

The expression of spin–orbit interaction shown here is based on the derivation by
Melz [10] and known to bemathematically equivalent to the long-wavelength limit of
the OPW formulation due to Weisz [11], but the formalism is based on the empirical
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pseudopotential (local pseudopotential) method. See the paper by Chelikowsky and
Cohen [7] for more detailed treatment. Since we are interested in the valence bands
and lower lying conduction bands, we may restrict the number of plane waves to
calculate the spin–orbit interaction term.

It is well known that the atomic spin–orbit splittings are larger for the heavier
elements. Therefore we expect that the spin–orbit splitting at the valence band max-
imum increases with the heavier elements. For example the spin–orbit splitting of
Ge is larger than Si, and it increases in order of the mass for GaP, GaAs, GaSb, InP,
InAs, and InSb.

1.6.6 Energy Band Calculations by Nonlocal
Pseudopotential Method with Spin–Orbit Interaction

First, we show the calculated results by the local pseudopotential method with spin–
orbit interaction for Ge in Fig. 1.14(a) and GaAs in Fig. 1.14(b) with 118 plane
waves of spin–up and spin–down with the spin–orbit interaction. The pseudopoten-
tial values used in the calculations are local pseudopotentials reported by Cohen
and Bergstresser [5] (see Table1.2), and the spin–orbit interaction parameters are
(2π/a)2λS = 0.0008, (2π/a)2λA = 0.0002, where λS and λA are given by the units
(2π/a)2λS and (2π/a)2λA and used as fitting parameters for simplicity throughout
the textbook. These parameters are not best fitted but give the spin–orbit splitting
energy about 0.340 [eV] for GaAs. There exists only a slight difference in the ener-
gies at X , L and other critical points between the present calculations and the results
calculated by the nonlocal pseudopotential methods of Chelikowsky and Cohen [7]
(the results of the nonlocal pseudopotential method obtained by the present authors’
are shown in Fig. 1.15).

Finally we will show the energy band structure of GaAs calculated by using the
nonlocal pseudopotential method with the spin–orbit interaction. In the calculation
the plane waves for 0 ≤ K 2 ≤ E1 = 20 (113 plane waves and thus 226 plane waves
with spin–up and –down states) are exactly diagonalized, and 56(= 169−113) spin–
degenerate states for E1 < K 2 ≤ 27 are treated by Löwdin’s perturbation method
[8]. The results are shown in Fig. 1.15, where we used the pseudopotentials V S

3 =
−0.254 (−0.214) and V A

11 = 0.010 (0.001) instead of the parameters shown in the
parentheses reported by Chelikowsky and Cohen [7], and the spin–orbit parameters
is λS = 0.00081 and λA = 0.000245. The results are shown in Fig. 1.15 which
give the energy gap EG = 1.5055 [eV] and the spin–orbit splitting at the Γ point
0.34018 [eV]. We have to note here that the calculated results depend on the energy
cut values E1 and E2. When we choose a smaller value for E1, the convergence is very
fast, but the results strongly depend on the value of E2 and the obtained result is not
enough to explain the existing experimental data. On the other hand the results for
E1 = 20 exhibit no recognizable difference between the results with and without the
perturbation terms of the plane waves for E1 < K 2 ≤ 27.
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Fig. 1.14 Energy band structures of a Ge and b GaAs calculated by the local pseudopotential
method with the spin–orbit interaction, where 118 plane waves with spin–up and spin–down and the
spin–orbit interaction parameters are (2π/a)2λS = 0.0008, (2π/a)2λA = 0.0002. The pseudopo-
tential parameters given in Table1.2 are used ((2π/a)2λS = 0.00097 for Ge)

Fig. 1.15 Energy bands of GaAs calculated by the nonlocal pseudopotential method, where the
spin–orbit interaction is taken into account. The states for 0 ≤ K 2 ≤ E1 = 20 (113 plane waves
and thus 226 plane waves with spin–up and –down states) are exactly diagonalized and the states
for E1 < K 2 ≤ 27 (degenerate 56 waves) are treated by the perturbation method
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As reported by Chelikowsky and Cohen [7] the over all features of the energy
bands are almost the same as the results calculated by the local pseudopotential
method except some critical points. Therefore the results shown in the text are cal-
culated by the local pseudopotential method, unless otherwise mentioned, because
we have to adjust more parameters for the nonlocal pseudopotential methods. The
local pseudopotential method requires fewer number of the pseudopotential para-
meters to get results in agreement with the experimental observation, and provides
the energy bands and optical properties of various semiconductors which help us to
understand the optical characteristics and transport properties based on the full band
Monte Carlo simulation.

1.7 k · p Perturbation

1.7.1 k · p Hamiltonian

The k · p perturbation was introduced by Kane [12] in 1956 to analyze the energy
band structures of III–V compound semiconductors and led to a successful result. The
method was originally used in 1936 to discuss the character table of the symmetry
points in the Brillouin zone by Bouckaert, Smoluchowski and Wigner [13]. Later
Dresselhaus, Kip and Kittel [14] used the k · p perturbation method to analyze the
detailed structure of the valence bands of Ge. This method is described in detail in
Sect. 2.1, where the k · p perturbation method is applied to analyze the experimental
results of cyclotron resonance in Ge. In this section we will consider the method used
by Cardona and Pollak [15] to calculate energy band structures.

We consider the non-relativistic Schrödinger equation for a one-electron system:

[
− �

2

2m
∇2 + V (r)

]
Ψ (r) = EΨ (r) , (1.112)

where V (r) is the crystal potential energy with the lattice periodicity. The solution
of (1.112) is given by the Bloch function

Ψ (r) = eik·run,k(r) , (1.113)

where un,k is a function of the lattice periodicity for band index n. Putting this Bloch
function into (1.112) and using the following relations

∇Ψ (r) = ikΨ (r) + eik·r∇un,k(r) , (1.114a)

∇2Ψ (r) = −k2Ψ (r) + 2ikeik·r∇un,k(r) + eik·r∇2un,k(r) ,

= eik·r(−k2 + 2ik · ∇ + ∇2)un,k(r) , (1.114b)

we obtain

[
− �

2

2m
∇2 + V (r) + �

2

2m
k2 − i

�
2

m
(k · ∇)

]
un,k(r) = En(k)un,k(r) . (1.115)

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Using the relation −i�∇ = p for the momentum operator, the above equation may
be rewritten as

[
H0 + �

2k2

2m
+ �

m
k · p

]
un,k(r) = En(k)un,k(r) , (1.116)

where H0 = −(�2/2m)∇2 + V (r) is Hamiltonian. The terms �
2k2/2m in [ ] on the

left-hand side is a constant (c-number) without any operator and thus the term gives
rise to an energy shift of �

2k2/2m from En(k). First solving (1.116) for k = 0 and
then treating (�/m)k · p as a perturbing term, we obtain eigenstates as a function
of k which gives the energy band structure. Therefore, this method is called k · p
perturbation. The eigenstates for the Hamiltonian H0 are obtained by using the
pseudopotentials, but here we show a simplified method to obtain the eigenstates by
solving 2 × 2 matrices following the method reported by Cardona [16]. Although
such a calculation is very simple, obtained eigen energies and eigenvectors are very
useful to understand the band structures.

The above k · p Hamiltonian is rewritten by using atomic units as follows:

− �
2

2m
∇2 = �

2

2m

(
1

aB

)2

(−iaB∇)2 = Ry · (−iaB∇)2 (1.117a)

�
2k2

2m
= �

2

2m

(
1

aB

)2

(aBk)2 = Ry · (aBk)2 (1.117b)

�

m
k · p = �

2

2m

(
1

aB

)2 (
a2B
�

)
(2k · p) = Ry ·

(
a2B
�

)
(2k · p) , (1.117c)

where aB = 4πε0�
2/(me2) � 0.529 [Å] is Bohr radius and Ry = me4/(8ε2h3c)

� 13.6 [eV] is Rydberg constant. Using the dimensionless notation or the atomic
units

k (in [a.u]) = aBk , p (in [a.u]) = aB
�

p = −iaB∇ , (1.118)

and then the (�/m)k · p operator of (1.117c) is rewritten as

�

m
k · p = Ry · (2k · p) . (1.119)

Finally, the length is expressed in atomic units or normalized by aB and then the k · p
Hamiltonian is rewritten as

H0 + �

m
k · p + �

2k2

2m
= −∇2 + 2k · p + k2 . (1.120)

When we put k = 0 in (1.116), we obtain
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H0un,0(r) =
[
− �

2

2m
∇2 + V (r)

]
un,0(r) = En(0)un,0(r) , (1.121)

which is rewritten in atomic units as

[−∇2 + V (r)
]
un,0(r) = En(0)un,0(r) . (1.122)

Since the crystal potential V (r) and Bloch function un,0(r) are periodic with the lat-
tice constant, and thus these two functions are expanded by Fourier series. Therefore
we may use the pseudopotential theory stated before, and the diagonalization of the
Hamiltonian matrix gives the eigenstates and the corresponding eigenvalues. In the
k · p perturbation theory we need eigenstates at k = 0 (at the Γ point) only. For this
purpose we rewrite (1.86) and (1.87) as[−∇2 + Vps(|G|2)] |G j 〉 = En|G j 〉 , (1.123)

|G j 〉 = 1√
Ω

eiG j r , (1.124)

where Vps(r) is expanded with Fourier coefficients Vps(|G|2) (pseudopotential form
factors). Simplified solutions of the above equations are very helpful to obtain the
eigenstates and to explain the group theoretical representations used in Fig. 1.7. The
k· pHamiltonian for semiconductorswith inversion symmetry has off-diagonal terms
only. In addition, we classify the matrix elements with the help of group theory,
and so the number of the matrix elements are extremely decreased. Cardona and
Pollak [15] proposed to calculate the energy band structures using 15 electronic states
(wave functions) at the Γ point (at k = 0) and obtained very accurate energy band
structures of germanium and silicon. Here we will show the energy band calculations
of germanium and silicon based on the k · p perturbation method of Cardona and
Pollak, where the spin–orbit interaction is not included. First we classify the free
electron energy bands shown in Fig. 1.7 with the help of group theory.

Here we summarize important and useful results of group theory without showing
the derivation. Themost important factors are to use the character table of the crystal.
The character table for a face centered cubic lattice which includes diamond and zinc
blende crystals is shown in Table1.4. Although detailed description of group theory
is not shown here, the character table is very useful to calculate non-vanishing matrix
elements and thus selection rule of optical transition. Another important informa-
tion about the symmetry properties of quantum states is the basis functions for the
representations, which is summarized in Table1.5.

In a crystalline solid the notation of atomic orbitals is classified by using the
spherical harmonics Ylm(θ,φ)(m = −l, · · · ,+l) which constitute a basis for the
irreducible representation and thus the electronic states are related to the states of an
atom as shown below [17],
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Table 1.4 Character table of small representations of Oh group

BSW E 3C2
4 6C4 6C2 8C3 J 3JC2

4 6JC4 6JC2 8JC3

Γ1 1 1 1 1 1 1 1 1 1 1

Γ2 1 1 −1 −1 1 1 1 −1 −1 1

Γ12 2 2 0 0 −1 2 2 0 0 −1

Γ15′ 3 −1 1 −1 0 3 −1 1 −1 0

Γ25′ 3 −1 −1 1 0 3 −1 −1 1 0

Γ1′ 1 1 1 1 1 −1 −1 −1 −1 −1

Γ2′ 1 1 −1 −1 1 −1 −1 1 1 −1

Γ12′ 2 2 0 0 −1 −2 −2 0 0 1

Γ15 3 −1 1 −1 0 −3 1 −1 1 0

Γ25 3 −1 −1 1 0 −3 1 1 −1 0

Table 1.5 Basis function of irreducible representation of Oh group at Γ point

Representation Degeneracy Basis functions

Γ1 1 1

Γ2 1 x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2)

Γ12 2 z2 − 1
2 (x2 + y2), (x2 − y2)

Γ15′ 3 xy(x2 − y2), yz(y2 − z2), zx(z2 − x2)

Γ25′ 3 xy, yz, zx

Γ1′ 1 xyz[x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2)]
Γ2′ 1 xyz

Γ12′ 2 xyz[z2 − 1
2 (x2 + y2)], xyz(x2 − y2)

Γ15 3 x, y, z

Γ25 3 z(x2 − y2), x(y2 − z2), y(z2 − x2)

State s (l = 0) = Γ1 ,

State p (l = 1) = Γ15 ,

State d (l = 2) = Γ25′ + Γ12 ,

State f (l = 3) = Γ15 + Γ25 + Γ2′ ,

State g (l = 4) = Γ25′ + Γ15′ + Γ12 + Γ1 ,

State h (l = 5) = Γ25 + 2Γ15 + Γ12′ .

In a crystalline solid the wave functions of an atom and the next nearest neighbor
are hybridized, resulting in bonding and anti-bonding states and thus in energy shift,
as discussed below. A concept of atomic orbitals, LCAO (Linear Combination of
Atomic Orbitals), is very helpful to understand the energy bands at k = 0. Here
we follow the method of Cardona [16]. First, we consider electronic states in the
outer shell of an atomic Ge, where two s–states and two p–states are filled with
electrons. Therefore the other two p–states and ten d–states are empty. Since two
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Fig. 1.16 Splitting of the
atomic states of Ge, Si and
α–Sn under the presence of
the crystalline field of the
diamond structure at Γ point
of the Brillouin zone, where
a bar corresponds to a
degenerate energy state with
spin up and down (after
Cardona [16])

atoms are included in a unit cell of diamond structure, the states are doubled when
the two atoms are put together. In such a case, the electronic states are modified
by linear combinations of the atomic orbitals, the bonding and anti-bonding states,
and thus the states split as shown in Fig. 1.16. No mixing by the crystal field occurs
between s– and p–orbitals at k = 0. The s–orbitals contain a negligible admixture
of f–orbitals while the p–orbitals may contain a significant admixture of d–orbitals
of the same shell. The ordering of the states are illustrated so as to fit the observed
conduction and valence bands. The ordering between the sates is changed by the
bonding–anti-bonding splitting. If the splitting is small, as in the case of α–Sn with
large lattice constant, the Γ1 and Γ2′ are filled and Γ25′ only partially filled. As the
bonding–anti-bonding splitting becomes larger, the Γ2′–state becomes higher than
Γ25′ , resulting in an energy gap. This is the case for Ge and Si as shown in Fig. 1.16.

In order to calculate the energy bands of Ge and Si by the k · p method, we have
to choose the eigenstates at k = 0 properly, not so many states but enough to lead
reasonable results. First we show the free electron bands for lower energy states in
Table1.6, where the free electron energies are estimated for Ge (a = 5.66 Å), G3

band is 1.038 a.u. (14.1eV), and G4 is 1.38 a.u. (18.8eV). The fourth band G8 is 2.77
a.u. (37.7eV), which is well higher than the G4 bands and we may limit the plane
waves up to G4. This enables us to choose 15 eigenstates with the representations;
Γ l
1 , Γ

l
25′ , Γ15, Γ l

2′ , Γ u
1 , Γ

u
25′ , Γ12′ , and Γ u

2′ . This approximation was used by Cardona
and Pollak [15].

Next, we discuss relation between the LCAO and plane waves of free electron
bands expressed by a combination of the reciprocal lattice vectors [Gx ,Gy,Gz] of
the empty lattice bands at Γ point (at k = 0 of the Brillouin zone). The plane waves
of [000], [111] and [200] are related to the LCAO states as shown by Cardona [16].
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Table 1.6 Reciprocal of smaller free electron energies, where dgn means the degeneracy of the
states and the free electron energy in [a.u.] is estimated for a = 5.66 [Å]

G Vector components dgn Representations Energy in
[a.u.]

G0 = (2π/a)[0, 0, 0] 1 Γ l
1 0

G3 = (2π/a)[±1,±1,±1] 8 Γ l
25′ + Γ15 + Γ l

2′ + Γ u
1 1.038

G4 = (2π/a)[±2, 0, 0] 6 Γ u
25′ + Γ12′ + Γ u

2′ 1.38

G8 = (2π/a)[±2,±2, 0] 12 Γ1 + Γ12 + 2Γ15 + Γ25′ 2.77

G11 = (2π/a)[±3,±1,±1] 24 Γ1 + Γ12 + Γ2 + Γ12′
Γ15′ + Γ25 + 2Γ25′ + 2Γ15

3.81

[000] Γ l
1 ; s-bonding;

[111]

⎧⎪⎪⎨
⎪⎪⎩

Γ l
25′ ; p-bonding

Γ15; p-anti-bonding
Γ l
2′ ; s-anti-bonding

Γ u
1 ; s-bonding (next shell);

[200]
⎧⎨
⎩

Γ u
25′ ; d-bonding

Γ12′ ; d-bonding
Γ u
2′ ; s-anti-bonding (next shell) ,

where the superscript l and u denote the lower and the upper of the two states of the
same symmetry. For simplicity we use the relation (1.59) to express dimensionless
reciprocal lattice vector K . The group of reciprocal wave vectors K [±1,±1,±1](8)
have 8 components (dimension is 8), and a combinations of the 8 plane waves gives
the following representations by using the character table of Table1.4

K [±1,±1,±1](8) = Γ u
1 (1) + Γ u

2′ (1) + Γ15(3) + Γ l
25′(3) . (1.125)

The representation Γ u
1 has the same character of the lowest valence band Γ l

1 arising
from the reciprocal wave vector K [0, 0, 0]. Representation Γ u

1 in (1.125) is under-
stood as follows. A summarized combination of orthogonalized plane waves for Γ u

1
is composed from [±1,±1,±1]

Γ u
1 [±1,±1,±1] = 1√

8

{[1, 1, 1] − [1̄, 1, 1] − [1, 1̄, 1] − [1, 1, 1̄]
−[1̄, 1̄, 1] − [1̄, 1, 1̄] − [1, 1̄, 1̄] + [1̄, 1̄, 1̄]} (1.126)

and the character is the same of Γ l
1 [0, 0, 0], where we used the notation

[Kx , Ky, Kz] = exp

[
i

(
2π

a

) (
Kx x + Ky y + Kz z

)]
. (1.127)
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In a similar fashion other symmetrized combinations of the orthogonalized plane
waves are composed for Γ u

2′ , Γ15, and Γ l
25′ . The representations of the plane waves

are summarized in Table1.6. In the following several symmetrized combinations of
the orthogonalized plane waves [Kx , Ky, Kz] belonging to the Γ –representation are
given:

Γ l
2′ [111]

= 1√
8
{[111] − [11̄1̄] − [1̄11̄] − [1̄1̄1] − [1̄1̄1̄] + [1̄11] + [11̄1] + [111̄]} ,

Γ u
2′ [200] = 1√

6

{[200] + [020] + [002] − [2̄00] − [02̄0] − [002̄]} ,

Γ l
25′(X) [111]

= 1√
8
{[111] − [11̄1̄] + [1̄11̄] + [1̄1̄1] + [1̄1̄1̄] − [1̄11] + [11̄1] + [111̄]} ,

Γ u
25′(X) [200] = 1√

2
{[200] + [2̄00]} ,

Γ15(x) [111]

= 1√
8

{[111] − [11̄1̄] + [1̄11̄] + [1̄1̄1] − [1̄1̄1̄] + [1̄11] − [11̄1] − [111̄]} ,

Γ12′(1) [200] = 1

2
{[020] − [002] − [02̄0] + [002̄]} ,

Γ12′(2) [200] = 1√
12

{2[200] − [020] − [002] − 2[2̄00] + [02̄0] + [002̄]} .

The Y and Z components of Γ l
25′ , and y and z components of Γ15 are obtained by

means of cyclic permutation.

1.7.2 Derivation of the k · p Parameters

Energy band calculation bymeans of k· p perturbation requires estimation ofmomen-
tummatrix elements such as 〈Γ l

25′ | p|Γ l
2 〉 and energy eigenstates at the Γ point of the

Brillouin zone (k = 0). For this purpose we use pseudopotential method stated in
the previous Sect. 1.6. These values are used for the initial data and then adjusted to
the values so that the calculated critical points agree with the experiment. Cardona
[16] applied the pseudopotential method for the purpose as described below. First
we solve (1.123) with (1.124). For simplicity, irreducible representations of linear
combinations of orthogonalized plane waves [000], [111] and [200] are considered,
and then we find in Table1.6 that representations Γ1, Γ2′ and Γ25′ appear twice,
and designated as upper “u” and lower “l” states. In the case of a diamond crystal
such as Ge and Si there exist symmetric pseudopotential terms only, and we obtain
eigenvalues and eigenfunctions by diagonalizing 2 × 2 matrices of Hamiltonian
H0 = −∇2 + Vps(|G|2) for the Γ1, Γ2′ and Γ25′ states:
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Γ1[000] Γ1[111]
0 2V S

3
2V S

3 3(2π/a)2 + 3V S
8

, (1.128a)

Γ2′ [111] Γ2′ [200]
3(2π/a)2 + 3V S

3

√
6(V S

3 + V S
11)√

6(V S
3 + V S

11) 4(2π/a)2 + 4V S
8

, (1.128b)

Γ25′ [111] Γ25′ [200]
3(2π/a)2 − V S

3

√
2(V S

3 − V S
11)√

2(V S
3 − V S

11) 4(2π/a)2
. (1.128c)

In the following we estimate the eigen energies and eigenfunctions using the
pseudopotentials listed in Table1.2 and thus the obtained results differ a little from
those reported by Cardona [16] and Cardona and Pollak [15]. The energies of Γ1

states are −0.171 [Ry] (−2.326 [eV]) and 1.237[Ry] (16.8 [eV] for germanium, and
0.735 [Ry] (10.0 [eV] and −0.2399 [Ry] (−3.263 [eV]) for silicon. The energies
of the Γ2′ states are given by 1.69 [Ry] (22.9 [eV]) and 0.77 [Ry] (10.5 [eV]) for
germanium, and 1.81 [Ry] (24.6 [eV]) and 0.977 [Ry] (13.3 [eV]) for silicon. The
eigenstates of the lower energies are

Γ l
2′ for Ge : 0.843Γ2′ [111] + 0.539Γ2′ [200] , (1.129a)

Γ l
2′ for Si, : 0.906Γ2′ [111] + 0.422Γ2′ [200] . (1.129b)

In a similar fashion the eigenstates of Γ25′ are obtained by solving 2×2 Hamiltonian
matrix. The eigen energies are 1.74 [Ry] (23.6 [eV]) and 0.909 [Ry] (12.37 [eV]) for
Ge, and 1.84 [Ry] (25.0 [eV]) and 1.00 [Ry] (13,6 [eV]) for Si.

Γ l
25′ for Ge : 0.755Γ25′ [111] + 0.656Γ25′ [200] , (1.130a)

Γ l
25′ for Si, : 0.774Γ25′ [111] + 0.634Γ25′ [200] . (1.130b)

The energies of the single state Γ15 is given by 3(2π/a)2 − V S
8 , and the doubly–

degenerate statesΓ12′(1)[200]) andΓ12′(2)[200] are given by 4(2π/a)2−2V S
8 , where

matrix elements are 0 between the states Γ12′(1) and Γ12′(2). The calculated energies
at k = 0 (at Γ point) are listed in Table1.7, where energies of the first row of
the material in the table in units of [Ry] are obtained by solving a single band and
2× 2 pseudopotential matrices, and the second row of rel.[Ry] is the relative values
with respect to the valence band top of Γ l

25′ . The third row of the material shows
the eigenvalues calculated by diagonalizing 15 × 15 pseudopotential matrices. In
the 15 × 15 pseudopotential calculation, 15 reciprocal wave vectors of [000](1),
[±1,±1,±1](8), and [±2, 0, 0](6) (numbers in ( ) are degeneracy of the states) are
used, and the result reveals that Γ l

25′ , Γ u
25′ and Γ15 states are triply–degenerate, and

Γ12′ states are doubly–degenerate. We find in Table1.7 that the values deduced from
a simplified method give a very good guide to locate the eigenstates of the valence
and conduction bands. The results obtained by the simple method are very close to
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Table 1.7 Energy eigenvalues at k = 0 (Γ point) calculations by simplified matrices of the
pseudopotentials. Values are given in atomic unit Rydberg [Ry], and relative values (rel.[Ry]) are
with respect to the energy of the top valence band Γ l

25′ . For comparison eigenvalues obtained by
solving 15 × 15 pseudopotential matrix is shown by full [Ry]

At k = 0 Waves Germanium Silicon

[Ry] rel.[Ry] full [Ry] [Ry] rel.[Ry] full [Ry]

Γ l
25′ [111] 0.909 0.00 0.00 1.00 0.00 0.00

Γ l
2′ [111] 0.769 −0.139 0.0342 0.977 −0.023 0.2396

Γ15 [111] 1.026 0.117 0.2694 1.085 0.086 0.2521

Γ u
1 [111] 1.237 0.331 0.4805 1.374 0.246 0.5406

Γ l
1 [000] −0.171 −1.08 −0.9270 −0.128 −1.28 −0.9611

Γ12′ [200] 1.36 0.452 0.6044 1.42 0.421 0.5870

Γ u
25′ [200] 1.74 0.828 0.8938 1.836 0.836 0.9192

Γ u
2′ [200] 1.687 0.778 0.9396 1.809 0.809 0.9996

the values of “pseudo” in Table1.8, although the energy levels of Γ2′ estimated by
the simple method are negative and thus lie below the valence band top for both Ge
and Si. In the k · p perturbation calculations, however, the parameters are adjusted
to fit the data of experimental critical points and thus these estimations will be used
for the initial parameters (Table1.7).

Estimation of the momentum matrix element reported by Cardona [16] is very
helpful to understand the energy band structure and thus it is described below in detail.
The momentum matrix elements of p between Γ l

25′ and Γ l
2′ which is expressed as P

are given by using (1.129a) ∼ (1.130b)

〈Γ l
25′(X)|px |Γ l

2′ 〉 = 〈Γ l
25′(Y )|py|Γ l

2′ 〉 = 〈Γ l
25′(Z)|pz|Γ l

2′ 〉
= 2π

a
[0.843 × 0.755 + 0.539 × 0.656]

= 0.58 = P (: for Ge) , (1.131)

〈Γ l
25′(X)|px |Γ l

2′ 〉 = 〈Γ l
25′(Y )|py|Γ l

2′ 〉 = 〈Γ l
25′(Z)|pz|Γ l

2′ 〉
= 2π

a
[0.906 × 0.774 + 0.422 × 0.634]

= 0.59 = P (: for Si) . (1.132)

The momentum matrix elements of p between Γ l
25′ and Γ15 states are

〈Γ l
25′(Z)|px |Γ15(y)〉 = 〈Γ l

25′(X)|py|Γ15(z)〉 = 〈Γ l
25′(Y )|pz|Γ15(x)〉

= 2π

a
× 0.755 = 0.44 = Q (: for Ge) , (1.133)

〈Γ l
25′(Z)|px |Γ15(y)〉 = 〈Γ l

25′(X)|py|Γ15(z)〉 = 〈Γ l
25′(Y )|pz|Γ15(x)〉

= 2π

a
× 0.774 = 0.47 = Q (: for Si) . (1.134)
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Table 1.8 Energy eigenvalues used for energy band calculations by the k · p perturbation method
in units of Rydberg (from reference [15])

At k = 0 Waves Germanium Silicon

k · p OPWa Pseudo k · p OPWa Pseudo

Γ l
25′ [111] 0.00 0.00 0.00 0.00 0.00 0.00

Γ l
2′ [111] 0.0728b −0.081 −0.007 0.265b 0.164 0.23

Γ15 [111] 0.232b 0.231 0.272 0.252b 0.238 0.28

Γ u
1 [111] 0.571 0.571 0.444 0.520 0.692 0.52

Γ l
1 [000] −0.966 −0.929 −0.950 −0.950 −0.863 −0.97

Γ12′ [200] 0.770 0.770 0.620 0.710 0.696 0.71

Γ u
25′ [200] 1.25c 0.890 0.940 0.94

Γ u
2′ [200] 1.35 0.897 0.990 0.99

aF. Herman, in Proceedings of the International Conference on the Physics of Semiconductors,
Paris, 1964 (Dunod Cie, Paris, 1964), p. 3
bM. Cardona, J. Phys. Chem. Solids 24, 1543 (1963)
cG. Dresselhaus, A.F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955); E.O. Kane, J. Phys. Chem.
Solids 1, 82 (1956)

Table 1.9 The values of momentum matrix elements used for the energy band calculations of
germanium and silicon by the k · p perturbation (atomic units)

Momentum matrix elements Germanium Silicon

k · p Pseudo c.r.† k · p Pseudo c.r.†

P = 2i〈Γ l
25′ | p|Γ l

2′ 〉 1.360 1.24 1.36a 1.200 1.27 1.20b

Q = 2i〈Γ l
25′ | p|Γ15〉 1.070 0.99 1.07a 1.050 1.05 1.05b

R = 2i〈Γ l
25′ | p|Γ12′ 〉 0.8049 0.75 0.92c 0.830 0.74 0.68d

P ′′ = 2i〈Γ l
25′ | p|Γ u

2′ 〉 0.1000 0.09 0.100 0.10

P ′ = 2i〈Γ u
25′ | p|Γ l

2′ 〉 0.1715 0.0092 −0.090 −0.10

Q′ = 2i〈Γ u
25′ | p|Γ15〉 −0.752 −0.65 −0.807 −0.64

R′ = 2i〈Γ u
25′ | p|Γ12′ 〉 1.4357 1.13 1.210 1.21

P ′′′ = 2i〈Γ u
25′ | p|Γ u

2′ 〉 1.6231 1.30 1.32 1.37

T = 2i〈Γ u
1 | p|Γ15〉 1.2003 1.11 1.080 1.18

T ′ = 2i〈Γ l
1 | p|Γ15〉 0.5323 0.41 0.206 0.34

†Values used to analyze the cyclotron resonance experiments
aB.W. Levinger and D.R. Frankl, J. Phys. Chem. Solids 20, 281 (1961)
bJ.C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963)
cCalculated from cyclotron resonance data
dCalculated from cyclotron resonance data of reference b

The momentum matrix elements for the k · p perturbation should be multiplied by a
factor 2, and thus P = 1.16 forGe (P = 1.18 for Si) and Q = 0.88 forGe (Q = 0.94
for Si), which are very close to the parameters used by Cardona and Pollak [15] in
Table1.9. The matrix elements P play a very important role in the determination of
the valence band structure to be dealt with in Chap. 2 and the optical absorption due
to the direct transition discussed in Chap. 4.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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The 15 states at the Γ point are classified into Γ l
1 (1), Γ u

1 (1), Γ l
2′(1), Γ u

2′ (1),
Γ l
25′(3), Γ15(3), Γ u

25′(3), Γ12′(2), where the superscripts l and u correspond to the
lower and upper states of the bands, respectively, and number in the parentheses ( )
is the dimension of the representation. It is evident from the character table of the
group theory thatΓ25′ is 3-dimensional with three eigenstates. The energy eigenstates
are estimated roughly by the pseudopotential method or other approximations [15]
as stated above, and shown in Table1.8. The momentum operator p has the same
symmetry as Γ15 and thus the matrix elements of k · p for the 15 eigenstates have
non-zero components, as shown in the following equations and in Table1.9.

P = 2i〈Γ l
25′ | p|Γ l

2′ 〉 , (1.135a)

Q = 2i〈Γ l
25′ | p|Γ15〉 , (1.135b)

R = 2i〈Γ l
25′ | p|Γ12′ 〉 , (1.135c)

P ′′ = 2i〈Γ l
25′ | p|Γ u

2′ 〉, (1.135d)

P ′ = 2i〈Γ u
25′ | p|Γ l

2′ 〉 , (1.135e)

Q′ = 2i〈Γ u
25′ | p|Γ15〉 , (1.135f)

R′ = 2i〈Γ u
25′ | p|Γ12′ 〉 , (1.135g)

P ′′′ = 2i〈Γ u
25′ | p|Γ u

2′ 〉 , (1.135h)

T = 2i〈Γ u
1 | p|Γ15〉 , (1.135i)

T ′ = 2i〈Γ l
1 | p|Γ15〉 . (1.135j)

The factor 2 of the momentum matrix elements in Table1.9 and (1.135a) ∼ (1.135j)
is understood from k · p perturbation Hamiltonian given by (1.119) and (1.120),
where energy is in Rydberg [Ry] and the length in unit aB (Bohr radius) as discussed
above. We note here the matrix elements of 〈Γ25′ |k · p|Γ12′ 〉 used in the present
calculations. Using the character table and the basis function we may deduce the
non-vanishing matrix elements for the k · p theory. In the present analysis the matrix
elements between Γ25′ and Γ12′ are evaluated by using the property of the character
table in Table1.4,

Γ25′ × Γ12′ = Γ15 + Γ25 , Γ15 × Γ12′ = Γ25′ + Γ15′ . (1.136)

The wave vectors p = [px , py, pz] have the same property as [x, y, z], and thus
the representation is Γ15. Therefore we find non-zero matrix elements 〈Γ25′ | p|Γ12′ 〉
and 〈Γ15′ | p|Γ12′ 〉. However, Γ15′ states belong to the plane waves [±3,±1,±1] and
the free electron energy is 11(2π/a)2 which is much higher than the upper states
of Γ25′ [200] with the free electron energy 4(2π/a)2, and thus Γ15′ states may be
disregarded. Therefore the following matrix elements for the states Γ12′ are included
in the 15× 15 k · p perturbation (see (1.143a) ∼ (1.143f) for a detailed treatment).

2i〈Γ l
25′(X)| p|Γ12′ 〉 = R , (1.137a)

2i〈Γ u
25′(Y )| p|Γ12′ 〉 = R′ . (1.137b)

Using the parameters listed in Table1.9 and following the procedures below, the
energy band structures of Ge and Si are easily calculated. First, we calculate the
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15×15 matrix elements of the k · p Hamiltonian, and second diagonalize the matrix
to obtain the energy eigenvalues and their eigenstates at k of the Brillouin zone. The
matrix of the k · p Hamiltonian has 15×15 complex elements. When we include the
spin–orbit interaction, the matrix of k · p Hamiltonian is given by 30 × 30 complex
elements.

1.7.3 15–band k · p Method

It is very important to point out here that the 15 × 15 matrices for Ge and Si are
factorized into smaller matrices when we use group theoretical consideration, as
shown by Cardona and Pollak [15]. For simplicity we consider the energy bands
along the 〈100〉, 〈110〉 and 〈111〉 directions of the k-vector. The direction 〈100〉
starts from the Γ point and ends at the X point along the Δ axis, and the 〈110〉
direction is from the Γ point to the K point along the Σ axis, while the 〈111〉
direction is from the Γ point to the L point along the Λ axis. With the help of the
compatibility relation given in Table1.10 (see [13]) the matrix elements of the k · p
Hamiltonian are factorized in several groups of smaller matrices. In the following
we use atomic units as stated above, and thus �

2k2/2m and p2/2m are expressed as
k2 and p2, respectively. In the following we show the factorized matrices of the k · p
Hamiltonian in the [100], [110] and [111] directions.
1. [100] direction
(a) Δ5 bands

From Table1.10 we find that three Γ bands exist, but the bands in the parentheses
( ) are neglected because of their high energy states.

Δ5 bands: (Γ15′), Γ u
25′ , Γ

l
25′ , Γ15

The matrix elements for these 3 bands are

Table 1.10 Compatibility relations

Γ1 Γ2 Γ12 Γ15′ Γ25′ Γ1′ Γ2′ Γ12′ Γ15 Γ25

Δ1 Δ2 Δ1Δ2 Δ1′Δ5 Δ2′Δ5 Δ1′ Δ2′ Δ1′Δ2′ Δ1Δ5 Δ2Δ5

Λ1 Λ2 Λ3 Λ2Λ3 Λ1Λ3 Λ2 Λ1 Λ3 Λ1Λ3 Λ2Λ3

Σ1 Σ4 Σ1Σ4 Σ2Σ3Σ4 Σ1Σ2Σ3 Σ2 Σ3 Σ2Σ3 Σ1Σ3Σ4 Σ1Σ2Σ4

X1 X2 X3 X4 X5 X1′ X2′ X3′ X4′ X5′

Δ1 Δ2 Δ2′ Δ1′ Δ5 Δ1′ Δ2′ Δ2 Δ1 Δ5

Z1 Z1 Z4 Z4 Z2Z3 Z2 Z2 Z3 Z3 Z1Z4

S1 S4 S1 S4 S2S3 S2 S3 S2 S3 S1S4
M1 M2 M3 M4 M5 M1′ M2′ M3′ M4′ M5′

Σ1 Σ1 Σ4 Σ4 Σ2Σ3 Σ2 Σ2 Σ3 Σ3 Σ1Σ4

Z1 Z1 Z3 Z3 Z2Z4 Z2 Z2 Z4 Z4 Z1Z3

T1 T2 T2′ T1′ T5 T1′ T2′ T2 T1 T5
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|Γ l
25〉 |Γ15〉 |Γ u

25′ 〉
k2x Qkx 0
Qkx E(Γ15) + k2x Q′kx
0 Q′kx E(Γ u

25′) + k2x

. (1.138)

(b) Δ1 bands
Δ1 bands: Γ l

1 , Γ
u
1 , (Γ12), Γ15

The matrix elements for these three bands are

|Γ15〉 |Γ u
1 〉 |Γ l

1 〉
E(Γ15) + k2x T kx T ′kx

T kx E(Γ u
1 ) + k2x 0

T ′kx 0 E(Γ l
1 ) + k2x

. (1.139)

(c) Δ2′ bands
Δ2′ bands: Γ l

25′ , Γ
u
25′ , Γ

l
2′ , Γ u

2′ , Γ12′

The matrix elements for these five bands are

|Γ l
2′ 〉 |Γ l

25′ 〉 |Γ12′ 〉 |Γ u
25′ 〉 |Γ u

2′
E(Γ l

2′) + k2x Pkx 0 P ′kx 0
Pkx k2x

√
2Rkx 0 P ′′kx

0
√
2Rkx E(Γ12′) + k2x

√
2R′kx 0

P ′kx 0
√
2R′kx E(Γ u

25′) + k2x P ′′′kx
0 P ′′kx 0 P ′′′kx E(Γ u

2′ ) + k2x

, (1.140)

where the factor
√
2 of

√
2Rkx and

√
2R′kx arises from the definition of Γ12′ states

(Γ12′(1) and Γ12′(2)) as given by Cardona and Pollak [15] and the Γ12′(2) state does
not interact with any other state in the [100] direction and behaves like a free electron
band (see (1.143a), (1.143b), (1.144)).

2. [110] direction
From Table1.10, Σ1,Σ4,Σ3,Σ2 are included in this direction.
(a) Σ1 bands: Γ l

1 , Γ
u
1 , (Γ12), Γ

l
25′ , Γ

u
25′ , Γ15 (: 5 bands)

(b) Σ4 bands: (Γ2), (Γ12), (Γ15′), Γ15, (Γ25) (: 1 band)
(c) Σ3 bands: (Γ15′), Γ l

25′ , Γ
u
25′ , Γ

l
2′ , Γ u

2′ , Γ12′ , Γ15 (: 6 bands)
(d) Σ2 bands: (Γ15′), Γ25′l, Γ u

25′ , (Γ1′), Γ12′ , (Γ25) (: 3 bands)
Therefore, for the bands in the [110] direction, Σ bands, 15 × 15 matrix elements
results in irreducible matrix of 6 × 6, 5 × 5, 3 × 3, 1 × 1.

3. [111] direction
From Table1.10, Λ1,Λ3 are included in this direction.
(a) 7 bands of Λ1 bands: Γ l

1 , Γ
u
1 , Γ

l
25′ , Γ u

25′ , Γ l
2′ , Γ u

2′ , Γ15

(b) 4 bands of Λ3 bands: (Γ12), (Γ15′), Γ l
25′ , Γ u

25′ , Γ12′ , Γ15, (Γ25)
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and the Λ bands in the [111] direction are classified in 7 × 7 and 4 × 4 irreducible
matrix.

It should be noted here that above 15×15 k · pmatrix is easily extended to include
ky and kz components. However we have to take account of correct symmetry of the
Γ12′(1) and Γ12′(2) states, which is done by extending the method of Dresselhaus
[14] and convert them into the representations of Cardona and Pollak [15] as follows.
Using the definition of Dresselhaus et al. and following their procedures, we obtain

〈Γ25′(X)|px |γ−
1 〉 = R , (1.141a)

〈Γ25′(X)|px |γ−
2 〉 = −R , (1.141b)

〈Γ25′(Y )|py|γ−
1 〉 = ωR , (1.141c)

〈Γ25′(Y )|py|γ−
2 〉 = −ω2R , (1.141d)

〈Γ25′(Z)|pz|γ−
1 〉 = ω2R , (1.141e)

〈Γ25′(Z)|pz|γ−
2 〉 = −ωR , (1.141f)

where we have to note that the matrix elements R defined by Dresselhaus, Kip and
Kittel [14] (RDKK) and R defined by Cardona and Pollak [15] (RCP) are related by
RCP = 2RDKK. When we choose the eigenstates Γ12′ defined by Cardona and Pollak
[15];

Γ12′(1) = 1√
2
(γ−

1 − γ−
2 ) , Γ12′(2) = 1√

2
(γ−

1 + γ−
2 ) , (1.142)

we obtain the following results

〈Γ25′ |px |Γ12′(1)〉 = √
2R , (1.143a)

〈Γ25′ |px |Γ12′(2)〉 = 0 , (1.143b)

〈Γ25′ |py|Γ12′(1)〉 = (ω + ω2)R/
√
2 = −R/

√
2 , (1.143c)

〈Γ25′ |py|Γ12′(2)〉 = (ω − ω2)R/
√
2 = ω(1 − ω)R/

√
2 = iR

√
3/2 , (1.143d)

〈Γ25′ |pz|Γ12′(1)〉 = (ω2 + ω)R/
√
2 = −R/

√
2 , (1.143e)

〈Γ25′ |pz|Γ12′(2)〉 = (ω2 − ω)R/
√
2 = ω(ω − 1)R/

√
2 = −iR

√
3/2 , (1.143f)

where ω is the solutions of ω3 = 1 (exclude the solution ω = 1) or the solutions
of ω2 + ω + 1 = 0. The above results are obtained by using the solution ω =
(−1 + i

√
3)/2. When we choose the solution ω = (−1 − i

√
3)/2, the sign of the

imaginary part is changed, but the energy band calculations give the same result. In
addition we have to note that ω = 1, one of the solutions of ω3 = 1, does not give
a correct energy bands. This is because the solution ω = 1 does not represent the
correct symmetry of γ−

1 and γ−
2 . Here we show the 15×15 k · p Hamiltonian matrix

without the spin–orbit interaction (antisymmetric potential terms for zinc blende
crystals are included);
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|Γ l
25′ (X)〉 |Γ l

25′ (Y )〉 |Γ l
25′ (Z)〉 |Γ15(x)〉 |Γ15(y)〉 |Γ15(z)〉

E(Γ l
25′ ) + k2 0 0 −iV−

1 Qkz Qky
0 E(Γ l

25′ ) + k2 0 Qkz −iV−
1 Qkx

0 0 E(Γ l
25′ ) + k2 Qky Qkx −iV−

1
iV−

1 Qkz Qky E(Γ15) + k2 0 0
Qkz iV−

1 Qkx 0 E(Γ15) + k2 0
Qky Qkx iV−

1 0 0 E(Γ15) + k2

0 0 0 −iV−
4 Q′kz Q′ky

0 0 0 Q′kz −iV−
4 Q′kx

0 0 0 Q′ky Q′kx −iV−
4√

2Rkx −(R/
√
2)ky −(R/

√
2)kz 0 0 0

0 −iR
√
3/2ky iR

√
3/2kz 0 0 0

Pkx Pky Pkz 0 0 0
P ′′kx P ′′ky P ′′kz 0 0 0
0 0 0 T kx T ky T kz
0 0 0 T ′kx T ′ky T ′kz

|Γ u
25′ (X)〉 |Γ u

25′ (Y )〉 |Γ u
25′ (Z)〉 |Γ12′ (1)〉 |Γ12′ (2)〉

0 0 0
√
2Rkx 0

0 0 0 −(R/
√
2)ky iR

√
3/2ky

0 0 0 −(R/
√
2)kz −iR

√
3/2kz

iV−
4 Q′kz Q′ky 0 0

Q′kz iV−
4 Q′kx 0 0

Q′ky Q′kx iV−
4 0 0

E(Γ u
25′ ) + k2 0 0

√
2R′kx 0

0 E(Γ u
25′ ) + k2 0 −(R′/

√
2)ky iR′√3/2ky

0 0 E(Γ u
25′ ) + k2 −(R′/

√
2)kz −iR′√3/2kz√

2R′kx −(R′/
√
2ky −(R′/

√
2)kz E(Γ12′ ) + k2 0

0 −iR′√3/2ky iR′√3/2kz 0 E(Γ12′ ) + k2

P ′kx P ′ky P ′kz 0 0
P ′′′kx P ′′′ky P ′′′kz 0 0
0 0 0 0 0
0 0 0 0 0

|Γ l
2′ (xyz)〉 |Γ u

2′ (xyz)〉 |Γ u
1 〉 |Γ l

1 〉
Pkx P ′′kx 0 0
Pky P ′′ky 0 0
Pkz P ′′kz 0 0
0 0 T kx T ′kx
0 0 T ky T ′ky
0 0 T kz T ′kz

P ′kx P ′′′kx 0 0
P ′ky P ′′′ky 0 0
P ′kz P ′′′kz 0 0
0 0 0 0
0 0 0 0

E(Γ l
2′ ) + k2 0 iV−

2 iV−
3

0 E(Γ u
2′ ) + k2 iV−

5 iV−
6−iV−

2 −iV−
5 E(Γ u

1 ) + k2 0
−iV−

3 −iV−
6 0 E(Γ l

1 ) + k2

(1.144)

It should be noted here that 〈Γ12′(2)|py|Γ25′(Y )〉 is given by the complex conjugate
of 〈Γ25′(Y )|py|Γ12′(2)〉. Energy bands without the spin–orbit interaction are easily
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Fig. 1.17 Energy band structure of Si and GaAs calculated by 15 band k · p perturbation with-
out spin–orbit interaction. The results are obtained by solving secular equation (1.144) with the
parameters given in Table1.11

calculated by solving (1.144) in any directions of the Brillouin zone. As an example
calculated energy band structure of Si along the L , Γ , X ,W , K to Γ points is shown
in Fig. 1.17. Also in the figure the energy band structure of GaAs is shown, where
the antisymmetric potential is taken account (see 1.7.4).

1.7.4 Antisymmetric Potentials for Zinc Blende Crystals

We have to note here the definition of the matrix elements of the anti-antisymmetric
potentials. As discussed in Sect. 1.6, a diamond type crystal has inversion symmetry
and thus V A(G) = 0, while a zinc blende type crystal has no inversion symmetry and
thus V A(G) �= 0. In order to extend the k · p Hamiltonian for a zinc blende crystal
we have to evaluate the matrix elements of the anti-symmetric potential as shown in
(1.144). Here we present how to evaluate approximate values of the matrix elements
of the anti-symmetric potential. First, we obtain non-vanishing matrix elements of
the 15 plane waves of [0, 0, 0], [±1,±1,±1], and [±2, 0, 0] which are classified
as Γ l

1 , Γ l
25′ , Γ15, Γ12′ , Γ l

2′ , Γ u
1 , Γ u

25′ , Γ12′ , and Γ u
2′ as shown in Table1.6. In Table

1.4, an inversion operation is expressed by J and representation Γi has the inversion
symmetry when J > 0 but no inversion symmetry when J < 0. The product
of Γi × Γ j has the same symmetry property. Noting the anti-symmetric potential
V− has negative sign for the inversion operation, non-vanishing matrix elements
〈Γi |V−|Γ j 〉 are 〈Γ15|V−|Γ25′ 〉 and 〈Γ2′ |V−|Γ1〉.Whenwe use the notations of Pollak,
Higginbotham, and Cardona [18], these are given by the following relations,
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V−
1 = 〈Γ15|V−|Γ l

25′ 〉 = VA
4 , (1.145a)

V−
2 = 〈Γ l

2′ |V−|Γ u
1 〉 = −3V A

4 , (1.145b)

V−
3 = 〈Γ l

2′ |V−|Γ l
1 〉 = 2V A

3 , (1.145c)

V−
4 = 〈Γ15|V−|Γ u

25′ 〉 = √
2

(
VA
3 − VA

11

)
, (1.145d)

V−
5 = 〈Γ u

2′ |V−|Γ u
1 〉 = −(

√
6/3)

[
(4V A

3 + 2VA
11

]
, (1.145e)

V−
6 = 〈Γ u

2′ |V−|Γ l
1 〉 = (2

√
6/3)V A

4 , (1.145f)

where the last terms of the above equations are evaluated from the pseudopoten-
tials in Table1.2 and the relations defined by (1.109a) ∼ (1.109d) with linear com-
binations of the plane waves (1.126) and (1.128 ∼ (1.128). As an example we
evaluate these terms for GaAs using the pseudopotentials given in Table1.2. We
obtain V−

1 = 0.05 (0.12652), V−
2 = −0.15 (−0.24791), V−

3 = 0.14 (0.38210),
V−
4 = 0.0849 (0.12297), V−

5 = −0.245 (−0.34820), and V−
6 = 0.0816 (0.0),

where the values in the parentheses are determined form the energy band calcu-
lations and summarized in Table1.11 for several zinc blende type semiconductors.
Since the term V−

6 corresponds to interactions between very distant atomic orbitals
Γ u
2′ and Γ l

1 (difference in the free electron energy is 4(2π/a)2 = 1.38 [a.u.] for
GaAs), we may safely assume that V−

6 = 0.0 [18].
When we include the spin–orbit interaction, the above equation leads to 30 × 30

k · p complex matrix because each state is doubled with spin–up ↑〉 and spin–down
↓〉. In Chap.2, we will discuss the second order perturbation of the k · pHamiltonian
and the parameters defined by Dresselhaus et al. [14] and by Luttinger [2.2], where
the above results are used to evaluate the contributions from γ−

1 and γ−
2 (Γ12′(1) and

Γ12′(2)).

1.7.5 Spin–orbit Interaction Hamiltonian

When we take account of the spin–orbit interaction, the eigenstates are doubled with
spin–up and spin–down as discussed above, and then we have to solve 30 × 30
complex matrix. In the following we choose the wave functions |X ↑〉, |X ↓〉, |Y ↑〉,
|Y ↓〉, |Z ↑〉, |Z ↓〉 for Γ l

25′ , and |x ↑〉, |x ↓〉, |y ↑〉, |y ↓〉, |z ↑〉, |z ↓〉 for Γ15. This
approximation leads to 30 × 30 complex matrix with the spin–orbit interaction. In
this subsection we formulate the spin–orbit matrix elements using these eigenstates.
Spin–orbit interaction is also discussed in 2.3 to analyze the valence band structure,
in addition to describe the effective mass and effective g factor (Landé g factor) of
the conduction band. Evaluation of the matrix elements of spin–orbit Hamiltonian
is given in detail in 2.3.

We put the spin–orbit interaction term (H.18) of Appendix H into (1.112), and
obtain

Hso = �

4m2c2
[∇ × p] · σ + �

2

4m2c2
[∇ × k] · σ , (1.146)

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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which should be added to the terms in the brackets of the left hand side of (1.116).
The second k–dependent term is very small compared to the first k–independent
term (see Kane [12]) and thus only the first term is considered in this text. Thus the
k–independent term of the spin–orbit Hamiltonian is rewritten as

Hso ∝ L · σ = (r × p) · σ = −i�(r × ∇) · σ (1.147)

and therefore we find that

− i�(r × ∇) · σ = −i�

[(
y

∂

dz
− z

∂

dy

)
σx +

(
z

∂

dx
− x

∂

dz

)
σy

+
(
x

∂

dy
− y

∂

dx

)
σz

]
, (1.148)

where σ is Pauli spin operator1 and the matrix elements are evaluated by using the
basis functions given in Table1.5.

〈X (Γ l
25′) ↑ |Hso|Y (Γ l

25′) ↑〉 = iΔl
25′/3 , (1.149a)

〈X (Γ l
25′) ↑ |Hso|Z(Γ l

25′) ↓〉 = Δl
25′/3 , (1.149b)

〈Y (Γ l
25′) ↑ |Hso|Z(Γ l

25′) ↓〉 = iΔl
25′/3 . (1.149c)

In the same manner the spin–orbit interaction for Γ15 is written as

〈x(Γ15) ↑ |Hso|y(Γ15) ↑〉 = iΔ15/3 , (1.150a)

〈x(Γ15) ↑ |Hso|z(Γ15) ↓〉 = Δ15/3 , (1.150b)

〈y(Γ15) ↑ |Hso|z(Γ15) ↓〉 = iΔ15/3 , (1.150c)

and the antisymmetric term of the spin–orbit interaction is treated as

〈X (Γ l
25′) ↑ |Hso|y(Γ15) ↑〉 = iΔ−/3 , (1.151a)

〈X (Γ l
25′) ↑ |Hso|z(Γ15) ↑〉 = +Δ−/3 , (1.151b)

〈Y (Γ l
25′) ↑ |Hso|z(Γ15) ↓〉 = iΔ−/3 . (1.151c)

The spin–orbit interaction in the valence bands is discussed in Chap.2. Here we
will show the present treatment leads to the same results. The Γ l

25′ valence bands
(|X〉, |Y 〉, |X〉) are triply–degenerate at the Γ point (k = 0). The degenerate Γ l

25′
bands split into doubly–degenerate heavy hole and light hole bands, and the spin–
orbit–split–off band as discussed in Chap. 2. Here it is shown that the above matrix
elements of the spin–orbit Hamiltonian for the valence bands Γ l

25′ give the same
results of the spin–orbit splitting dealt in Chap.2. Thematrix of the spin–orbit Hamil-
tonian for the valence band Γ l

25′ is written as

|X ↑〉 |Y ↑〉 |Z ↓〉∣∣∣∣∣∣∣∣

0 iΔl
25′/3 Δl

25′/3

−iΔl
25′/3 0 iΔl

25′/3

Δl
25′/3 −iΔl

25′/3 0

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
|X ↑〉
|Y ↑〉
|Z ↓〉

∣∣∣∣∣∣ , (1.152)

1See (2.50) of Chap.2 for the definition and (H.33c) of Appendix H for the matrix elements.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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and diagonalization results in

∣∣∣∣∣∣
(1/3)Δl

25′ 0 0
0 (1/3)Δl

25′ 0
0 0 −(2/3)Δl

25′

∣∣∣∣∣∣

∣∣∣∣∣∣
uv1

uv2

uv3

∣∣∣∣∣∣ . (1.153)

Therefore the spin–orbit splitting of Γ l
25′ bands is Δ0 = Δl

25′ and the corresponding
eigenfunctions are

uv1 = i√
2
(X − iY ) ↑ , (1.154a)

uv2 = 1√
2
(X ↑ +Z ↓) , (1.154b)

uv3 = −1√
3
[(X + iY ) ↑ −Z ↓] . (1.154c)

Using these results we may obtain the matrix elements of the spin–orbit Hamiltonian
Hso for the Γ25′ states:

〈Γ25′ |Hso|Γ25′ 〉 = Δ

3

|X ↑〉 |Y ↑〉 |Z ↓〉 |X ↓〉 |Y ↓〉 |Z ↑〉
0 i 1 0 0 0
−i 0 i 0 0 0
1 −i 0 0 0 0
0 0 0 0 i 1
0 0 0 −i 0 i
0 0 0 1 −i 0

, (1.155)

and the matrix is separated by two 3 × 3 matrices and diagonalization of the matrix
gives the following eigenvalues and eigen functions,

〈Γ25′ |Hso|Γ25′ 〉 = Δ

3

|vv1〉 |vv2〉 |vv3〉 |vv4〉 |vv5〉 |vv6〉
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −2 0
0 0 0 0 0 −2

, (1.156)

The eigenstates of the fourfold degenerate valence bands are



54 1 Energy Band Structures of Semiconductors

uv1 = 1√
2
[|X ↑〉 + |Z ↓〉] ,

uv2 = 1√
2
[|X ↓〉 + |Z ↑〉] ,

uv3 = i√
2
[|(X − iY ) ↓〉] ,

uv4 = i√
2
[|(X − iY ) ↑〉] ,

and for twofold degenerate spin–orbit split off bands are

uv5 = − 1√
3
[|(X + iY ) ↑〉 − |Z ↓〉] ,

uv6 = − i√
3
[|(X + iY ) ↓〉 − |Z ↑〉] ,

where we find that the spin–orbit interaction results in the split of valence bands
Δ/3, Δ/3, and −2Δ/3. Note here that the obtained eigen functions differ from
those defined by (2.63a) ∼ (2.63f) in Chap.2 because of the different definition of
the original (unperturbed) basis functions. Similar relations for the Γ15 states and
antisymmetric parts are easily evaluated.

1.7.6 30–band k · p Method with the Spin–Orbit Interaction

We have to note here that the full band calculation (energy states at any points of the
Brillouin zone) is easily carried out by extending 15 × 15 k · p matrix of (1.144) to
30 × 30 k · p matrix with spin–up and spin–down states. The matrices of the spin–
orbit interaction Hamiltonian for Γ u

25′ states, Γ15 states, and the antisymmetric parts
between Γ u

25′ and Γ15 states are obtained by (1.155). The 30–band k · p Hamiltonian
with complex elements are solved to obtain 30 eigenstates. The full band calculations
based on the 30–band k · p methods have been reported in the literatures [19, 20],
where the treatment of the matrix elements R and R1 are deduced by Voon and
Willatzen [19].2 All the k · p parameters for semiconductors such as Ge and Si with
diamond crystal structure and several III-V compound semiconductors such as GaAs
and GaP are summarized in Table1.11. It should be noted again that III-V compound
semiconductors with a zinc blende structure have no inversion symmetry and thus we
have to include the anti-symmetric terms of the potentials and spin–orbit interaction
as discussed by Pollak et al. [18]. A lack of the inversion symmetry results in the
antisymmetric potential V−, and the antisymmetric parts of Δ− in the spin–orbit
Hamiltonian of which matrix elements are defined by (1.151a) ∼ (1.151c).

2The author is thankful for M. Cardona to remind the work by Voon and Willatzen after his visit to
Max Planck Institute at Stuttgart in June, 2013.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Table 1.11 Energy eigenvalues (in Rydberg) and momentum matrix elements (in atomic units)
used in the k · p Hamiltonians for Si, Ge, GaAs, GaP, InP and InSb. Matrix elements of the anti-
symmetric potentials V− and anti-symmetric spin–orbit splitting parameter Δ− (in Rydberg) for
GaAs, GaP, InP and InSb are also listed. Values are from references [15, 18, 21–23]

Si Ge GaAs GaP InP InSb

Γ l
25′ 0.00 0.00 0.00 0.00 0.00 0.00

Γ l
2′ 0.265 0.0728 0.0845 0.2566 0.0929 0.022

Γ15 0.252 0.232 0.2596 0.2511 0.2622 0.232

Γ u
1 0.520 0.571 0.4940 0.5222 0.5057 0.400

Γ12′ 0.710 0.771 0.6063 0.7126 0.5803 0.494

Γ u
25′ 0.940 1.25 0.9002 0.9535 0.8745 0.726

Γ u
2′ 0.990 1.35 0.9849 1.0056 0.9792 0.765

Γ l
1 −0.950 −0.966 −0.844 −0.9827 −0.8107 −0.846

P 1.200 1.360 1.3225 1.207 1.0876 1.3460

Q 1.050 1.070 1.1599 1.051 1.1346 1.0990

R 0.830 0.8049 0.7635 0.8289 0.8045 0.5914

P ′′ 0.100 0.100 0.2465 0.100 0.1267 0.5324

P ′ −0.090 0.1715 0.0438 −0.07863 0.1031 0.0666

Q′ −0.807 −0.752 −0.5511 −0.8046 −0.6585 −0.2120

R′ 1.210 1.436 0.9697 1.220 1.1038 1.0760

P ′′′ 1.320 1.623 1.5530 1.333 1.4281 1.2340

T 1.080 1.200 1.1387 1.0852 1.0806 0.9070

T ′ 0.206 0.5323 0.5323 0.2202 0.3906 0.0210

Δl
25′ 0.0032 0.0213 0.0251 0.00399 0.00823 0.0590

Δ15 0.0036 0.0265 0.0135 0.00459 0.00573 0.0287

V1 = 〈Γ15|V−|Γ l
25′ 〉 0.12652 0.14924 0.1347 0.0869

V2 = 〈Γ l
2′ |V−|Γ u

1 〉 −0.24791 −0.26885 −0.2003 −0.1558

V3 = 〈Γ l
2′ |V−|Γ l

1 〉 0.38210 0.45687 0.2252 0.2391

V4 = 〈Γ15|V−|Γ u
25′ 〉 0.12297 0.21044 0.1131 0.0581

V5 = 〈Γ u
2′ |V−|Γ u

1 〉 −0.34820 −0.33021 −0.2601 −0.1252

V6 = 〈Γ u
2′ |V−|Γ l

1 〉 0.0 0.0 0.0 0.0

Δ− 0.0051 0.00485 0.00682 0.0160

The calculated energy band structures of in the energy range −15 ∼ 10 [eV] are
shown for Ge and GaAs in Fig. 1.18 and for GaP and InP in Fig. 1.19, where we find
that the 30–band k · p perturbation method gives a reasonable result although the
matrix elements are very few compared to the pseudopotential method. Since the
energy bands near the lowest conduction band and the top valence bands are very
important to understand the electrical and optical properties of semiconductors, the
energy band structures in the vicinity of the conduction minima and the valence band
maxima calculated by the 30–band k · p perturbation method are shown in Fig. 1.20
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Fig. 1.18 Energy band structure of Ge and GaAs calculated by the 30–band k · p method with
spin–orbit interaction in k space along L , Γ , X , W , K , and Γ of the Brillouin zone

Fig. 1.19 Energy band structures calculated by the 30–band k · p perturbation method for GaP and
InP, where the spin–orbit interaction is included

for Ge and GaAs, where the parameters are from the references [15, 18, 21–23]. The
k · p perturbation method is very simple, as shown above, and gives an information
about thematrix elements of the optical transition in addition to detailed and accurate
energy band structures [15].

We have to note here some difference of the calculated band structures between
the empirical pseudopotential method and 30–band k · p perturbation method. As
seen in the first Brillouin zone of a face centered cubic crystal given in Figs. 1.5a
and 1.22 the U point and K point are equivalent and we may expect the same
energy eigenvalues at the two points. This feature is understood from the symmetry
properties of the free electron band in the region U and K of Fig. 1.6. However,
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Fig. 1.20 Energy band structures near the conduction and valence bands calculated by the 30–band
k · p perturbation method for Ge and GaAs, where the spin–orbit interaction is included

when we plot energy bands obtained by the 30–band k · p method along X point to
U point and K point to Γ point, we find a small discontinuity at the pointsU and K ,
although the pseudopotential method gives smooth curve in this region. This may
be ascribed to the assumption of limited number of eigen sates at the Γ point for
the k · p perturbation method as follows. The free electron bands of a face centered
cubic lattice are shown in Figs. 1.6 and 1.7, where we find that one of the 12 free
electron bands of [220] is merged into one of the 6 free electron bands of [200]. This
is clearly seen in Fig. 1.21, where the energy band structures of GaAs calculated by
30–band k · p are shown in Fig. 1.21a and the results obtained from the empirical
pseudopotential method with 65 plane waves (130 plane waves with spin–up and
spin–down) are shown in Fig. 1.21b. In the calculations of the local pseudopotential
method, we used the following parameters replacing the pseudopotentials V S

3 and
VA
11 in Table1.3 by V S

3 = −0.260 and VA
11 = 0.015, and the spin–orbit interaction

parameters λS = −0.00050 and λA = −0.00012 in atomic units. Total number
of the free electron waves is 113 and the higher lying free electron waves beyond
E = 16 are included by Löwdin’s perturbation method.These parameters lead to
EG = 1.52eV and spin–orbit splitting Δ = 0.342eV. In Fig. 1.21a we find the bands
obtained from 30–band k · p method are discontinuous at U and K points, while
the bands calculated by the empirical pseudopotential method with 65 plane waves
are continuous. In addition the second lowest conduction band in the region Γ –X
calculated by 30–band k · p method does not appear in the region of between U, K
and Γ points. These features are observed in the band structures calculated by the
pseudopotential method with 15 plane waves shown in Fig. 1.9, while the energy
bands with 65 plane waves showmuch more smooth (continuous) curves nearU and
K points.

Although such a small difference exists in the energy band structure calculated by
the 30–bands k · p perturbation method, the obtained overall features of the full band
structures are very in good agreement with the empirical pseudopotential method and
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Fig. 1.21 Energy band structures of GaAs along L–Γ , Γ –X , X–U, K , and U, K–Γ points a cal-
culated by the 30–band k · p perturbation method and b calculated by the empirical pseudopotential
method with 65 plane waves (130 plane waves with spin–up and spin–down), where the spin–orbit
interaction is included. See the textbook for the used parameters

the bands along L , Γ , X , W , K to Γ are very smooth. As discussed in Sect. 1.8, the
density of states are calculated by dividing the polyhedron, the 1/48 volume of the
first Brillouin zone, starting the basal plane of L , Γ , X ,W , K . Then the calculations
of the density of states are straight forward.

From the results of the pseudopotential and k · p perturbation methods we find
the important features of the energy band structures of the semiconductors which we
deal with in this text. All these semiconductors have valence band maxima at k = 0
(Γ point) and most III–V semiconductors (except several compounds such as GaP,
AlAs and so on) have the conduction band minimum at k = 0 (Γ point), and so
are classified as direct gap semiconductors. On the other hand, other semiconductors
such as Ge, Si, GaP, AlAs and so on have the conduction band minima at k �= 0, and
so are called indirect gap semiconductors. Ge has the conduction bandminima at k =
(π/a)[111] (L point), which are degenerate and consist of equivalent four conduction
bands, and thus the conduction bands have a “many–valley structure.” On the other
hand, Si has the conduction band minima at the Δ point close to the X point and
six equivalent conduction band minima. Later we will discuss the optical properties
of semiconductors, where we find that the direct and indirect semiconductors are
quite different in their optical properties such as absorption and light emission. The
electrical properties also exhibit the features of many-valley structures in Ge and
Si, and also the Gunn effect of GaAs, which arises from the inter-valley transfer
of electrons in a high electric field from the high electron mobility Γ valley to the
low mobility L and/or X valleys. From these results we understand that the energy
band structures play a very important role in the understanding of the electrical and
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optical properties of semiconductors. In addition, once we know the procedures for
calculating energy band structures it is very easy to extend themethod to calculate the
energy band structures of superlattices (periodic layers of different semiconductors
such as GaAs/AlAs) as treated in Chap.8. It is also possible to predict the basic
features of semiconductors from the results of energy band calculations. In this text
the basic physics of semiconductors is treated on the basis of their energy band
structures.

1.8 Density of States

As shown in Sect. 4.3, density of states (DOS) is defined as the number of states per
unit energy. When the number of states in a small volume of k-space in a small range
of energy, [E , E + �E] is given by (1/2π)3�v(k), the density of states JDOS(E) is
defined by (spin factor 2 is omitted)

JDOS(E) =
∑
k

1

(2π)3

�v(k)
�E . (1.157)

Here v(k) is a small volume of the wave vector k in the first Brillouin zone. The
density of states is required to calculate dielectric function (joint density of states)
and also to calculate scattering rate of electrons. It is well known that Monte Carlo
simulation [24] gives a good description of transport properties at high electric fields.
Full band Monte Carlo simulation is used very often, where the calculated energy
band structure is used to simulated electron motion in k-space, and thus the density
of states is required to obtain the scattering rate. In this textbook we will not deal
with high field transport (see [25] for a review on high field transport) and thus
we will not concern with Monte Carlo simulation. However, it is very important to
know how to calculate the density of states defined by (1.157) from the calculated
energy band structure. Various methods have been reported to calculate DOS from
the energy bands. Brust [9] reported a rigorous analysis of the joint density of states
in Ge and Si, but the method is very complicated. Here we will show a simple
but accurate method to calculate the density of states. First, let’s take a look of the
Brillouin zone shown in Fig. 1.22 which is the same as shown in Fig. 1.5a. It is
clear from the 48-fold symmetry of the Brillouin zone that 1/48th part of the zone
shown in Fig. 1.22 is sufficient to calculate the density of states. In other words,
all the other k-points in the first Brillouin zone may be obtained by rotation of the
1/48-th of the Brillouin zone. Using a unit length kf = (X − Γ )/8 = π/4a with
the lattice constant a, 1/48-th part of the first Brillouin zone can be divided into
polyhedrons shown in Fig. 1.23. The bottom plane consists of the critical points
Γ, X, W, K . The second plane is displaced by kf in the kz direction with respect to
the first pane, and intersects Λ, S, Q. The third plane with the same displacement
intersects Λ, U, Q, and the fourth intersects Λ, Q, L . The two neighboring planes

http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 1.22 The first Brillouin
zone of face centered cubic
lattice and the symmetry
points. The box defined by
the lines is 1/48-th part of the
volume of the first Brillouin
zone

Fig. 1.23 1/48th part of the
first Brillouin zone of face
centered cubic lattice is
discretized into polyhedrons
using unit length
kf = (X − Γ )/8 = π/4a,
where a is the lattice constant

Γ

Δ

X V W

K

Σ

Λ

S

Q

Λ

U

Q

Λ

L
Q

form polyhedrons of which volume gives the number of states. The discretization
shown in Fig. 1.23 is not sufficient to calculate the density of states. Here we have
to note the most important idea to use this type of discretization. In order to get
smaller volumes of the polyhedrons, use the unit length kf/N → kf , where N is 2,
4, 8, . . .. Then the volumes of new polyhedrons becomes 1/8, 1/64, 1/512, . . . of the
original polyhedrons and the number of polyhedrons are 8, 64, 512, . . . times of the
original number. The density of states are easily calculated using this discretization.
We calculate the energy eigenstates at the corners of a polygon and tabulate them.
Then pick up the minimum Emin and the maximum Emax from the lowest pairs of the
tabulated eigenstates. Calculate �E = Emax − Emin and E = (Emax + Emin)/2. This
gives us

JDOS(E) � 1

(2π)3

�vf(k)
�E , (1.158)

where �vf(k) is the volume of the polyhedron. In a similar fashion we calculate
the density of states for the second lowest pairs, third lowest pairs and so on up to
a required E value. The obtained DOS JDOS(E) is not uniform but scattered in the
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Fig. 1.24 Energy band
structures of Si calculated by
empirical pseudopotential
method with the
pseudopotentials listed in
Table1.2 and the calculated
density of states (DOS)

Fig. 1.25 Energy band
structures of GaAs
calculated by empirical
pseudopotential method with
the pseudopotentials listed in
Table1.2 and the calculated
density of states (DOS)

energy E and thus we have to rearrange the data in the histogram, 0.1–eV histogram
for example. Then smoothing procedure will give a smooth curve of JDOS(E) as
a function of E . Typical examples of the energy bands and the DOS are shown in
Fig. 1.24 for Si and in Fig. 1.25 for GaAs, where the energy bands are obtained by
the local pseudopotential method using the pseudopotentials given in Table1.2 and
the density of states in the valence bands and the conduction bands are calculated.
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1.9 Problems

(1.1) Calculate the reciprocal lattice vectors of a zinc blende type crystal structure
and compare with the result of Table. 1.1.

(1.2) Energy band calculations are carried out by using atomic units [a.u]. Give
wave vector k = 2π/aB, and energy (�2/2m)/a2B) in atomic units, where aB =
(ε0h2/πme2) = 0.529177 [Å] is Bohr radius.

(1.3) Rewrite Equation (1.35), using the atomic units.
(1.4) Evaluate energy bands of two band model based on the nearly free electron

approximation, taking free electron bands of Gn = 0 and Gn = 1, where Gn =
2nπ/a, a = 0.543 [Å], and V (G1) = V s

3 = −0.21 [a.u.]. Calculate the energy
band E(kx ) and plot the energy bands together with the free electron bands.

(1.5) Derive fundamental vectors [a, b, c] of (i) simple cubic, (ii) body centered
cubic, (iii) face centered cubic and hexagonal closed pack crystals, and calculate
their unit cell volume v.

(1.6) Derive the reciprocal lattice vectors [a∗, b∗, c∗] of (i) simple cubic, (ii) body
centered cubic, (iii) face centered cubic and hexagonal closed pack crystals, and
calculate their unit cell volume v.

(1.7) Derive spin–orbit interaction given by (1.149a)

〈X (Γ l
25′) ↑ |Hso|Y (Γ l

25′) ↑〉 = iΔl
25′/3

(1.8) In order to calculate full band structure in the first Brillouin zone, we have to
the wave vectors at the critical points (symmetry points) and their lengths. Refer-
ring Figs. 1.22 and 1.23, evaluate the symmetry points and the lengths between
the symmetry points of a face centered cubic crystal.
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Chapter 2
Cyclotron Resonance and Energy Band
Structures

Abstract Cyclotron resonance experiments were successfully used to determine the
effective masses of electrons in the conduction band and holes in the valence bands.
Electrons are subject to rotational motion in a magnetic field (cyclotron motion)
and resonantly absorb the radiation fields (microwaves or infrared radiation) when
the cyclotron frequency is equal to the radiation frequency. The resonant condition
gives the effective mass of the electron. Analyzing the cyclotron resonance data of
Ge and Si, detailed information of the electrons in the conduction band valleys. In
addition, the analysis of the hole masses based on the k · p perturbation reveals
the detailed valence band structures such as the heavy hole, light hole, and spin–
orbit split–off bands. The non-parabolicity of the conduction band is also discussed.
Quantum mechanical treatment of the electrons in the conduction band and holes
in the valence bands leads us to draw the picture of Landau levels which is used to
understand magnetotransport in Chap. 7 and quantum Hall effect in Chap. 8.

2.1 Cyclotron Resonance

Cyclotron resonance has been successfully used to determine the effective masses
of electrons in semiconductors. However, the cyclotron resonance has played a very
important role in understanding the valence band structures of Ge and Si and later
led to an accurate determination of the energy band structures. In this chapter first
we will describe the cyclotron resonance experiment and its analysis in order to
discuss the anisotropy of the electron effective mass and the many valley structures.
Second, we will discuss the analysis of the valence band structures by using the k · p
perturbation method, which will reveal the importance of the cyclotron resonance
experiments.

When a particle with electronic charge q is placed in a magnetic field, the particle
make a circular motion in the plane perpendicular to the magnetic field. This motion
is caused by the Lorentz force perpendicular to the magnetic field B and the velocity
v of the particle, and is given by the relation

FL = qv × B . (2.1)
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When the particle is not scattered, the equation of motion for a particle with mass m
is given by

m
dv

dt
= qv × B . (2.2)

Assuming that the magnetic field is applied in the z direction and putting B =
(0, 0, Bz), the equation results in

m
dvx

dt
= qvy Bz ,

m
dvy

dt
= −qvx Bz ,

which give rise to

d2vx

dt2
= −qvx Bz

m
(2.3)

for vx and a similar equation for vy . Therefore, the solutions for vx and vy are

vx = A cos(ωct), vy = A sin(ωct),

where

ωc = qBz

m
(2.4)

is the cyclotron (angular) frequency of the particle. From the results we find that the
particle in a magnetic field Bz orbits with angular frequency ωc in the plane perpen-
dicular to B (x, y plane) and the motion is referred to as “cyclotron motion.” When
an electromagnetic field of frequency ω = ωc is applied, the particle absorbs the
energy of the electromagnetic field resonantly. This is called cyclotron resonance.
In semiconductors there exist various scattering processes and thus the particle (elec-
tron and hole) resonance is modified by the scattering. If we define the scattering
time (or relaxation time) by τ , the condition for well-defined resonance is

ωcτ � 1 . (2.5)

In other words, the cyclotron resonance is smeared out and no clear resonance is
observed when condition (2.5) is not fulfilled. In order to observe clear cyclotron
resonance, therefore, we have to apply a high magnetic field (higher B results in
higher ωc and higher ω) or achieve a condition where less scattering occurs (longer
τ is achieved at lower temperature T ).

Let us consider the condition for a typical semiconductor with effective mass
m∗ = 0.1 m (m = 9.1 × 10−31 kg is the free electron mass). When a magnetic field
B = 1 T is applied, the cyclotron frequency is
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ωc = 1.6 × 10−19 × 1

0.1 × 9.1 × 10−31
� 2 × 1012 rad/s ,

which corresponds to a microwave field of frequency f = ω/2π � 3 × 1011 Hz. In
addition, in order to realize the condition given by (2.5),

ωcτ = qBz

m∗ τ = μBz � 1 , (2.6)

a semiconductor sample with electron mobility greater than μ = 1m2/Vs =
104cm2/Vs is required. A high magnetic field is achieved by using a supercon-
ducting solenoid and a high angular frequency electromagnetic field (ω = ωc) by
using microwave or infrared light. When we use an electromagnet, a field of 1 T is
achieved and thus cyclotron resonance is observed in a sample with electron mobility
larger than 104cm2/Vs. The electron mobility becomes higher at lower temperatures,
where less phonon scattering occurs and the first observation of the cyclotron reso-
nance was made at 4.2 K. At low temperatures electrons and holes are captured by
donors and acceptors, and no free carriers exist for absorbing the microwave field.
In the first cyclotron resonance measurements on Ge, light illumination was used to
excite the carriers from the valence band to the conduction band, and resonance due
to holes in addition to electrons was observed.

Here we will discuss the cyclotron resonance curves. First we consider the case of
an electron with isotropic effective mass m∗ for simplicity. The equation of motion
for the electron is

m∗ dv

dt
+ m∗v

τ
= q(E + v × B) . (2.7)

The microwave field is linearly polarized with E = (Ex , 0, 0), and the magnetic field
is applied in the z direction as B = (0, 0, Bz). When we write the microwave field
with angular frequency ω as E = Ex cos(ωt) = �{Ex exp(−iωt)}, we may use the
relation d/dt = −iω and the motion of equation is written as

m∗
(
−iω + 1

τ

)
vx = q(Ex + vy Bz) , (2.8)

m∗
(
−iω + 1

τ

)
vy = q(0 − vx Bz) . (2.9)

From these equations we obtain

vx = qτ

m∗ · (1 − iωτ )

(1 − iωτ )2 + ω2
c τ

2
Ex , (2.10)

vy = − qτ

m∗ · ωcτ

(1 − iωτ )2 + ω2
c τ

2
Ex , (2.11)

and the current density in the x direction is deduced from the relation Jx = nqvx .
This gives the power absorption P per unit volume given below.
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ωω

σ

Fig. 2.1 Absorption line shapes of cyclotron resonance. The dotted curve peaked in the right half
(ωc > 0) is the resonance for holes with q > 0, and the dotted curve peaked in the left half (ωc < 0)
is the resonance for electrons with q < 0. These dotted curves correspond to the resonance due to a
microwave field which is right-circularly polarized and left-circularly polarized, respectively. The
solid curve is the absorption for the case of a linearly polarized microwave. The curves are obtained
for ωτ = 5

P = 1

2
�(Jx Ex ) = 1

2

nq2τ

m∗ E2
x · �

[
1 − iωτ

(1 − iωτ )2 + ω2
c τ

2

]

≡ 1

4
σ0E

2
x · �

[
1

(1 − iωτ ) − iωcτ
+ 1

(1 − iωτ ) + iωcτ

]

= 1

4
σ0E

2
x

[
1

(ω − ωc)2τ 2 + 1
+ 1

(ω + ωc)2τ 2 + 1

]
, (2.12)

where σ0 = nq2τ/m∗ is the d.c. the conductivity of the semiconductor with carrier
density n, and ωc = qB/m∗ is the cyclotron angular frequency. The two terms on
the right-hand side of (2.12) are plotted in Fig. 2.1 as the dotted curves, which are
symmetric with respect to the peaked at ω = ±ωc and are called the Lorentz function

FL(ω) = Γ/2π

(ω − ωc)2 + (Γ /2)2
. (2.13)

The Lorentz function given by the above equation has a full-width half-maximum of
Γ and the integral of the Lorentz function with respect to ω is unity. Therefore, the
Lorentz function behaves like a delta function when Γ becomes very small. The two
peaks in Fig. 2.1 arise from different signs of the charge q and thus the curves for
ωc < 0 and ωc > 0 correspond to the resonance for electrons and holes, respectively.
When the microwave field is right-circularly polarized and left-circularly polarized,
resonance is observed due to holes and electrons, respectively. The resonance curves
of (2.12) for a linearly polarized microwave field are plotted by solid curves in Fig. 2.2
for ωτ = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0, where a clear resonance is seen for ωτ � 1.
In cyclotron resonance experiments a microwave field with fixed frequency is applied
and the resonance due to the microwave absorption is detected as a function of the
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Fig. 2.2 Absorption line
shapes of the cyclotron
resonance for ωτ = 0.5, 1.0,
2.0, 3.0, 4.0, and 5.0. The
cyclotron resonance is
clearly observed in the case
of ωτ � 1

ωτ

ω ω

0

c

magnetic field. Therefore, the horizontal axis of Fig. 2.2 is the magnetic field (ωc/ω).
From (2.12) and the curves in Fig. 2.1 it is evident that the full-width half-maximum
is 2/τ .

Next, we consider the case of semiconductors with anisotropic effective masses
such as in Ge and Si. Defining the effective mass tensor by m̃, the equation of motion
for a carrier with electronic charge q is expressed as

m̃ · v̇ + m̃ · v
τ

= q(E + v × B) . (2.14)

Assuming the electric field and the carrier velocity are given by E = E exp(−iωt)
and v = v exp(−iωt), respectively, and using the relation d/dt = −iω, the equation

(
−iω + 1

τ

)
m̃ · v = q(E + v × B) (2.15)

is derived. In order to solve this equation we introduce the following variables:

ω′ = ω + i
1

τ
. (2.16)

For simplicity (valid for Ge and Si) we assume that the effective mass m̃ has diagonal
parts only, i.e.

[
1

m̃

]
=
⎡
⎣

1/m1 0 0
0 1/m2 0
0 0 1/m3

⎤
⎦ , (2.17)

and that the magnetic field is applied in an arbitrary direction:

B = (Bx , By, Bz) ≡ B(α,β, γ) .
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Then (2.15) can be rewritten as

⎧
⎨
⎩

iω′m1vx + q(vy Bz − vz By) = 0,

iω′m2vx + q(vz Bx − vx Bz) = 0,

iω′m3vx + q(vx By − vy Bx ) = 0,

where we put E = 0. This assumption of E = 0 is based on the fact that the resonance
condition is derived in a vanishing electric field. Writing the magnetic field B =
B(α,β, γ), (2.15) becomes

iω′m1 qBγ −qBβ
−qBγ iω′m2 qBα
qBβ −qBα iω′m3

= 0 , (2.18)

where ω′ = (ω + i/τ ) is used. From this equation a solution for ω′ is easily obtained.
Under the condition of clear resonance (ωτ � 1) we obtain ω′ ∼= ω and thus we may
put ω′ = ω = ωc. From these considerations the resonance condition is given by

ωc = qB

m∗ = qB

√
m1α2 + m2β2 + m3γ2

m1m2m3
, (2.19)

where m∗ is the cyclotron mass.
Figure 2.3 shows a typical experimental setup for the cyclotron resonance exper-

iment. A microwave field generated by a klystron (with a circuit to control the fre-
quency constant) is guided by a waveguide and fed into a cavity with a semiconductor

Sample

Stub tuner

Light source

Power Supply
to magnet

Magnet

Clystron

Freq. Stab
Circuit

. Chopper
Ref.

signal

Lock-in
Amp.

XY
recorder

Fig. 2.3 Experimental setup for cyclotron resonance measurements. Microwave field generated by
a klystron is guided to a cavity where a sample is inserted. The cavity is installed in a cryostat to be
cooled down to 4.2 K. The carriers of the semiconductor sample are frozen out at low temperatures,
and electrons and holes are excited by light illumination guided into the cavity by an optical pipe and
the light is pulsed by a chopper to provide the reference signal for a lock-in amplifier. The magnetic
field is swept slowly and the microwave absorption is recorded as a function of the magnetic field
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Fig. 2.4 Cyclotron
resonance in Ge.
ω/2π = 24 GHz, T = 4.2 K.
The magnetic field is applied
in the direction 60◦ with
respect to the 〈001〉 axis in
the (110) plane. (From [1])

· · · · ·

Fig. 2.5 Cyclotron
resonance in Si.
ω/2π = 24 GHz, T = 4.2 K.
The magnetic field is applied
in the direction 30◦ with
respect to the 〈001〉 axis in
the (110) plane. (From [1])

· · · · · ·

sample. The cavity is installed in a cryostat and the sample temperature is controlled
down to 4.2 K. In order to achieve the condition ωcτ � 1, the sample is cooled down
to 4.2 K. At low temperatures the carriers in the semiconductor are frozen out and
pulsed light is used to excite photo-carriers (electrons and holes). When the magnetic
field is swept, the microwave absorption increases at resonance, which is detected
by a microwave diode installed in the waveguide and amplified by a lock-in ampli-
fier. Thus the measured microwave absorption versus magnetic field curve reveals
cyclotron resonance. Typical experimental results are shown in Fig. 2.4 for Ge and
in Fig. 2.5 for Si [1]. As seen in Fig. 2.4 and Fig. 2.5 signals due to several kinds of
electrons and two holes (heavy holes and light holes) are observed. These compli-
cated resonance peaks are discussed here but the detailed interpretation is described
later.

We now discuss the cyclotron mass. When we change the direction θ of the
magnetic field with respect to the 〈001〉 axis in the plane (110) and calculate the
cyclotron mass defined below from the magnetic field Bc for resonance,

m∗ = qBc

ω
,
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Fig. 2.6 Cyclotron masses
of electrons in the
conduction bands of Ge as a
function of the magnetic
field direction θ. The angle θ
is the angle between the
magnetic field and the 〈001〉
axis in the (110) plane. See
the text for the valley indices
1, 2, …, 8

Fig. 2.7 Cyclotron masses
of electrons in the
conduction bands of Si as a
function of the magnetic
field direction θ. The angle θ
is the angle between the
magnetic field and the 〈001〉
axis in the (110) plane. See
the text for the valley indices
1, 2, …, 6

we obtain the cyclotron masses as a function of the direction θ, which are shown in
Fig. 2.6 for Ge and in Fig. 2.7 for Si.

The angular dependence of the cyclotron masses shown in Figs. 2.6 and 2.7 is
analyzed as follows. From the results of the energy band calculations in Chap. 1, we
learned that the conduction band minima of Ge are located at the L point along the
〈111〉 axis and that the conduction band minima of Si are located at the Δ point, 15%
from the X point, along the 〈100〉 axis. When we take these axes as the principal
axes of a newly defined k-vector and put k = 0 at the bottom of the conduction band,
then the symmetry of the conduction band valleys leads to

E = �
2

2m t
(k2

x + k2
y) + �

2

2m l
k2
z . (2.20)

The constant energy surfaces of the conduction bands are shown in Fig. 2.8 for Ge and
in Fig. 2.9 for Si. Since the conduction bands consist of multiple energy surfaces, the
conduction bands are called many valleys or many-valley structure. In Si there are 6
valleys, while in Ge there exist 4 valleys (the pairs of valleys along the principal axis
are apart from the reciprocal lattice vector G and they are equivalent). The cyclotron

http://dx.doi.org/10.1007/978-3-319-66860-4_1
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Fig. 2.8 Many-valley
structure of the conduction
bands in Ge

Fig. 2.9 Many-valley
structure of the conduction
bands in Si

mass in the conduction band with the ellipsoidal energy surface is given by (2.19)
with m1 = m2 = m t , m3 = m l as

1

m∗
c

=
√
m t(1 − γ2) + m lγ2

m2
t m l

, (2.21)

where γ is the direction cosine between the magnetic field and the principal axis of
the ellipsoid (kz direction), i.e. Bz = Bγ.

Let us assume that the magnetic field is applied in the direction of the angle θ
with respect to the 〈001〉 axis in the (110) plane. In this case we have

B = B
( sin θ√

2
,

sin θ√
2

, cos θ
)

≡ BeB .

First we consider the case of Ge. As stated above, 4 valleys should be taken into
account, but here we have 8 valleys (we find pairs along the principal axis are degen-
erate in the following). The unit vectors of the principal axes are
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em : ± 1√
3
(1, 1, 1) (valleys: 1, 2),

± 1√
3
(−1, 1, 1) (valleys: 3, 4),

± 1√
3
(−1,−1, 1) (valleys: 5, 6),

± 1√
3
(1,−1, 1) (valleys: 7, 8),

(2.22)

and therefore the direction cosine γ is given by

γ = em · eB
= ± 1√

3
(
√

2 sin θ + cos θ); (valleys: 1, 2) ,

= ± 1√
3
(cos θ) (valleys: 3, 4, 7, 8) ,

= ± 1√
3
(−√

2 sin θ + cos θ) (valleys: 5, 6) .

(2.23)

Inserting these relations into (2.21) we obtain three solid curves as shown in Fig. 2.6,
where we used the following parameters for the masses:

m t = 0.082m , m l = 1.58m . (2.24)

In Fig. 2.6 good agreement is found between the experimental data and the calculated
curves.

Next, we consider the case of Si, where the constant energy surfaces of the con-
duction band consists of 6 valleys along the 〈100〉 directions as shown in Fig. 2.9. We
have already shown from the energy band calculations in Chap. 1 that the conduction
band minima are located at kx = 0.85(2π/a) near the X point in the Brillouin zone.
When we choose the angle θ between the magnetic field and the 〈001〉 axis in the
(110) plane, the direction cosine γ is given by

γ = ± 1√
2

sin θ (valleys: 1, 2, 3, 4) ,

γ = ± cos θ (valleys: 5, 6) .
(2.25)

Substituting the above relations in (2.21) and assuming

m t = 0.19m , m l = 0.98m , (2.26)

we obtain the solid curves in Fig. 2.7b, which show good agreement with the exper-
imental observations.

2.2 Analysis of Valence Bands

We see in Figs. 2.4 and 2.5 that there exist two resonance peaks for holes in Ge
and Si and that the curves are quite simple compared to the resonance curves for
electrons. However, the analysis of the cyclotron resonance for holes is very com-
plicated and requires more detailed analysis based on the k · p perturbation method
as stated later. First, we plot the cyclotron masses of holes as a function of the angle
between the magnetic field and the 〈001〉 axis in the (110) plane, which are shown

http://dx.doi.org/10.1007/978-3-319-66860-4_1
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Fig. 2.10 Cyclotron masses
of holes in Ge. θ is the angle
between the magnetic field
and 〈001〉 axis in the (110)

plane

Fig. 2.11 Cyclotron masses
of holes in Si. θ is the angle
between the magnetic field
and 〈001〉 axis in the (110)

plane

in Fig. 2.10 for Ge and in Fig. 2.11 for Si. In the figures we find the angular depen-
dence of the hole cyclotron masses exhibits quite different features compared with
the electron cyclotron masses. The two hole masses do not cross each other and thus
we can conclude that there exist two different holes. We define the heavy holes for
the heavy effective-mass carriers and light holes for the light effective-mass carri-
ers. As seen in Figs. 2.10 and 2.11 the heavy hole mass is anisotropic but the light
hole mass is isotropic with narrower full-width half maximum. These features are
well explained with the help of valence band analysis based on the k · p perturba-
tion method. In the following we will consider valence band analysis by the k · p
perturbation method [1].

As described in the energy band calculations of Chap. 1, the valence band top is
located at the Γ point (k = 0) and the valence bands are triply degenerate when the
spin–angular orbit interaction is disregarded. The three valence bands are expressed
by the symmetry of Γ25′ , whose basis functions are given by |X〉, |Y 〉, and |Z〉. Also,
we know that the lowest conduction band at the Γ point has the symmetry Γ2′ and
the basis function is |xyz〉. For simplicity, first we consider only these four bands
in the k · p perturbation method. When the perturbation term is disregarded, the
eigenstates and the eigenvalues of these four bands are given by

H0| j〉 = E j | j〉 , (| j〉 = |Γ2′ 〉, |X〉, |Y 〉, |Z〉) , (2.27)

http://dx.doi.org/10.1007/978-3-319-66860-4_1
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or the matrix elements of H0 for the four bands are

|Γ2′ 〉 | X〉 |Y 〉 | Z〉⎡
⎢⎢⎣
Ec
0
0
0

0
Ev

0
0

0
0
Ev

0

0
0
0
Ev

⎤
⎥⎥⎦ .

(2.28)

Next, we consider how the energy bands are modified by applying the k · p pertur-
bation. This perturbation yields

(H0 + H1)| j〉 =
(
E j − �

2k2

2m

)
| j〉 ≡ λ j | j〉 , (2.29)

where

λ j = E j − �
2k2

2m
. (2.30)

The above equation gives the following relation:

〈Γ2′ |H1|X〉 = 〈Γ2′ | − i
�

2

m
k · ∇|X〉 = 〈xyz| − i

�
2

m
kx

∂

∂x
|yz〉

≡ Pkx . (2.31)

Thus we obtain the following matrix:

|Γ2′ 〉 | X〉 |Y 〉 | Z〉⎡
⎢⎢⎣
Ec − λ j

Pkx
Pky
Pkz

Pkx
Ev − λ j

0
0

Pky
0

Ev − λ j

0

Pkz
0
0

Ev − λ j

⎤
⎥⎥⎦ = 0.

(2.32)

From the above equation we obtain

E1,2 = Ec + Ev

2
±
√(Ec − Ev

2

)2

+ P2k2 + �
2k2

2m
, (2.33)

E3,4 = Ev + �
2k2

2m
. (2.34)

The results mean that the perturbation term H1 gives rise to a splitting of the three
valence bands: one valence band, E2, and doubly degenerate valence bands, E3 and
E4. However, the degenerate valence bands exhibit minima at the Γ point (k = 0),
which is unreasonable for the valence band characteristic because a light hole and
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a heavy hole are observed in the cyclotron resonance measurements. The features
of the valence bands are well explained when we take into account the spin–orbit
interaction, which will be discussed in detail later.

Next, we consider more accurate k · p perturbation. As described in Sect. 1.7,
the energy band calculations take into account many bands in addition to Γ25′ and
Γ2′ . Therefore, the unreasonable results obtained above are due to the fact that we
disregarded other conduction bands than the conduction band Γ2′ . We will discuss a
general treatment of the k · p perturbation method in the following.

The more accurate treatment of the valence bands has been reported by Dressel-
haus, Kip, and Kittel [1] and Luttinger and Kohn [2]. Here we will follow the method
of Luttinger and Kohn. In the perturbing Hamiltonian,

(H0 + H1)| j〉 = (E j − �
2k2

2m
)| j〉 , (2.35)

we consider all eigenstates in addition to the degenerate valence bands |Γ25′ 〉. We
learned from the above treatment that the closest conduction band Γ2′ affects the
perturbation only slightly. Therefore, we consider the second-order perturbation in
order to calculate (2.35) and neglect the first-order perturbation. The eigenstates of
the valence bands Γ25′ at k = 0 are defined as

| j〉 = |X〉, |Y 〉, |Z〉 ,

and the eigenvalues are given by

E j = Ev ≡ E0 .

The second-order perturbation of (2.35) for the valence bands Γ25′ leads to the fol-
lowing result:

E = �
2k2

2m
+
∑
i, j ′

〈 j |H1|i〉〈i |H1| j ′〉
E0 − Ei + E0 , (2.36)

where the eigenstates | j〉, | j ′〉 are the triply-degenerate valence bands Γ25′ (|X〉, |Y 〉,
and |Z〉) with eigenvalue E0 and the eigenstates |i〉 correspond to any bands with
eigenvalue Ei other than the valence bands Γ25′ . Since the perturbation term is given
by

H1 = �

m
k · p = −i

�
2

m
k · ∇ = −i

�
2

m

(
kx

∂

∂x
+ ky

∂

∂y
+ kx

∂

∂z

)

= �

m
(kx px + ky py + kz pz) =

∑
l=x,y,z

�

m
kl pl , (2.37)

http://dx.doi.org/10.1007/978-3-319-66860-4_1
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Equation (2.36) is written as

E(k) = E0 + �
2k2

2m
+ �

2

m2

∑
l,m

∑
i, j ′

πl
j iπ

m
i j ′

E0 − Ei klkm

≡ E0 +
∑
l,m

∑
j ′

Dlm
j j ′klkm , (2.38)

where we define the following relations:

〈i |pl | j〉 = πl
i j , (2.39)

Dlm
j j ′ = �

2

2m
δ j j ′δlm + �

2

m2

∑
i

πl
j iπ

m
i j ′

E0 − Ei . (2.40)

The eigenstates of the valence bands | j〉 and | j ′〉 of Γ25′ have the symmetry |X〉 =
|yz〉, |Y 〉 = |zx〉, |Z〉 = |xy〉 as stated before and therefore we find that there are
three combinations of the subscripts j, j ′, l,m:

xx yy zz yz, zy xz, zx xy, yx
1 2 3 4 5 6

,

and

XX YY Z Z Y Z , ZY X Z , Z X XY,Y X
1 2 3 4 5 6

.

Using the tensor notation

α, β = 1, 2, 3, 4, 5, 6, (2.41)

the matrix elements are rewritten as

Dlm
i j ≡ Dαβ , (2.42)

where Dlm
j j ′ are fourth-rank tensors. In the case of cubic crystals we have the following

components

∣∣∣∣∣∣∣∣∣∣∣∣

D11 D12 D12 0 0 0
D12 D11 D12 0 0 0
D12 D12 D11 0 0 0
0 0 0 D44 0 0
0 0 0 0 D44 0
0 0 0 0 0 D44

∣∣∣∣∣∣∣∣∣∣∣∣

, (2.43)
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and the non-zero components are

D11 = Dxx
XX = Dyy

YY = Dzz
Z Z = L ,

D12 = Dyy
XX = DZZ

XX = Dxx
YY = Dzz

YY = Dxx
Z Z = Dyy

Z Z = M, (2.44)

D44 = Dxy
XY + Dyx

XY = Dyz
Y Z + Dzy

Y Z = Dzx
Z X + Dxz

Z X = N .

From these results, the matrix elements of the k · p Hamiltonian are given by

|X〉 |Y 〉 |Z〉
〈X |
〈Y |
〈Z |

∣∣∣∣∣∣
Ak2

x + B(k2
y + k2

z ) Ckxky Ckxkz
Ckxky Ak2

y + B(k2
x + k2

z ) Ckykz
Ckxkz Ckykz Ak2

z + B(k2
x + k2

y)

∣∣∣∣∣∣
.

(2.45)

The three parameters A, B,and C of Luttinger are written as [3]

A = �
2

2m
+ �

2

m2

∑
i

πx
Xiπ

x
i X

E0 − Ei , (2.46a)

B = �
2

2m
+ �

2

m2

∑
i

π
y
Xiπ

y
i X

E0 − Ei , (2.46b)

C = �
2

m2

∑
i

πx
Xiπ

y
iY + π

y
Xiπ

x
iY

E0 − Ei . (2.46c)

The secular equation of (2.45) gives the eigenenergy E(k), while the k · p Hamil-
tonian of Dresselhaus, Kip, and Kittel [1] is given by replacing A, B, and C with the
following parameters, L , M , and N defined by (2.44), respectively

L = �
2

m2

∑
i

πx
Xiπ

x
i X

E0 − Ei , (2.47a)

M = �
2

m2

∑
i

π
y
Xiπ

y
i X

E0 − Ei , (2.47b)

N = �
2

m2

∑
i

πx
Xiπ

y
iY + π

y
Xiπ

x
iY

E0 − Ei , (2.47c)

and the corresponding secular equation gives the eigenenergy λ = E(k) − �
2k2/2 m.

The k · p perturbation gives rise to a splitting of the triply degenerate valence
bands at k = 0 and the E(k) curves are given by (2.45), which are shown on the left
of Fig. 2.12. Here we have to note that the cyclotron resonance tells us the existence
of two hole bands, not triply degenerate bands at k = 0. This is explained when
we take the spin–orbit interaction into account as shown in the next section and the
results are shown on the right of Fig. 2.12.
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Fig. 2.12 Valence band structure. The left figure shows the splitting of the valence bands at k = 0
due to the interaction between the bands, and the right figure shows the valence band structures
obtained by taking the spin–orbit interaction into account, where the heavy hole and light hole
bands are doubly-degenerate at k = 0 and the lowest band is the spin–orbit split-off band due to
the spin–orbit interaction (see Sect. 2.3)

2.3 Spin–Orbit Interaction

The interaction between spin angular momentum and orbital angular momentum is
due to the relativistic effect of the electrons [1, 3, 4]. In Appendix H the derivation
of the spin–orbit interaction Hamiltonian is described in detail.1 Here we use the
interaction Hamiltonian Hso given by

Hso = ξ(r)L · S, (2.48)

ξ(r) = 1

2m2c2

1

r

dV

dr
, (2.49)

where L and S are the orbital and spin angular momentum, respectively. When we
define

S = �

2
σ,

the Pauli spin matrix is given by

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (2.50)

1See also Sect. 1.7 of Chap. 1 and (1.146) of p. 51.

http://dx.doi.org/10.1007/978-3-319-66860-4_1
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Here the spin states Sz = +�/2 and Sz = −�/2 are sometimes referred to as ↑ spin
and ↓ spin and their eigenstates are

|↑ 〉 = |α〉 =
[

1
0

]
, |↓ 〉 = |β〉 =

[
0
1

]
. (2.51)

Next, we define the angular momentum operators for the Γ25′ valence bands. As
stated in Sect. 2.2 the eigenstates of the valence bands at k = 0 are expressed by |X〉,
|Y 〉, |Z〉. Their angular momentum L = r × p has a quantum number of unity and
the matrix representation of the operator is

Lx = �√
2

⎡
⎣

0 1 0
1 0 1
0 1 0

⎤
⎦ , Ly = �√

2

⎡
⎣

0 −i 0
i 0 −i
0 i 0

⎤
⎦ , Lz = �

⎡
⎣

1 0 0
0 0 0
0 0 −1

⎤
⎦ . (2.52)

When we choose the basis of the eigenstates defined by

u+ = 1√
2
(|X〉 + i|Y 〉) =

⎡
⎣

1
0
0

⎤
⎦ , (2.53a)

u− = 1√
2
(|X〉 − i|Y 〉) =

⎡
⎣

0
0
1

⎤
⎦ , (2.53b)

uz = |Z〉 =
⎡
⎣

0
1
0

⎤
⎦ , (2.53c)

the angular momentum operators are given by

L± = Lx ± iLy , (2.54)

where

L+ = √
2�

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦ , L− = √

2�

⎡
⎣

0 0 0
1 0 0
0 1 0

⎤
⎦ . (2.55)

Similarly, the spin momentum operators are expressed as

σ± = σx ± iσy , (2.56)

and their matrix representations are given by

σ+ = 2

[
0 1
0 0

]
, σ− = 2

[
0 0
1 0

]
. (2.57)
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Using these results, the Hamiltonian of the spin–orbit interaction becomes

Hso = Δ

�
L · σ

= Δ

�

(
Lxσx + Lyσy + Lzσz

)

= Δ

�

[
1

2
(L+σ− + L−σ+) + Lzσz

]
, (2.58)

where 3Δ = Δ0 is called spin–orbit splitting energy and gives the value of the energy
splitting of the valence bands at k = 0.

The six states of the valence bands |u+α〉, |u+β〉, |uzα〉, |u−β〉, |u−α〉, |uzβ〉 give
rise to the matrix elements of the spin–orbit interaction Hamiltonian:

u+α u+β uzα u−β u−α uzβ∣∣∣∣∣∣∣∣∣∣∣∣

Δ 0 0 0 0 0
0 −Δ

√
2Δ 0 0 0

0
√

2Δ 0 0 0 0
0 0 0 Δ 0 0
0 0 0 0 −Δ

√
2Δ

0 0 0 0
√

2Δ 0

∣∣∣∣∣∣∣∣∣∣∣∣

.
(2.59)

Expression (2.59) is derived as follows:

L+σ−|u+α〉 = L+|u+〉σ−|α〉

= √
2�

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣

1
0
0

⎤
⎦× 2

[
0 0
1 0

] [
1
0

]
= 0 (2.60a)

L−σ+|u+α〉 = L−|u+〉σ+|α〉

= √
2�

⎡
⎣

0 0 0
1 0 0
0 1 0

⎤
⎦
⎡
⎣

1
0
0

⎤
⎦× 2

[
0 1
0 0

] [
1
0

]
= 0 (2.60b)

Lzσz|u+α〉 = �

⎡
⎣

1 0 0
0 0 0
0 0 −1

⎤
⎦
⎡
⎣

1
0
0

⎤
⎦
[

1 0
0 −1

] [
1
0

]

= �

⎡
⎣

1
0
0

⎤
⎦
[

1
0

]
= �|u+〉|α〉 = �|u+α〉 . (2.60c)

Using the above results we find

〈u+α|Lzσz|u+α〉 = � , (2.61)

and a similar treatment gives the results of (2.59).
Expression (2.59) is expressed as a 6 × 6 matrix and many of the non-diagonal

elements have the value 0. When we investigate the matrix of (2.59), we find that
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the matrix is factorized into two 3 × 3 matrices and that they are also factorized into
two matrices of dimensions 1 × 1 and 2 × 2. The 2 × 2 matrix is easily diagonalized
and (2.59) reduces to

∣∣∣∣∣∣∣∣∣∣∣∣

Δ 0 0 0 0 0
0 Δ 0 0 0 0
0 0 −2Δ 0 0 0
0 0 0 Δ 0 0
0 0 0 0 Δ 0
0 0 0 0 0 −2Δ

∣∣∣∣∣∣∣∣∣∣∣∣

. (2.62)

From the result given in (2.62) we see that the 6-fold degenerate valence bands split
into 4-fold valence bands with energy shifted by Δ, consisting of the heavy hole
and light hole bands, and into a doubly degenerate spin–orbit split-off band shifted
down by 2Δ. These features are shown in Fig. 2.12. It should be noted that the 4-fold
degenerate bands at k = 0 split into the doubly degenerate heavy hole and light hole
bands at k = 0. The corresponding eigenstates are given by the following equations.
The fourfold valence band–edge eigenstates are

uv1 =
∣∣∣∣
3

2
,

3

2

〉
= |u+α〉 = 1√

2
|(X + iY ) ↑ 〉 , (2.63a)

uv2 =
∣∣∣∣
3

2
,

1

2

〉
= − 1√

3
|u+β〉 −

√
2

3
|uzα〉

= − 1√
6

[|(X + iY ) ↓ 〉 + 2 |Z ↑ 〉] , (2.63b)

uv3 =
∣∣∣∣
3

2
,−1

2

〉
= − 1√

3
|u−α〉 −

√
2

3
|uzβ〉

= − 1√
6

[|(X − iY ) ↑ 〉 + 2 |Z ↓ 〉] , (2.63c)

uv4 =
∣∣∣∣
3

2
,−3

2

〉
= |u−β〉 = 1√

2
|(X − iY ) ↓ 〉 , (2.63d)

and for twofold spin–spit off bands are

uv5 =
∣∣∣∣
1

2
,

1

2

〉
= −

√
2

3
|u+β〉 +

√
1

3
|uzα〉

= − 1√
3

[|(X + iY ) ↓ 〉 − |Z ↑ 〉 ] , (2.63e)

uv6 =
∣∣∣∣
1

2
,−1

2

〉
= −

√
2

3
|u−α〉 + 1√

3
|uzβ〉

= − 1√
3

[|(X − iY ) ↑ 〉 − |Z ↓ 〉 ] . (2.63f)
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The eigenstates with the time reversal symmetry are reported by Luttinger and Kohn
[2], which are shown by (2.137b) ∼ (2.137g).

Now we discuss the cyclotron masses or the effective masses of the valence bands
by deriving the k dependence of the bands. This is done by applying the method
of Luttinger and Kohn [2] to the analysis of the valence bands, where we have to
use the eigenstates (basis functions) derived by taking the spin–orbit interaction into
account. This approach has been adopted by Dresselhaus, Kip and Kittel [1]. They
used the eigenfunctions of (2.63a–2.63f) and calculated the matrix elements of the
Hamiltonian with the spin–orbit interaction. Defining the matrix element Hi j by

H11 = Lk2
x + M(k2

y + k2
z ) ,

H22 = Lk2
y + M(k2

z + k2
x ) ,

H33 = Lk2
z + M(k2

x + k2
y) ,

H12 = Nkxky ,

H23 = Nkykz ,

H13 = Nkxkz ,

the result is given by the 6 × 6 matrix of (62) in their paper [1]:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H11+H22
2 − H13−iH23√

3
− H11−H22−2iH12

2
√

3
− H13+iH23√

3
4H33+H11+H22

6 0

− H11−H22+2iH12

2
√

3
0 4H33+H11+H22

6

0 − H11−H22+2iH12

2
√

3
H13+iH23√

3
− H13+iH23√

6
− H11+H22−2H33

3
√

2
H13−iH23√

2
− H11−H22+2iH12√

6
H13+iH23√

2
H11+H22−2H33

3
√

2

0 − H13−iH23√
6

− H11−H22−2iH12√
6

− H11−H22−2iH12

2
√

3
− H11+H22−2H33

3
√

2
H13−iH23√

2
H13−iH23√

3
H13+iH23√

2
H11+H22−2H33

3
√

2
H11+H22

2
H11−H22+2iH12√

6
− H13+iH23√

6
H11−H22−2iH12√

6
H11+H22+H33

3 − Δ0 0

− H13−iH23√
6

0 H11+H22+H33
3 − Δ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.64)

The matrix of (2.64) is approximately divided into two matrices comprising the
upper-left 4 × 4 matrix and the lower-right 2 × 2 matrix [1]. The other two blocks of
2 × 4 will give rise to an error of the order of k4/Δ0 and thus the above approximation
is accurate enough to enable us to discuss the valence bands. The 4 × 4 matrix gives
the solutions of

E(k) = Ak2 ±
√
B2k4 + C2(k2

xk
2
y + k2

yk
2
z + k2

z k
2
x ) , (2.65)
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where

A = 1

3
(L + 2M),

B = 1

3
(L − M), (2.66)

C = 1

3
[N 2 − (L − M)2] ,

where the coefficients A, B, and C differ from the parameters of (2.46a) ∼ (2.46c)
defined by Luttinger.

On the other hand, from the 2 × 2 matrix we obtain the solutions

E(k) = Ak2 − Δ0 . (2.67)

Equation (2.65) gives the k dependence of the heavy and light holes in the valence
bands and (2.67) leads to the spin–orbit split-off band. It is evident from the above
analysis that the splitting is due to the spin–orbit interaction. The constant energy
surface of the heavy-hole band is not spherical for C = 0 but warped as shown in
Fig. 2.13a, where the energy contour of the heavy hole band of Si in the (kx , ky, kz)
space for E = 0.20 [eV] are shown, and the contour lines in the (001) plane for
kz = 0 are plotted in Fig. 2.13b in the region kx ≤ 0.1, ky ≤ 0.1. Energy contour of
the heavy hole band in the region of kx , ky, kz � 0 are spherical but for larger values
of kx , ky and kz the contour lines are warped. On the other hand, the light-hole band
is almost spherical in the wide range of wave vectors as seen in Fig. 2.13c.

As stated above, the valence bands, especially the heavy hole band, are compli-
cated and thus require us to use a different approach for the analysis of the cyclotron
masses in the valence bands [1]. We use the cylindrical coordinates (kH , ρ,φ) for the
wave vector of the hole, where kH is the z component of the wave vector (parallel to
the applied magnetic field). Using this notation the cyclotron mass is expressed as

Fig. 2.13 Energy contour lines of the valence bands in Si, a the heavy–hole band in the (kx , ky, kz)
space for E = 0.20 [eV], b the heavy–hole band in the (001) plane (kz = 0), and c the light–hole
band in the (001) plane (kz = 0), where kx , ky, kz are in units of 2π/a
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m∗ = �
2

2π

∮
ρ dφ

∂E/∂ρ
. (2.68)

Assuming the magnetic field is applied in the (001) plane and putting kH = 0, we
obtain

m∗ = �
2

π

∫ π/2

0

dφ

A ± {B2 + 1
4C

2[1 + g(φ)]}1/2
, (2.69)

where

g(φ) = −3(3 cos2 θ − 1)[(cos2 θ − 3) cos4 φ + 2 cos2 φ] , (2.70)

and θ is the angle with respect to the (001) axis in the (110) plane. The term g(φ) is
expanded as

m∗ = �
2

2

1

A ±√
B2 + (C/2)2

×
{

1 ± C2(1 − 3 cos2 θ)2

64
√
B2 + (C/2)2

[
A ±√

B2 + (C/2)2
] + · · ·

}
. (2.71)

Using these results and choosing the parameters A, B and C to fit the experimental
data of the cyclotron mass we find the curves shown in Figs. 2.10 and 2.11. From
these analyses we derive the valence band parameters A, B and C , which are listed
below.

A = −(13.0 ± 0.2)(�2/2m) ,

|B| = (8.9 ± 0.1)(�2/2m) , (2.72)

|C | = (10.3 ± 0.2)(�2/2m) ,

for Ge and

A = −(4.1 ± 0.2)(�2/2m) ,

|B| = (1.6 ± 0.2)(�2/2m) , (2.73)

|C | = (3.3 ± 0.5)(�2/2m) ,

for Si. It may be pointed out here that the parameters L , M and N are easily deduced
from (2.66) using the values of A, B and C given above [1]. The effective masses of
the heavy and light holes averaged in k space are

m

m∗
hh

= −A −
√
B2 + C2

5
, (2.74)

m

m∗
lh

= −A +
√
B2 + C2

5
, (2.75)
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where A, B, andC are given by dimensionless values in units of �
2/2 m.2 The average

effective masses of the heavy and light holes are estimated to be 0.336 m (0.520 m)
and 0.0434 m (0.159 m) for Ge (Si), respectively.

2.4 Non-parabolicity of the Conduction Band

We are concerned with the valence band structure by taking the spin–orbit interaction
in the previous section. Here in this section we will deal with the effect of the spin–
orbit interaction on the conduction band, where we consider the conduction band
|Γ2′ 〉 and the valence bands |Γ25′ 〉 only for simplicity. In this approximation the
matrix elements of the k · p Hamiltonian are

∣∣∣∣∣∣∣∣

Ec0 − λ 0 Pk 0
0 Ev0 − Δ0/3 − λ

√
2Δ0/3 0

Pk
√

2Δ0/3 Ev0 − λ 0
0 0 0 Ev0 + Δ0/3 − λ

∣∣∣∣∣∣∣∣
= 0 , (2.76)

where P = (�/m)〈Γ2′ |px | X〉 is defined by (2.31) and λ = E − k2. For simplicity
we put kx = ky = 0, kz = k without any loss of generality. From the upper-left 3 × 3
matrix we obtain

(
λ − Ev0 + 2Δ0

3

)(
λ − Ev0 − Δ0

3

)(
λ − Ec0

)

− P2k2
(
λ − Ev0 + Δ0

3

)
= 0 . (2.77)

We may write

Ec = Ec0, Ev = Ev0 + Δ0

3
, Ec − Ev − EG , (2.78)

and then (2.77) reduces to

(
λ − Ev + Δ0

)(
λ − Ev

)(
λ − Ec

)
− P2k2

(
λ − Ev + 2Δ0

3

)
= 0 . (2.79)

Since we are interested in the effective mass of the conduction band edge, the term
�

2k2/2 m is taken to be small and λ in the terms other than λ − Ec is replaced by Ec.

2In many references the average effective mass is expressed as

m

m∗ = −A ±
√
B2 + C2

6
,

which should be corrected as above.
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This approximation gives rise to

λ = Ec(k) − �
2k2

2m
= P2k2(Ec − Ev + 2Δ0/3)

(Ec − Ev + Δ0)(Ec − Ev)
+ Ec , (2.80)

or

E(k) = �
2k2

2m
+ P2k2

3

[
2

EG
+ 1

EG + Δ0

]
+ Ec , (2.81)

and therefore the band edge effective mass m∗
0 is obtained as

1

m∗
0

= 1

m
+ 2P2

3�2

[
2

EG
+ 1

EG + Δ0

]
. (2.82)

We introduce energy parameter EP0 which is often used to analyze the valence band
parameters,

EP0 = 2

m
P2

0 , (2.83a)

P0 = 〈Γ25′(X)|px |Γ2′ 〉 , P = �

m
P0 , (2.83b)

and then (2.82) is rewritten as

1

m∗
0

= 1

m
+ EP0

3m

[
2

EG
+ 1

EG + Δ0

]
(2.84)

This relation is known to explain the observed effective masses quite well in
III–V compound semiconductors, as shown below. Here we discuss the case of
GaAs as an example. The parameter EP0 = (2/m)P2

0 is rewritten by using the
definition of Pau = 2P0 used by Cardona and Pollak [5] as EP0 = P2

au/(2m)(=
P2

au in atomic units) = 1.322 × 13.6 = 23.7 eV (see Table 1.11),3 the energy gap
EG = 1.53 eV and the spin–orbit split-off energy Δ0 = 0.34 eV give the band-edge
effective mass m∗

0 = 0.0643 m from (2.84), which is in good agreement with the
observed value 0.067 m.

When we put the relation λ = Ec(k) − k2 (= Ec(k) − �
2k2/2m) into (2.79), the

k dependence of the energy of the conduction band electrons Ec(k) deviates from
the parabolic band

Ec(k) = �
2k2

2m∗
0

. (2.85)

3Note that P used in Tables 1.9 and 1.11 is Pau = 2〈Γ2′ |px | X〉 = 2P0 and thus EP0 = (2/m)P2
0 =

P2
au/2 m which is equivalent to P2

au in atomic units.

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
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Such a band is called a non-parabolic band. The conduction band of the order of k4

is obtained by neglecting the term λ3 which gives the energy of the order of k6. The
solution of the quadratic equation of λ is given by

E(k) = �
2k2

2m∗
0

−
(

1 − m∗
0

m

)2(
�

2k2

2m∗
0

)2[ 3EG + 4Δ0 + 2Δ2
0/EG

(EG + Δ0)(3EG + 2Δ0)

]
. (2.86)

Another good example of a non-parabolic conduction band is the case of InSb, where
Δ0 � EG is satisfied. In this case we may approximate (2.79) by

(λ − Ec)(λ − Ev) − 2

3
P2k2 = 0 , (2.87)

and thus the conduction band is expressed by the following equation.

E(k) = �
2k2

2m
+ Ec + Ev

2
+
√

(Ec − Ev)2

4
+ 2

3
P2k2 . (2.88)

This approximation is done by considering the conduction band and the top valence
band only, and thus it is called the two-band approximation. When the energy
reference is taken to be the conduction band bottom (Ec = 0), the conduction band
non-parabolicity is expressed as

E(k) = �
2k2

2m
+ EG

2

[√
1 +

(
8P2

3E2
G

2m

�2

)
�2k2

2m
+ 1

]

= �
2k2

2m
+ EG

2

[√
1 + 4Ep

E2
G

· �2k2

2m
+ 1

]
, (2.89)

where the relation (note the difference between Ep and EP0)

Ep = 4mP2

3�2
≡ 2

3
EP0 (2.90)

is used.4 (2.89) gives the solution for �
2k2/2m

�
2k2

2m
= E + EG + Ep

2

[
1 −

√
1 + 4EpE

(EG + Ep)2

]
. (2.91)

4In Sect. 2.6 we deal with the Luttinger parameters and introduce EP0 = (2/m)P2
0 with the momen-

tum matrix element P0 = 〈Γ2′ |px |X〉. The parameterEP0 is often cited for the analysis of the valence
band states and of the Luttinger parameters [3, 6]. The values of EP0 for various semiconductors
range from 19 to 27 eV. The matrix element introduced by Cardona and Pollak [5] is P = 2P0 and
EP0 = P2/2m. Also note the difference between the subscripts of Ep and of EP0.
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When E is small, the terms of the square root of the above equation may be expanded
to give the following result:

�
2k2

2m
= E

[
EG

EG + Ep
+ E2

pE
(EG + Ep)3

− 2E3
pE2

(EG + Ep)5
+ · · · · ·

]
. (2.92)

From the fact that the energy band approaches the parabolic band E = �
2k2/2m∗

0 in
the limit of E → 0, the band-edge effective mass is given by

m∗
0/m = EG

EG + Ep
. (2.93)

For example, in the case of InSb we have EG = 0.235 eV, m∗
0/m = 0.0138, Δ0 =

0.9 eV, and thus the condition Δ0 > EG is satisfied. From the above result we obtain
Ep ≈ 17 eV, which shows a good agreement with the parameter used for the energy
band calculations, Ep ≈ 20 eV. From (2.92) and (2.93) the dispersion of the conduc-
tion band is rewritten as

�
2k2

2m∗
0

= γ(E) = E[1 + αE + βE2 + · · · · ·] , (2.94)

where α and β are defined by

α = E2
p

EG(EG + Ep)2
=
(

1 − m∗
0

m

)2

· 1

EG
, (2.95)

β = − 2E3
p

EG(EG + Ep)4
. (2.96)

Since EG � Ep in general, we can neglect the terms beyond the second term on the
right-hand side and we obtain

�
2k2

2m∗
0

≡ γ(E) = E
(

1 + E
EG

)
, (2.97)

which is referred to in the literature very often to express the conduction band non-
parabolicity.

2.5 Electron Motion in a Magnetic Field and Landau Levels

2.5.1 Landau Levels

In this section we will deal with the motion of an electron in a magnetic field using the
effective-mass equation described in Sect. 3.2. The treatment is based on the method

http://dx.doi.org/10.1007/978-3-319-66860-4_3
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developed by Kubo et al. [7, 8]. The Hamiltonian of an electron in a magnetic field
B is written as

H = 1

2m
( p + eA)2 , (2.98)

where A is the vector potential defined as

B = ∇ × A . (2.99)

Since the vector potential satisfies the relation ∇ · A = 0, we find the following
relation

A · p − p · A = i�∇ · A = 0 (2.100)

and thus the momentum operator and the vector potential commute with each other.
We define the following general momentum operator [7]:

π = p + eA . (2.101)

Then the effective mass Hamiltonian is given by the following equation:

H = E0(π) +U (r) , (2.102)

where E0( p) represents the Bloch state of the electron with crystal momentum
p = �k and U (r) is the perturbing potential. As shown in Chap. 3 the effective-
mass equation allows us to express the operator as E0(−i�∇) without a magnetic
field or E0(−i�∇ + eA) with a magnetic field. The momentum operator satisfies the
following commutation relation:

π × π = −i�eB . (2.103)

When the magnetic field B is applied in the z direction, we obtain

πx = px + eAx , (2.104a)

πy = py + eAy, (2.104b)

πz = pz (2.104c)

and thus the commutation relations are
[
πx ,πy

] = −i�eBz (2.105a)

[πx , x] = [
πy, y

] = −i� . (2.105b)

Here we introduce following new variables

ξ = 1

eBz
πy, η = − 1

eBz
πx , (2.106a)

http://dx.doi.org/10.1007/978-3-319-66860-4_3


92 2 Cyclotron Resonance and Energy Band Structures

X = x − ξ, Y = y − η . (2.106b)

Using (2.105b) we obtain the following relation,

[ξ, η] = �

i

1

eBz
≡ l2

i
(2.107a)

[X,Y ] = −�

i

1

eBz
≡ − l2

i
(2.107b)

[ξ, X ] = [η, X ] = [ξ,Y ] = [η,Y ] = 0 , (2.107c)

where

l = √
�/eBz (2.108)

is the cyclotron radius of the ground state and is independent of the electron effective
mass. From the commutation relations stated above, the combination of the following
variables form a complete set of canonical variables:

(ξ, η), (X,Y ), (pz, z) .

The Hamiltonian is then expressed as follows by using the relative coordinates:

H = �
2

2m∗l4
(ξ2 + η2) + �

2k2
z

2m∗ . (2.109)

As an example, we deal first with the case without a perturbing potential (U = 0).
Since the Hamiltonian E0(π) does not include X and Y , these variables will not
change in time. This is consistent with the physical model of the cyclotron motion of
the electron, where the coordinates (X,Y ) represent the cyclotron motion in the plane
x–y perpendicular to the magnetic field B. For this reason the coordinates (X,Y )

are called the center coordinates of the cyclotron motion. It is evident from (2.106b)
that ξ and η represent the relative coordinates of the cyclotron motion (X,Y ). We
also find the following relation from (2.107b) and the uncertainty principle:

ΔXΔY = 2πl2 = h

eBz
. (2.110)

This relation is sometimes referred to as the degeneracy in a magnetic field of the
eigenstate E0(πx ,πy, pz). Since the energy eigenvalue is independent of (X,Y ),
the energy eigenvalue is unchanged under the movement of the cyclotron center
coordinates (x, y). When the size of a sample in the directions of x and y is assumed
to be Lx and Ly , respectively, the allowed cyclotron orbits are Lx L y/πl2. Therefore,
this treatment will give the degenerate states of 1/πl2 per unit area. The degeneracy
is different by a factor of 2 from (2.110).
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Here we consider a conduction band with a spherical constant energy surface and
with a parabolic band, E0(k) = �

2k2/2m∗, where m∗ is the scalar effective mass.
When we choose the Landau gauge and put A = (0, Bzx, 0), the effective-mass
equation in a magnetic field is given by

[
1

2m∗ (py + eBzx)
2 + p2

x

2m∗ + p2
z

2m∗

]
ψ = Eψ . (2.111)

Since E0(π), pz and py commute with each other, we may choose the eigenfunction
as

ψ = exp(iky) exp(ikz)F(x) . (2.112)

Inserting (2.112) into (2.111), the eigenfunction F(x) is found to satisfy the following
relation

[
p2
x

2m∗ + 1

2m∗
(
2e�ky Bzx + e2B2

z x
2
)]

F(x) = E ′F(x) , (2.113)

where

E = E ′ + �
2k2

y

2m∗ + �
2k2

z

2m∗ . (2.114)

Expression (2.113) may be rewritten in a very convenient form by using the following
relation

X = −�ky
eBz

(2.115)

giving rise to the following result
[

p2
x

2m∗ + e2B2
z

2m∗ (x − X)2

]
F(x) =

(
E ′ + �

2k2
y

2m∗

)
F(x)

=
(
E − �

2k2
z

2m∗

)
F(x) . (2.116)

The transform from x to (X, ξ) may be evident from the above equation and we find
that the electron motion in a magnetic field is well described by the relative coordinate
ξ = x − X . The equation is known as the equation for the one-dimensional simple
harmonic oscillator with the angular frequency

ωc = eBz

m∗ (2.117)
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and (2.116) is rewritten as

[
p2

ξ

2m∗ + 1

2
m∗ω2

c ξ
2

]
F(ξ) =

(
E − �

2k2
z

2m∗

)
F(ξ) . (2.118)

The energy of the cyclotron motion is then given by

E =
(
N + 1

2

)
�ωc + �

2k2
z

2m∗ , (2.119)

where N is the quantum number of the Landau level. The eigenstates of (2.118) are
given by

|N , X, pz〉 = 1

(2N N !√πl)1/2
exp

(
−|x − X |2

2l2

)

× exp

{
i

(
pzz

�
− Xy

l2

)}
HN

(
x − X

l

)
, (2.120)

where HN (x) are Hermite polynomials. The above results are summarized in
Fig. 2.14. The left-hand figure shows the energy bands without a magnetic field.
When a magnetic field B is applied in the z direction, the electron motion is quan-
tized in the x, y plane and forms Landau levels as shown in the right-hand figure.

Next, we consider the case of a perturbing potential U . The electron motion in a
perturbing potential will be solved by inserting E0 +U into the Hamiltonian (2.102).
Let us consider the equation of motion for the operator Q, which is written as

Q̇ = i

�
[H, Q] . (2.121)

Fig. 2.14 Electronic states
in a magnetic field. The
left-hand figure represents
the energy bands without
magnetic field. Electrons are
quantized in the plane
perpendicular to the
magnetic field, resulting in
the Landau levels as shown
in the right-hand figure
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Therefore, we obtain

ξ̇ = i

�
[H, ξ] = i

�

1

eBz
[H,πy]

η̇ = i

�
[H, η] = − i

�

1

eBz
[H,πx ] .

Using the commutation relations given by (2.105b), we obtain the following equa-
tions

ξ̇ = ∂E0

∂πx
− 1

eBz

∂U

∂y
(2.122a)

η̇ = ∂E0

∂πy
+ 1

eBz

∂U

∂x
. (2.122b)

In a similar fashion we find the following relations.

Ẋ = i

�
[H, X ] = i

�
[U, X ] = 1

eBz

∂U

∂y
, (2.123a)

Ẏ = i

�
[U,Y ] = − 1

eBz

∂U

∂x
, (2.123b)

ṗ z = −∂U

∂z
, ż = ∂E0

∂ pz
. (2.123c)

These relations are summarized as follows.

π̇x = −eBz
∂E0

∂πy
− ∂U

∂x
(2.124a)

π̇y = +eBz
∂E0

∂πx
− ∂U

∂y
. (2.124b)

The velocity v = (vx , vy, vz) is written as

vx ≡ ẋ = ξ̇ + Ẋ = ∂E0

∂πx
(2.125a)

vy ≡ ẏ = η̇ + Ẏ = ∂E0

∂πy
(2.125b)

vz ≡ ż = ∂E0

∂ pz
. (2.125c)

When a uniform electric field is applied, the perturbing potential is expressed as

∂U

∂x
= −eEx ,

∂U

∂y
= 0 , (2.126)

and we obtain the following relation from (2.123a) and (2.123b)

Ẏ = Ex

Bz
, Ẋ = 0 . (2.127)
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Fig. 2.15 Electron motion in a magnetic field applied in the z direction (perpendicular to the text
page) and in a uniform electric field applied parallel to the text page. In the absence of scattering, the
electron moves in the direction perpendicular to the magnetic field and the electric field, as shown
in the left half of the figure. In the presence of scattering the cyclotron center is scattered and a drift
component appears along the direction of the electric field, which is shown in the right half of the
figure

This means that the cyclotron center moves with a constant velocity Ex/Bz in the
direction perpendicular to the magnetic and electric fields, which is shown in the
left half of Fig. 2.15. However, in the presence of scattering centers, the electron is
scattered and changes the center of the cyclotron motion, giving rise to a drift motion
along the electric field direction, as shown in the right half of Fig. 2.15.

2.5.2 Density of States and Inter Landau Level Transition

Now we discuss the density of states of the electrons in the presence of a magnetic
field. As explained above, an electron is quantized in the x, y plane and the energy
eigenstate is independent of the cyclotron center, resulting in a degeneracy of pd =
1/2πl2. Since the wave vector in the z direction is given by kz = (2π/Lz)n (n =
0,±1,±2,±3, . . .), we obtain

∑
kz

= Lz

2π

∫ +k0

−k0

dkz = Lz

π

∫ +k0

0
dkz , (2.128)

where k0 = (2π/Lz)(N/2) and kz have N degrees of freedom. Equation (2.119) may
be rewritten as

E ′ = E − (n + 1

2
)�ωc = �

2k2
z

2m∗ , (2.129)

and thus we obtain

∑
kz

= Lz

π

∫ +k0

0
dkz = Lz

√
2m∗

2π�
√E ′ dE ′ . (2.130)
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Fig. 2.16 Density of states in a magnetic field. The divergence of the density reflects the one-
dimensionality of an electron in a magnetic field and the divergence is removed by taking account
of the broadening due to electron scattering. The dot-dashed curve represents the density of states
for electrons in three dimensions when B = 0

Multiplying the degeneracy factor pd to the above equation, the number of electronic
states for electrons in a magnetic field is given by

N (E ′) = Lx L yLzeBz

√
2m∗

(2π�)2

1√E ′ . (2.131)

Therefore, the density of states g(E, Bz) per unit volume in the energy range between
E and E + dE is defined as

g(E, Bz) = eBz

√
2m∗

(2π�)2

∑
n

1√
E − (n + 1

2 )�ωc

. (2.132)

The density of states in a magnetic filed is shown in Fig. 2.16 as a function of the
electron energy.

Next we will discuss the quantum mechanical treatment of cyclotron resonance.
In the quantum mechanical picture the cyclotron resonance arises from the electron
transition between Landau levels by absorbing photon energy (energy of a radiation
field). As described in Sect. 4.2, the interaction Hamiltonian between the electron
and the radiation field is given by (4.30), which is written as

Her = e

m
A · p . (2.133)

A circularly polarized wave may be expressed as the following by defining the vector
potential A = e · A:

e± = 1√
2

(
ex ± ey

)
, p± = 1√

2

(
px ± py

)
, (2.134)

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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where p± are the momentum operators for right and left polarized waves, respectively.
When we define the z components of e and P as ez and pz , the transition rate
calculated for the circularly polarized and linearly polarized waves gives the same
result. In order to calculate the transition rate we use the eigenstates of the electron
in a magnetic field given by (2.120), and then the transition rate is given by

w = 2π

�

∣∣〈N ′, X ′, p′
z |Her| N , X, pz

〉∣∣2

= 2π
e3A2

m∗ B(N + 1)δky ,k ′
y
δkz ,k ′

z
δN ,N ′±1δ (�ω − �ωc) . (2.135)

It is evident from the above equation that the selection rule for the cyclotron resonance
is expressed as δky = k ′

y − ky = 0, δkz = k ′
z − kz = 0, δN = N ′ − N = ±1.

2.5.3 Landau Levels of a Non-parabolic Band

In Sect. 2.4 the non-parabolicity of the conduction and valence bands were discussed.
The non-parabolicity plays an important role in the magnetotransport and cyclotron
resonance. As described above, the Landau levels in a parabolic band are equally
spaced in energy. In this section we will deal with Landau levels in a non-parabolic
band along with the treatment of Luttinger and Kohn [2], and Bowers and Yafet [9].
The wave functions of the conduction band and valence bands are well described by
using Bloch functions at k = 0:

|nk〉 = un,0eik·r , (2.136)

where un,0 were derived in Sect. 2.3 by diagonalizing the spin–orbit interaction
Hamiltonian and are given by Luttinger and Kohn [2]

u1,0(r) = |S ↑ 〉 , u2,0(r) = |iS ↓ 〉 (2.137a)

u3,0(r) = |(1/
√

2)(X + iY ) ↑ 〉 , (2.137b)

u4,0(r) = |(i/√2)(X − iY ) ↓ 〉 , (2.137c)

u5,0(r) = |(1/
√

6)[(X − iY ) ↑ +2Z ↓ ]〉 , (2.137d)

u6,0(r) = |(i/√6)[(X + iY ) ↓ −2Z ↑ ]〉 , (2.137e)

u7,0(r) = |(i/√3)[−(X − iY ) ↑ +Z ↓ ]〉 , (2.137f)

u8,0(r) = |(1/
√

3)[(X + iY ) ↓ +Z ↑ ]〉 , (2.137g)

where the time reversal symmetry is taken account.
In a magnetic field applied in the z direction, the vector potential is described as

Ax = −By, Ay = 0, Az = 0 , (2.138)
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and therefore the Hamiltonian becomes

H = H0 + s

m
ypx + s2

2m
y2 , (2.139)

where s is defined by using the cyclotron radius l as

s = eB

�
= 1

l2
. (2.140)

It is easy to find the following relations for the matrix elements of the term which
includes the contribution of the magnetic field:

〈nk|ypx |n′k′〉 =
∫

ei(k′−k)·ru∗
n,0y(kx − i∇x )nn′,0d3r

= −i
∂

∂k ′
y

∫
ei(k′−k)·ru∗

n,0(kx − i∇x )un′,0d3r

= −i
∂

∂k ′
y

[(kx + πx
nn′)δ(k′ − k)]

= (kxδnn′ + πx
nn′)

1

i

∂δ(k′ − k)
∂k ′

y

, (2.141)

In a similar fashion we find

〈nk|y2|n′k′〉 =
∫

y2ei(k′−k)·ru∗
n,0un′,0d3r

=
(

−i
∂

∂k ′
y

)2 ∫
ei(k′−k)·ru∗

n,0un′,0d3r

= −∂2δ(k′ − k)
∂k ′2

y

δnn′ , (2.142)

and finally we obtain the relation

〈nk|H0|n′k′〉 = 〈nk| − �
2

2m
∇2 + V (r)|n′k′〉

=
[(

En + �
2k2

2m

)
δnn′ + �

m
kαπα

nn′

]
δ(k − k′) . (2.143)

First, we will derive approximate solutions for the Landau levels of a non-parabolic
conduction band. We define the zeroth-order wave function by a linear combination
of Bloch terms

Ψ (r) =
∑
j

f j (r)u j,0(r) , (2.144)
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and then the matrix elements of the Hamiltonian H are derived as follows:

EG − λ 0
√

1
2 Pk̄+ 0

0 EG − λ 0
√

1
2 Pk̄−√

1
2 Pk̄+ 0 −λ 0

0
√

1
2 Pk̄− 0 −λ√

1
6 Pk̄− −

√
2
3 Pkz 0 0

−i
√

2
3 Pkz

√
1
6 Pk̄+ 0 0

i
√

1
3 Pk̄−

√
1
3 Pkz 0 0√

1
3 Pkz i

√
1
3 Pk̄+ 0 0

√
1
6 Pk̄− i

√
2
3 Pkz −i

√
1
3 Pk̄−

√
1
3 Pkz f1

−
√

2
3 Pkz

√
1
6 Pk̄+

√
1
3 Pkz −i

√
1
3 Pk̄+ f2

0 0 0 0 f3
0 0 0 0 f4

−λ 0 0 0 f5
0 −λ 0 0 f6
0 0 −Δ0 − λ 0 f7
0 0 0 −Δ0 − λ f8

= 0 , (2.145)

where

λ = E − �
2k̄2

2m
k̄2 = k̄2

x + k̄2
y + k2

z

k̄± = k̄x ± k̄y (2.146)

k̄x = kx − is
∂

∂ky

k̄y = ky .

Now we have to note the definition of the vector potential. In the previous subsec-
tion we defined the vector potential as (0, Bzx, 0), whereas in this subsection we adopt
the gauge of (−Bz y, 0, 0). It is explained in the previous subsection that the energy of
the cyclotron motion is independent of the cyclotron center X = −�ky/eBz . There-
fore, the gauge used in this subsection gives rise to the result that the cyclotron energy
is independent of kx . This results allows us to put kx = 0 in the following calcula-
tions. Another assumption is made in this subsection that we neglect the contribution
of spin–orbit interaction to the k dependence in (2.145). It is found that (2.145) may
be easily solved when the term �

2k̄2/2m is negligible. In this subsection we are inter-
ested in the Landau levels at kz = 0 and thus the above assumptions are valid in the
analysis [9]. Under these assumptions (2.145) leads to the following two equations,
where terms other than f1 and f2 are neglected:
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[
(EG − λ)λ + 2

3
P2

(
k2
z + k2

y − s2 ∂2

∂k2
y

+ 1

2
s

)

+ P2λ

3(Δ0 + λ)

(
k2
z + k2

y − s2 ∂2

∂k2
y

− s

)]
f1 = 0 (2.147)

[
(EG − λ)λ + 2

3
P2

(
k2
z + k2

y − s2 ∂2

∂k2
y

− 1

2
s

)

+ P2λ

3(Δ0 + λ)

(
k2
z + k2

y − s2 ∂2

∂k2
y

+ s

)]
f2 = 0 . (2.148)

When we investigate the above equations, we find that the equations represent sim-
ple harmonic oscillator equations with dimensionless variable ky/

√
s. Therefore we

obtain the following solutions:

D(λn±) ≡ λn±(λn± − EG)(λn± + Δ0)

= −P2
[
k2
z + s(2n + 1)

] [
λn± + 2

3
Δ0

]
± 1

3
P2Δ0s = 0 , (2.149)

where λn,± stands for λkz , n (spin quantum number), ±, and s = eB/�. It is evident
from (2.149) that the latter coincides with the solution for a parabolic band in the
absence of a magnetic field, i.e. for B = 0 (and thus s = 0). Using the relation
λ = E − �

2k2/2m in (2.149) and neglecting the small spin-splitting term, the Landau
levels at kx = 0 are approximated as below [10]. [They are easily derived from
(2.86).]

En =
(
n + 1

2

)
�ωc −

(
1 − m∗

0

m

)2 [ 3EG + 4Δ0 + 2Δ2
0/EG

(EG + Δ0)(3EG + 2Δ0)

]

×
(
n + 1

2

)2

(�ωc)
2 , (2.150)

where m∗
0 is the band-edge effective mass of the conduction band and is given later

(2.152) (or see (2.84)) and �ωc = �eB/m∗
0 as defined before.

2.5.4 Effective g Factor

Landau levels of the conduction band electron is expressed as

E±,n,kz (B) = �ωc

(
n + 1

2

)
+ �

2k2
z

2m∗
0

± 1

2
μB|g∗

0 |B , (2.151)

where m∗
0 is the band edge effective mass, ωc = �eB/m∗

0, the quantum numbers
± refer to the spin, and μB = e�/2m is the Bohr magneton. The constant g∗

0 is the
Landé g factor, referred to as the effective g–factor. The band edge effective mass m∗

0
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Fig. 2.17 Schematic energy
band structure near k = 0 in
a direct bandgap
semiconductor, group
theoretical symbols for a
diamond type (single group
representation) and zinc
blende type (double group
representation)

and the effective g factor g∗
0 are deduced by Roth et al. [11] and cited many papers.

[12–15]. Here we use the definition of Herman and Weisbuch [15]:

1

m∗
0

= 1

m
+ EP0

3m

[
2

EG
+ 1

EG + Δ0

]
, (2.152)

g∗
0

2
= 1 + 1

m

1

i

∑
u

〈Γ c
6 |px |u〉〈u|py|Γ c

6 〉 − 〈Γ c
6 |py|u〉〈u|px |Γ c

6 〉
Ec − Eu (2.153)

= 1 + EP0

3

(
1

EG + Δ0
− 1

EG

)

+EP1

3

(
1

E(Γ c
8 ) − EG

− 1

E(Γ c
7 ) − EG

)
+ C ′ , (2.154)

where the factor 2 of the denominator of g∗
0/2 is the free electron g factor (g0 = 2)

and the energies are define by the magnitude (positive value). The relation of
(2.153) and thus (2.154) arises from the spin–orbit interaction. For reference the
energy band structure near k = 0 with respective energies are shown in Fig. 2.17.
Ec is the energy of the conduction band |Γ c

6 〉 ( or |Γ2′ 〉 in the single group rep-
resentation). The energies Eu for the valence bands are E(Γ v

8 ) = −EG and its
spin–split off band E(Γ v

7 ) = −EG − Δ0. For the higher conduction band Eu are
E(Γ c

7 ) − EG and its spin–split off band E(Γ c
8 ) − EG = E(Γ c

7 ) + Δ15 − EG, and thus
the energy denominators are, respectively,Ec − E(Γ c

7 ) − EG andEc − E(Γ c
8 ) − EG =

Ec − E(Γ c
7 ) − Δ15 − EG. Putting Ec = 0, we obtain the result given by (2.154). The

higher conduction band E(Γ c
7 ) and E(Γ c

8 ) = E(Γ c
7 ) + Δ15 are measured from the

valence band top. These higher conduction band energies are obtained as E1 and
E1 + Δ15, where E1 is the optical transition energy between the valence band top Γ v

8
(Γ25′ band) and Γ c

7 (Γ15) band (called as E1–edge).
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Derivation of (2.154) from (2.153) is straight forward by evaluating the matrix
elements using the eigenstates of Γ v

7 and Γ v
8 valence bands (Γ25′ bands in single

group representation) given by (2.63a) ∼ (2.63f) and similar eigenstates for Γ c
7 and

Γ c
8 conduction bands (Γ15′ bands in single group representation). The diagonalization

of spin–orbit Hamiltonian gives the corresponding eigenvalues and eigensates, where
different forms of the eigen functions are reported by Luttinger and Kohn [2] (see
(2.137b) ∼ (2.137g)), where the time reversal symmetry is taken account. Roth et al.
[11] defined the eigenstates as given below, which are the same as (2.63a) ∼ (2.63f)
of this textbook. Here we list the eigenstates derived by Roth et al. [11]: for fourfold
valence bands are

uv1 =
∣∣∣∣
3

2
,

3

2

〉
= 1√

2
|(X + iY ) ↑ 〉 , (2.155a)

uv2 =
∣∣∣∣
3

2
,

1

2

〉
= − 1√

6
[|(X + iY ) ↓ 〉 + 2 |Z ↑ 〉] , (2.155b)

uv3 =
∣∣∣∣
3

2
,−1

2

〉
= − 1√

6
[|(X − iY ) ↑ 〉 + 2 |Z ↓ 〉] , (2.155c)

uv4 =
∣∣∣∣
3

2
,−3

2

〉
= 1√

2
|(X − iY ) ↓ 〉 , (2.155d)

and for twofold spin–split off bands are

uv5 =
∣∣∣∣
1

2
,

1

2

〉
= 1√

3
[|(X + iY ) ↓ 〉 − |Z ↑ 〉] , (2.155e)

uv6 =
∣∣∣∣
1

2
,−1

2

〉
= 1√

3
[|(X − iY ) ↑ 〉 − |Z ↓ 〉] . (2.155f)

The termC ′ represents the contributions from far–higher lying bands. The energies
E(Γ c

7 ) and E(Γ c
8 ) are measured from the the valence band top and thus all the energy

values are taken to be positive. Here we adopted the notations defined in Sect. 2.6,
and EP0 and EP1 are defined as

EP0 = 2

m
|〈Γ2′ |px |Γ25′(X)〉|2 , (2.156)

EP1 = 2

m
|〈Γ2′ |px |Γ15(x)〉|2 . (2.157)

The above relations were first derived by Roth et al. [11]. Also similar treat-
ment leads to the band edge effective mass for the 14 band band model and
the results are shown in Sect. 2.6. Here we estimate the effective g– factor for
GaAs at low temperature, where we choose EG = 1.519 [eV], Δ0 = 0.341 [eV],
EP0 = 28.8 [eV], E1 = 4.488 [eV], Δ15 = 0.171 [eV], EP1 = EP0/4 = 7.2 [eV], and
C ′ = −0.02. These parameters give g∗

0 = −0.445 with good agreement of experi-
ment g∗

0 = −0.44. The parameters assumption EP1 = EP0/4 and C ′ are not well
established and thus the above values are open for discussion. Litvinenko et al. intro-
duce another mixing term and their parameters give g∗

0 = −0.44. In this textbook we
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presented the magnitude of g–factor without discussion of the sign and the reported
values for various III-V materials are negative values except some compounds.

The effective g factor of (2.154) leads to (2.159) of 8 band model by neglecting
the higher band contributions. When we take account of Γ c

6 conduction band, and
Γ v

7 and Γ v
8 valence bands only we obtain

1

m∗
0

= 1

m
+ EP0

3m

2Δ0 + 3EG

EG(Δ0 + EG)
, (2.158)

g∗
0

2
= 1 + EP0

3

(
1

EG + Δ0
− 1

EG

)
= 1 +

(
1 − m

m∗
0

)
Δ0

2Δ0 + 3EG
. (2.159)

The effective g–factor of InSb is estimated by (2.159) as expected from Kane’s two
band model. We choose the parameters of InSb at low temperature as, EG = 0.2353
[eV], EP0 = 23.1 [eV], and Δ0 = 0.803 [eV]. These values give g∗

0 = −48.6, which
shows a reasonable agreement with the measurements g∗

0 � −50 in InSb [12, 13].
The effective g–factor depends on the electron energy E and given by Litvinenko
et al. [13]

g∗
0

2
= 1 + EP0

3

(
1

EG + Δ0 + E − 1

EG + E
)

, (2.160)

and shows a good agreement with the experiments.
We have to note here that the above formulations are based on the k · p pertur-

bation theory. Narrow gap semiconductors such as InSb is well expressed by the
Kane’s two band model (8 band model with spin–orbit interaction), and that more
general form with higher bands contributions is useful for more accurate modeling
for zinc blende semiconductors such as GaAs, where we have to use 14 band model.
The results shown above are obtained by using the energy eigenstate notations of the
double group (see also the treatment in Sect. 2.6) and with magnetic field applied in
the z direction,

2.5.5 Landau Levels of the Valence Bands

It may be expected that the calculations of Landau levels for valence bands are
complicated because of the degeneracy of the bands and the spin–orbit interaction.
In this subsection we deal with the Landau levels in the valence bands along with
the treatment of Luttinger [3] and the method extended by Pidgeon and Brown [16].
First we investigate the valence bands using (2.44) and (2.45). The non-diagonal
term Nkxky is given by

DXY = Dxy
XY kxky + Dyx

XY kykx . (2.161)
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We define the antisymmetric term by

K = Dxy
XY − Dyx

XY , (2.162)

and then DXY is rewritten as

DXY = N {kxky} + 1

2
K (kx , ky) , (2.163)

where

{kxky} = 1

2
(kxky + kykx ), (2.164a)

(kx , ky) = kxky − kykx . (2.164b)

From the commutation relation of (2.105b)

(kx , ky) = −ieBz (2.165)

is derived and therefore we obtain

DXY = N {kxky} + K

2i
eBz . (2.166)

Similarly we find

DY X = N {kxky} − K

2i
eBz . (2.167)

The other terms are also expressed in a similar fashion. As a result (2.45) is divided
into two terms

D = D(S) + D(A) , (2.168)

where D(S) is obtained from (2.45) by putting kαkβ → {kαkβ}, and D(A) is given by
the matrix

D(A) = eK

2

0 −iBz iBy

iBz 0 −iBx

−iBy iBx 0
(2.169)

We define the operators Jx , Jy and Jz , which have the same characteristics as the
momentum operators expressed by a 4 × 4 matrix, i.e.

(Jx , Jy) = iJz, (Jy, Jz) = iJx , (Jz, Jx ) = iJy (2.170a)

J 2
x + J 2

y + J 2
z = 3

2

(
3

2
+ 1

)
= 15

4
. (2.170b)



106 2 Cyclotron Resonance and Energy Band Structures

Using these results we obtain the Luttinger Hamiltonian given by

D = 1

m

{(
γ1 + 5γ2

2

)
k2

2
− γ2(k

2
x J

2
x + k2

y J
2
y + k2

z + J 2
z )

− 2γ3({kxky}{Jx Jy} + {kykz}{Jy Jz} + {kzkx }{Jz Jx })
+ eκJ · B + eq(J 3

x Bx + J 3
y By + J 3

z Bz)

}
, (2.171)

where units are chosen that � = 1,

1

2m
γ1 = −1

3
(A + 2B) ,

1

m
(3κ + 1) = −K , (2.172a)

1

2m
γ2 = −1

6
(A − B) ,

1

2m
γ3 = −1

6
C . (2.172b)

The parameter q is introduced for the correction due to the spin–orbit splitting,
which is neglected because of the small contribution. The parameters defined above
are calledLuttinger parameters. Following the treatment of Luttinger and Kohn [2],
the k · p Hamiltonian is expressed as (in atomic units)

∑
j

{
Dlm

j j ′klkm + πl
j j ′kl + 1

2
s(σ3) j j ′

+ 1

4c2
[(σ × ∇V ) · p] j j ′ + E j ′δ j j ′

}
f j ′(r) = E f j (r) , (2.173)

where

Dlm
j j ′ ≡ 1

2
δ j j ′δlm +

∑
i

πl
j iπ

m
i j ′

E0 − Ei . (2.174)

The summations with respect to j and j ′ in the above equation are carried out for
2 conduction bands and 6 valence bands, i is for all bands, and l,m are for 1, 2, 3
or for x , y, z. Ei and E j are the average energies for the states i and j , respectively.
Equation (2.173) is evaluated by using (2.137g) and (2.144), giving rise to a 8 × 8
matrix. When the magnetic field is applied in the (11̄0) plane, the Luttinger matrix
D becomes

D = D0 + D1 , (2.175)

where D0 may be solved exactly and D1 may be solved by a perturbation method
[16]. The detail of the analysis is not described here. In the following we put k3 = 0.
Then D0 is divided into two 4 × 4 matrices:

D0 = Da 0
0 Db

. (2.176)
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In addition we neglect the perturbation term of the conduction band and thus all the
terms except the first term of (2.174). This assumption is also adopted by Pidgeon
and Brown, where they put F = 0. Finally we obtain

EG − Ea + s(n + 1) i
√
sPa†

−i
√
sPa −s[(γ1 + γ′)(n + 1

2 ) + 3
2κ] − Ea

−i
√

1
3 sPa

† −s
√

3γ′′a†2

√
2
3 sPa

† is
√

6γ′a†2

i
√

1
3 sPa

√
2
3 sPa f1

−s
√

3γ′′a2 −is
√

6γ′a2 f3
−s[(γ1 − γ′)(n + 1

2 ) − 1
2κ] − Ea is

√
2[γ′(n + 1

2 ) − 1
2κ] f5

−is
√

2[γ′(n + 1
2 ) − 1

2κ] −s[γ1(n + 1
2 ) − κ] − Δ0 − Ea f7

= 0

EG − Eb + sn i
√

1
3 sPa

†

−i
√

1
3 sPa

† −s[(γ1 − γ′)(n + 1
2 ) + 1

2κ] − Eb
−i

√
sPa† −s

√
3γ′′a†2√

2
3 sPa −is

√
2[γ′(n + 1

2 ) + 1
2κ]

i
√
sPa

√
2
3 sPa

† f2
−s

√
3γ′′a2 is

√
2[γ′(n + 1

2 ) + 1
2κ] f6

−s[(γ1 + γ′)(n + 1
2 ) − 3

2κ] − Eb is
√

6γ′a†2 f4
−is

√
6[γ′a2 −s[γ1(n + 1

2 ) + κ] − Δ0 − Eb f8

= 0 .

Here we have used the creation operator a† and the annihilation operator a defined
as

a† = 1√
2s

(k1 + ik2) , (2.177a)

a = 1√
2s

(k1 − ik2) , (2.177b)

n = a†a (2.177c)

P is the matrix element of the momentum operator defined previously, P =
−i〈S|pz|Z〉), and γ′ and γ′′ are given by

γ′ = γ3 + (γ2 − γ3)

[
1

2
(3 cos2 θ − 1)

]2

, (2.178a)

γ′′ = 1

3
γ3 + 1

3
γ2 + 1

6
(γ2 − γ3)

[
1

2
(3 cos2 θ − 1)

]2

, (2.178b)

where θ is the angle between the z axis and the magnetic field. The valence band
parameters used here, γ1, γ2, γ3 and κ are different from the Luttinger parameters
γL

1 , γL
2 , γL

3 and κL , and they are given by
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γ1 = γL
1 − 2P2

3EG
, (2.179a)

γ2 = γL
2 − P2

3EG
, (2.179b)

γ3 = γL
3 − P2

3EG
, (2.179c)

κ = κL − P2

3EG
. (2.179d)

Here we will show the derivation of the relations (2.177a)–(2.177c). Using the
generalized momentum defined by

πx = px + eAx = px − yeB (2.180a)

πy = py + eAy = py (2.180b)

we find

k1 = −i
∂

∂x
+ eAx

�
, (2.181a)

k2 = −i�
∂

∂y
+ eAy

�
, (2.181b)

and thus we obtain the relation

�
2(k1, k2) = (px + eAx , py + eAy)

= (px , py) + (px , eAy) + (eAx , py) + e2(Ax Ay − Ay Ax )

= 0 + (px , 0) + (−eBy, py) + 0

= −eB(y, py) = −i�eB,

(k1, k2) = eB

i�
≡ s

i
. (2.182)

When we define new variables by

k1 = √
s p, k2 = √

sq , (2.183)

p and q are canonical variables which satisfy

(p, q) = 1

i
. (2.184)

We can now define new operators for the creation and annihilation operators a† and
a by

a† = 1√
2
(p + iq) = 1√

2s
(k1 + ik2) , (2.185a)

a = 1√
2
(p − iq) = 1√

2s
(k1 − ik2) . (2.185b)
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The commutation relation for the new operator is

(a, a†) = 1 (2.186)

and the relations (2.177a)–(2.177c) are derived as follows:
1

2
(p2 + q2)un =

(
a†a + 1

2

)
un =

(
n + 1

2

)
un , (2.187a)

a†aun = nun , (2.187b)

aun = √
nun−1 , (2.187c)

a†un = √
n + 1un+1 , (2.187d)

n = a†a . (2.187e)

It is evident from the two eigenvalue equations in matrix form below (2.176) that
the solutions of these equations are given by the solutions of a simple harmonic
oscillator equation:

fa =
a1Φn

a3Φn−1

a5Φn+1

a7Φn+1

, fb =
a2Φn

a6Φn−1

a4Φn+1

a8Φn−1

. (2.188)

Using these relations the eigenvalues for a and b are given by

EG − Ea + s(n + 1) i
√
snP

−i
√
snP −s[(γ1 + γ′)(n − 1

2 ) + 3
2κ] − Ea

−i
√

1
3 s(n + 1)P −s

√
3n(n + 1)γ′′

√
3
2 s(n + 1)P is

√
6n(n + 1)γ′

√
1
3 s(n + 1)P

√
2
3 s(n + 1)P

−s
√

3n(n + 1)γ′′ −is
√

6n(n + 1)γ′

−s[(γ1 − γ′)(n + 3
2 ) − 1

2κ] − Ea is
√

2[γ′(n + 3
2 ) − 1

2κ]
−is

√
2[γ′(n + 3

2 ) − 1
2κ] −s[γ1(n + 3

2 ) − κ] − Δ0 − Ea

= 0 ,

(2.189)

and

EG − Eb + sn i
√

1
3 snP

−i
√

1
3 snP −s[(γ1 − γ′)(n − 1

2 ) + 1
2 κ] − Eb

−i
√
s(n + 1)P −s

√
3n(n + 1)γ′′√

3
2 snP is

√
2[γ′(n − 1

2 ) + 1
2 κ

i
√
s(n + 1)P

√
2
3 snP

−s
√

3n(n + 1)γ′′ −is
√

2)[γ′(n − 1
2 ) + 1

2 κ]
−s[(γ1 + γ′)(n + 3

2 ) − 3
2 κ] − Eb is

√
6n(n + 1)γ′

−is
√

6n(n + 1)γ′ −s[γ1(n − 1
2 ) + κ] − Δ0 − Eb

= 0 . (2.190)
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Fig. 2.18 Schematic
diagram of the Landau levels
at k = 0 for a simple two
bands model of conduction
and valence bands. The
allowed transitions are
shown by the arrows
between the Landau levels
with quantum numbers of the
conduction and valence
bands

These equations are valid for n ≥ 1. In the case of n = −1 we put a1 = a3 = a2 =
a6 = a8 = 0, and in the case of n = 0 we put a3 = a6 = a8 = 0. The Landau levels
of the electron in the conduction band and holes in the valence bands are obtained
by solving the above equations. It may also be possible to obtain the selection rule
for the transition between the Landau levels from the eigenstates derived here.

2.5.6 Magneto–optical Absorption

As described above the Landau levels of the valence bands are complicated and
the detailed analysis requires accurate values of Luttinger parameters. One of the
methods is the analysis of the cyclotron resonance of holes as discussed in this
chapter. Another method is magneto–absorption measurements [11, 16–21]. Here a
simple case is described for the purpose of introduction to the magneto–absorption
effects. In Fig. 2.18 a schematic diagram of a simplified model of two parabolic bands
are shown and the bars are the Landau levels. The Landau levels of the conduction
and valence bands are given by

Ec = Ec(0) + �ωc

(
n + 1

2

)
+ �

2k2
z

2mc
, (2.191a)

Ev = Ev(0) − �ωv

(
n + 1

2

)
− �

2k2
z

2mv
, (2.191b)

where ωc = eB/mc and ωv = eB/mv are the cyclotron frequencies of the conduction
and valence bands, respectively. In Chap. 4 optical properties of semiconductors will
be discussed and the absorption coefficient is proportional to the joint density of
states. In the absence of magnetic field the absorption coefficient of 3 dimensional
case is given by (see (4.56) and (4.58))

α0 = K
4π

(2π)3

(
2μ

�2

)3/2 √
�ω − EG , (2.192a)

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 2.19 Absorption
coefficient as a function of
incident photon energy
(normalized by �(ωc + ωv))
for the bands shown
Fig. 2.18, where broadening
effect is taken into account
for both B = 0 (dashed line)
and B = 0. The density of
states shown in Fig. 2.16 is
obtained without broadening
effect

K = πe2

ε0m2ω2
|e · pcv|2 (2.192b)

1/μ = 1/mc + 1/mv, EG = Ec − Ev . (2.192c)

In the presence of a magnetic field the density of states is one dimensional and
given by (2.132). Therefore the absorption coefficient is written as

αB = K
eB

√
2μ

(2π�)2

∑
n

[�ω − �ωn ]−1/2 , (2.193a)

�ωn = EG +
(
n + 1

2

)
(�ωc + �ωv) (2.193b)

In Fig. 2.19 absorption coefficients (in a.u. units) for B = 0 and B = 0 are plotted,
where the broadening effect is taken into account by putting �ω → �ω + iΓ , with
Γ = 0.05(�ωc + �ωv). In the figure we see the maxima of magneto–absorption
appear periodically with the spacing of photon energy �ωc + �ωv. This is not the
case observed by experiments as shown below. Since the conduction and valence
bands are nonparabolic, and the valence bands consist of the degenerate heavy and
light hole bands at the Γ point (k = 0) and spin–orbit split–off band and thus the
Landau levels are complicated as analyzed above.

Here a comparison between the experimental and theoretical results in InSb
reported by Pidgeon and Brown [16] is shown, as one of the best examples. The
experiments are carried out by choosing two different configurations of the electric
field vector E of the incident radiation (light polarization) and the applied magnetic
field B, E ⊥ B ‖ [100] and E ‖ B ‖ [100], and optical absorption data (magneto-
absorption data) were obtained at a fixed photon energy by sweeping the magnetic
field B. In Fig. 2.20 are shown plots of photon energy of the transmission minima as a
function of magnetic-field field strength for the principal transmission in the E ⊥ B,
with B parallel to the [100] crystal direction, along with the theoretical curves. In
Fig. 2.21 are shown similar plots for the configuration E ‖ B ‖ [100].

We see a good agreement between the experimental and assigned theoretical
curves in Figs. 2.20 and 2.21. Here the notation for the transitions are defined as
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Fig. 2.20 Plot of the photon
energy of
magneto-absorption maxima
(transmission minima) as a
function of magnetic field for
E ⊥ B ‖ [100] in n-InSb at
T = 4.2 K. The solid lines
are calculated from (2.189)
and (2.190) in the text for a
and b series and the notation
of the transitions is defined
in the text and the transitions
are as follows: (after Pidgeon
and Brown [16])
1. a−(2)ac(0) 6. b+(2)bc(2) 11. b+(6)bc(4)
2. b+(0)bc(0) 7. a+(4)ac(2) 12. b+(5)bc(5)
3. a+(1)ac(1) 8. b+(3)bc(3) 13. a+(7)ac(5)
4. b+(1)bc(1) 9. a+(5)ac(3)
5. a+(3)ac(1) 10. b+(4)bc(4)

Fig. 2.21 Plot of the photon
energy of
magneto-absorption maxima
(transmission minima) as a
function of magnetic field for
E ‖ B ‖ [100] in n-InSb at
T = 4.2 K. The solid lines
are calculated from (2.189)
and (2.190) in the text for a
and b series and the notation
of the transitions is defined
in the text and the transitions
are as follows: (after Pidgeon
and Brown [16])
1. b−(2)ac(0) 6. a−(2)bc(2) 11. b−(8)ac(6)
2. a+(0)bc(0) 7. b−(5)ac(3) 12. b−(9)ac(7)
3. b−(3)ac(1) 8. a−(3)bc(3) 13. b−(10)ac(8)
4. a+(1)bc(1) 9. b−(6)ac(4) 14. b−(11)ac(9)
5. b−(4)ac(2) 10. b−(7)ac(5)

follows. In the notations a±(n)ac(n′) and b±(n)bc(n′), a and b mean the a, and b
series, and +, −, and c refer to the light–hole, heavy–hole, and conduction electron,
respectively. The orbital quantum number is given in brackets and the selection rules
result in allowed transitions for Δn = 0, −2. For example, the notation a−(2)ac(0)

means the transition between the light–hole level of a series with quantum number
n = 2 and the conduction electron level of a series with quantum number n′ = 0.
The non–linearity of the calculated and experimental data in Figs. 2.20 and 2.21
arises from the nonparabolic effects of the conduction and valence bands. Here we
find the observed transitions are mostly from the light–hole levels. On the other
hand for the configuration E ‖ B ‖ [100] the following transitions are observed.
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For the configuration E ‖ B ‖ [100], strongest transitions are from the heavy–hole
levels. From the fitting procedure Pidgeon and Brown [16] obtained the following
band–edge parameters for InSb:

P2 = 0.403 au , (2.194a)

EG = 0.2355 eV , (2.194b)

Δ = 0.9 eV , (2.194c)

γL
1 = 32.5 , (2.194d)

γL
2 = 14.3 , (2.194e)

γL
3 = 15.4 , (2.194f)

κL = 13.4 , (2.194g)

where they found that F is very small and put it equal to zero.

2.6 Luttinger Hamiltonian

Here we derive so called “Luttinger Hamiltonian”, which will be used for the analysis
of the valence band states in a quantum structure and for the analysis of semicon-
ductor quantum well lasers in Chap. 9. First, we calculate several matrix elements of
(2.64) defined by Dresselhaus, Kip, and Kittel [1] and relate them to the Luttinger
parameters. From (2.64) we obtain the following matrix elements

H11 + H22

2
= L + M

2
(k2

x + k2
y) + Mk2

z

(
→ 1

2
P(k)

)
, (2.195a)

−H13 − iH23√
3

= − N√
3
(kx − iky)kz (→ L(k)) , (2.195b)

−H11 − H22 − 2iH12

2
√

3
= (L − M)(k2

x − k2
y) − 2iNkxky√

12
(→ M(k)) , (2.195c)

H33 + H11 + H22

6
= 1

6

[
(L + M)(k2

x + k2
y)P + 2Mk2

z

]

+2

3
M(k2

x + k2
y) + Lk2

z

(
→ 1

6
P(k) + 2

3
Q(k)

)
, (2.195d)

and other elements are also easily calculated. The notations in the parentheses are
the definition of Luttinger and Kohn [2], and L , M , and N of Dresselhaus et al. [1]
are related to A, B, and C of Luttinger [2, 3] by A = �

2/2m + L , B = �
2/2m + M ,

and C = N . Using the wave functions defined by (2.63a)–(2.63f) and following the
treatment of Luttinger and Kohn [2], (2.64) is rewritten as5

5The matrix elements derived by using the expressions of Dresselhaus et al. are equivalent to
the expressions of Luttinger and Kohn except the diagonal elements as discussed before, and the

http://dx.doi.org/10.1007/978-3-319-66860-4_9
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| 3
2 , 3

2 〉 P/2 L M 0 iL/
√

2 −i
√

2M
| 3

2 , 1
2 〉 L∗ P/6 + 2Q/3 0 M −i(P − 2Q)/3

√
2 i

√
3/2L

| 3
2 ,− 1

2 〉 M∗ 0 P/6 + 2Q/3 −L −i
√

3/2L∗ −i(P − 2Q)/3
√

2
| 3

2 ,− 3
2 〉 0 M∗ −L∗ P/2 −i

√
2M∗ −iL∗/

√
2

| 1
2 , 1

2 〉 −iL∗/
√

2 i(P − 2Q)/3
√

2 i
√

3/2L i
√

2M (P + Q)/3 − Δ0 0
| 1

2 ,− 1
2 〉 i

√
2M∗ −i

√
3/2L∗ i(P − 2Q)/3

√
2 iL/

√
2 0 (P + Q)/3 − Δ0

(2.196)

where

P(k) = �
2

2m

[
(A + B)(k2

x + k2
y) + 2Bk2

z

]
, (2.197a)

L(k) = −i
C√

3

�
2

2m
(kx − iky)kz , (2.197b)

Q(k) = �
2

2m

[
B(k2

x + k2
y) + Ak2

z

]
, (2.197c)

M(k) = 1√
12

�
2

2m

[
(A − B)(k2

x − k2
y) − 2iCkxky

]
. (2.197d)

Here A, B, andC are dimensionless constants obtained by dividing the original values
by �

2/2m and Δ0 is spin–orbit splitting at k = 0. Equation (2.196) is called Luttinger
Hamiltonian and Luttinger parameters γ1, γ2 and γ3 given by (2.172a)–(2.172b) are
rewritten as follows by recovering units of � = 1 such as (1/2m)γ1 → (�2/2m)γ1,
and so on,

γ1 = −1

3
(A + 2B) , (2.198a)

γ2 = −1

6
(A − B) , (2.198b)

γ3 = −1

6
C , (2.198c)

or

− A = γ1 + 4γ2 , (2.199a)

−B = γ1 − 2γ2 , (2.199b)

−C = 6γ3 . (2.199c)

It should be noted here that the above parameters are for the electronic states and
that the parameters for the holes of the valence bands are obtained by replacing −A,
−B and −C by A, B and C , respectively.

When the matrix elements are redefined as

P ′ = 1

3
(P + Q) = −γ1

�
2

2m
(k2

x + k2
y + k2

z ) , (2.200a)

(Footnote 5 continued)
corresponding secular equation of Luttinger and Kohn Hamiltonian gives eigenvalue E(k), while
the secular equation of Dresselhaus, Kip and Kittel gives λ = E(k) − �

2k2/2m.
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Q′ = 1

6
(P − 2Q) = −γ2

�
2

2m
(k2

x + k2
y − 2k2

z ) , (2.200b)

L = 2i
√

3γ3
�

2

2m
(kx − iky)kz , (2.200c)

M = −√
3

�
2

2m

[
γ2(k

2
x − k2

y) − 2iγ3kxky
]

, (2.200d)

and then (2.196) is rewritten as

P ′ + Q′ L M 0 iL/
√

2 −i
√

2M

L∗ P ′ − Q′ 0 M −i
√

2Q′ i
√

3/2L

M∗ 0 P ′ − Q′ −L −i
√

3/2L∗ −i
√

2Q′

0 M∗ −L∗ P ′ + Q′ −i
√

2M∗ −iL∗/
√

2

−iL∗/
√

2 i
√

2Q′ i
√

3/2L i
√

2M P ′ − Δ0 0

i
√

2M∗ −i
√

3/2L∗ i
√

2Q′ iL/
√

2 0 P ′ − Δ0

. (2.201)

Here we show in Fig. 2.22 the calculated curves of the valence band structures of
GaAs by the 6 × 6 k · p Luttinger Hamiltonian and the full band calculations based
on 30 × 30 k · p Hamiltonian. We find that the 6 × 6 k · p Hamiltonian gives the
dispersion nerar k � 0, and that a big deviation appears in the full Brillouin zone.
Used parameters for the k · p full band calculations are in Table 1.11 and for the
Luttinger parameters are in Table 2.1.

In order to deal with optical properties of quantum structures such as quantum
wells, quantum dots and so on, we have to solve the electronic states of the con-
duction and the valence bands together. In such cases we have to solve 8 × 8 k · p
Hamiltonian adding two electronic states of the conduction band |Γ2′ ↑〉 and |Γ2′ ↓〉
to the 6 × 6 k · p Hamiltonian (2.196) or (2.201). The eight–band theory has been

Fig. 2.22 Comparison of the
valence band dispersion
between the 30–band k · p
(dotted curves) and 6–band
k · p Luttinger Hamiltonian
(solid curves)

http://dx.doi.org/10.1007/978-3-319-66860-4_1
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Table 2.1 Energy band parameters of Ge, Si, GaAs, InAs, AlAs, and GaP. The parameters γ1, γ2,
and γ3 are the original Luttinger parameters which correspond to the redefined Luttinger parameters
γL

1 , γL
2 , and γL

3 , respectively, and the effective mass m∗ is normalized by the free electron mass m

Parameters Ge Si GaAs InAs AlAs GaP

EΓ
G [eV] 0.8872 4.185 1.519 0.417 3.099 2.886

E X
G [eV] 1.3 1.17 1.981 1.433 2.24 2.35

EL
G [eV] 0.82 n.a. 1.815 1.133 2.46 2.72

Δ0 [eV] 0.297 0.044 0.341 0.39 0.28 0.08

m∗
e (Γ ) n.a. n.a. 0.067 0.026 0.15 0.13

m∗
l (L) 1.57 n. a. 1.90 0.64 1.32 2.0

m∗
t (L) 0.0807 0.19 0.075 0.05 0.15 0.253

m∗
l (X) n.a. 0.916 1.98 1.13 0.97 1.2

m∗
t (X) n.a. 0.19 0.27 0.16 0.22 0.15

γ1 13.35 4.26 6.98 20.0 3.76 4.05

γ2 4.25 0.38 2.06 8.5 0.82 0.49

γ3 5.69 1.56 2.93 9.2 1.42 2.93

EP0 [eV] 26.3 21.6 28.8 21.5 21.1 31.4

F −27.2 −5.14 −17.8 −43.3 −6.62 −10.78

F† (−1.94) (−2.90) (−0.48) (−2.04)

n.a. means the value is not available
F : Estimated from F = −(EP0/3)[2/EG + 1/(EG + Δ0)]
F†: F values in parentheses are recommended by Vurgaftman, Meyer, and Ram-Mohan [27]

reported by Bahder [22], Zhang [23], and Pryor [24]. However, the results in Fig. 2.22
restricts us to use 6 × 6 Luttinger Hamiltonian or extended 8 × 8 k · p Hamiltonian
for analyzing the periodic quantum dots of superlattices, in which Brillouin zone
folding effect plays an important role as discussed in Chap. 8.

2.7 Luttinger Parameters

It should be noted here that the valence band parameters of Luttinger are subject to
reinterpretation because they are determined experimentally and thus all the contri-
butions from the bands are included. If we use the parameters to solve k · p 8 × 8
Luttinger-Hamiltonian, the contribution from the |Γ2′ 〉 conduction band is included
twice. Therefore we have to exclude the contribution form the conduction band.
First, we discuss how to determine the valence band parameters of Luttinger using
the analysis made by Kane [4], Dresselhaus, Kip and Kittel [1], Groves et al. [25]
and Lawaetz [6],

F = − 2

m

∑
j

|〈Γ25′(X)|px |Γ2′, j〉|2
E(Γ2′ , j)

, (2.202a)

http://dx.doi.org/10.1007/978-3-319-66860-4_8
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G = − 2

m

∑
j

|〈Γ25′(X)|px |Γ12′ , j〉|2
E(Γ12′ , j)

, (2.202b)

H1 = − 2

m

∑
j

|〈Γ25′(X)|py|Γ15, j〉|2
E(Γ15, j)

, (2.202c)

H2 = − 2

m

∑
j

|〈Γ25′(X)|py|Γ25, j〉|2
E(Γ25, j)

, (2.202d)

where the valence band edge Γ25′ (Γ8) at k = 0 is taken to be energy zero.6 The
contributions to the parameters L , M , and N of (2.47a) ∼ (2.47c) defined defined by
Dresselhaus, Kip and Kittel [1] from the above four conduction bands are calculated
as follows.

1. Contributions to L (or Lk2
x ) are fromΓ2′ andΓ12′ . The contribution to L (or A) from

|Γ2′ 〉 is evaluated by taking account of the relations 〈X |px |Γ2′ 〉 = 〈Y |py|Γ2′ 〉 =
〈Z |pz|Γ2′ 〉, and thus

− 2

m

〈X |px |Γ2′ 〉〈X |px |Γ2′ 〉
E(Γ2′)

= − 2

m

|〈X |px |Γ2′ 〉|2
E(Γ2′)

= F . (2.203)

The contribution from |Γ12′(1)〉 and |Γ12′(2)〉 is evaluated by using (1.141a) and
(1.141b) or (1.143a) and (1.143b) in Sect. 1.7. In the following we use the notations
|γ−

1 〉 → |Γ12′(1)〉 and |γ−
2 〉 → |Γ12′(2)〉,

− 2

m

∑
j

|〈Γ25′(X)|px |Γ12′ , j〉|2
E(Γ12′ , j)

= − 2

m

|〈Γ25′(X)|px |Γ12′(1)〉|2
E(Γ12′)

− 2

m

|〈Γ25′(X)|px |Γ12′(2)〉|2
E(Γ12′)

= − 2

m

R ∗ R

E(Γ12′)
− 2

m

(−R) ∗ (−R)

E(Γ12′)
= 2G . (2.204)

Therefore the term L is given by

L = �
2

2m
[F + 2G] . (2.205)

6The reason why the upper four conduction bands appear in the matrix elements is understood
from the the selection rules 〈Γ25′ | p|Γl, j 〉, where p is momentum operator and transforms as the
representation Γ15, and Γl, j are upper conduction band states. The direct product is given by using
the character table of Table 1.4

Γ25′ × Γ15 = Γ12′ + Γ15 + Γ2′ + Γ25 ,

and thus only the conduction band states of the four representations on the right hand perturb the
valence band edge.

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
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2. The parameter M (or Mk2
y) is associated with the states Γ15 and Γ25 and we easily

obtain the following results,

H1 = − 2

m

∑
j

|〈X |py|Γ15, j〉|2
E(Γ15)

= − 2

m

|〈X |py|Γ15(z)〉|2
E(Γ15)

, (2.206)

H2 = − 2

m

∑
j

|〈X |py|Γ25, j〉|2
E(Γ25)

= − 2

m

|〈X |py|Γ25(1)〉|2
E(Γ25)

, (2.207)

and then we obtain

M = �
2

2m
[H1 + H2] . (2.208)

3. Finally N (or C) is evaluated as follows. Contribution from Γ2′ to Nkykz :

− 2

m

〈Y |py |Γ2′ 〉〈Γ2′ |pz|Z〉
E(Γ2′)

= − 2

m

|〈Y |py |Γ2′ 〉|2
E(Γ2′)

= F . (2.209)

Contribution from Γ12′ to Nkykz:
∑
j

〈Y |py |Γ12′( j)〉〈Γ12′( j)|pz|Z〉

= 〈Y |py|Γ12′(1)〉〈Γ12′(1)|pz|Z〉 + 〈Y |py|Γ12′(2)〉〈Γ12′(2)|pz|Z〉
= (ωR)(ω†2R) + (−ω2R)(−ω†R) = [ω · ω†2 + ω2 · ω†)R2

= [ω† + ω]R2 = −R2 , (2.210)

and thus contribution from Γ12′ to Nkykz is (see subsection 1.7.3 for R)

− 2

m

|〈Y |py |Γ12′ |2
E(Γ12′)

= −G . (2.211)

Contribution from Γ15 to Nkykz is

− 2

m

|〈Z |py|Γ15(x)〉〈Γ15(x)|pz|Y 〉|
E(Γ15)

= H1 . (2.212)

Contribution ofΓ25 to Nkykz is evaluated using the following symmetry operation.
We define

Γ25,1 = |z(x2 − y2)〉 , (2.213a)

Γ25,2 = |x(y2 − z2)〉 , (2.213b)

Γ25,3 = |y(z2 − x2)〉 , (2.213c)

and the matrix element by

〈X |py|Γ25,1〉 = 〈yz|py |z(x2 − y2)〉 = U. (2.214)

http://dx.doi.org/10.1007/978-3-319-66860-4_1
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Symmetry operations by π/2 along x , y and z give the following relations,

x − axis : 〈X |pz|Γ25,3〉 = −U , (2.215)

y − axis : 〈Z |py|Γ25,2〉 = −U , (2.216)

z − axis : 〈Y |px |Γ25,1〉 = −U . (2.217)

When we define

− 2

m

∑
j

∣∣〈X |py |Γ25, j 〉
∣∣2

E(Γ25, j )
= − 2

m

U ·U
E(Γ25)

= H2 , (2.218)

the contribution of Γ25 to Nkykx is

− 2

m

∑
j

〈X |py|Γ25, j 〉〈Γ25, j |px |Y 〉
E(Γ25, j )

= − 2

m

U · (−U )

E(Γ25)
= −H2 . (2.219)

Therefore the total contribution to N (or C) is found to be

N = �
2

2m
[F − G + H1 − H2] . (2.220)

From these considerations we obtain the following relations for the parameters L ,
M , N of Dresselhaus, Kip, and Kittel,

L = �
2

2m
[F + 2G] , (2.221)

M = �
2

2m
[H1 + H2] , (2.222)

N = �
2

2m
[F − G + H1 − H2] , (2.223)

and thus the parameters A, B, and C of Luttinger are given by

A = �
2

2m
[1 + F + 2G] , (2.224)

B = �
2

2m
[1 + H1 + H2] , (2.225)

C = �
2

2m
[F − G + H1 − H2] . (2.226)

Neglecting the spin–orbit splitting of |Γ15〉 conduction band states, the Luttinger
valence band parameters are given by Groves et al. [25] and Lawaetz [6], which are
obtained by putting (2.224)–(2.226) into (2.198a)–(2.198c) as follows,

γ1 = −1

3
(F + 2G + 2H1 + 2H2) − 1 , (2.227a)

γ2 = −1

6
(F + 2G − H1 − H2) , (2.227b)
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γ3 = −1

6
(F − G + H1 − H2) . (2.227c)

These Luttinger parameters are modified by the parameter q when the spin–orbit
splitting Δ15 of the Γ15 conduction band states is taken account [25, 26]. Including
the term κ which represents the magnetic filed effect in the Luttinger Hamiltonian,
the Luttinger parameters are then given by

γ1 = −1

3
(F + 2G + 2H1 + 2H2) − 1 + 1

2
q , (2.228a)

γ2 = −1

6
(F + 2G − H1 − H2) − 1

2
q , (2.228b)

γ3 = −1

6
(F − G + H1 − H2) + 1

2
q . (2.228c)

κ = −1

6
(F − G − H1 + H2) − 1

3
− 9

2
q , (2.228d)

where

q � −2

9

H1

E(Γ15)
Δ15 . (2.229)

Usually the Luttinger parameters are determined from the experimental data and
the energy values of EG = Ec(Γ2′) − Ev(Γ25′) ≡ E0 and Ec(Γ15) − Ev(Γ25′) = E ′

0 are
known from optical spectroscopies, and contributions from higher lying bands may
be neglected because of the larger energy denominators E j . Then the following two
terms are taken into account (note the difference between EP0 and Ep as stated in
(2.90)),

EP0 = 2

m
|〈Γ25′(X)|px |Γ2′ 〉|2 = 2

m
P2

0 , (2.230a)

EP1 = 2

m
|〈Γ25′(X)|py|Γ15(z)〉|2 , (2.230b)

and we obtain

F = −EP0

EG , H1 = −EP1

E1
, (2.231)

where the spin–orbit interaction is neglected. When the spin–orbit interaction is
included, the matrix element F between the conduction band |Γ2′, j〉 and the valence
bands |Γ25′ 〉 should be modified. Taking account of the lowest conduction band |Γ2′ 〉
only and of the 6 valence band states | 3

2 ,± 3
2 〉, | 3

2 ,± 1
2 〉, and | 1

2 ,± 1
2 〉, F is evaluated,

for the spin–conserved matrix elements, as follows;

F = 2

m

∑
j

|〈Γ25′(X)|px |Γ2′ 〉|2
E(Γ25′) − E(Γ2′ , j)

,

= −EP0

3

[
2

EG + 1

EG + Δ0

]
. (2.232)
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Since the 8 × 8 k · p Hamiltonian includes the coupling between the conduction
band |Γ2′ 〉 and the valence bands |Γ25′ 〉, we have to exclude the contributions from
the conduction band |Γ2′ 〉, the term F . Therefore the Luttinger parameters γ1, γ2,
and γ3 should be modified. We redefine the Luttinger parameters as γL

1 , γL
2 , and γL

3
and the new valence band parameters γ1, γ2, and γ3 are given by

γ1 = γL
1 −

(
−1

3
F

)
, (2.233a)

γ2 = γL
2 −

(
−1

6
F

)
, (2.233b)

γ3 = γL
3 −

(
−1

6
F

)
, (2.233c)

and then we obtain

γ1 = γL
1 − 1

3
· EP0

3

[
2

EG + 1

EG + Δ0

]
, (2.234a)

γ2 = γL
2 − 1

6
· EP0

3

[
2

EG + 1

EG + Δ0

]
, (2.234b)

γ3 = γL
3 − 1

6
· EP0

3

[
2

EG + 1

EG + Δ0

]
, (2.234c)

where EG = Ec − Ev is the energy gap and Δ0 is the spin–orbit splitting.7 For more
detailed discussion see the [1, 6, 16, 24]. It should be noted here that the hole
effective masses of the valence bands are evaluated by using the original Luttinger
parameters γL

1 , γL
2 , and γL

3 , while the eigenstates and eigenvalues of the 8 × 8 k · p
Hamiltonian matrix are obtained by using new Luttinger parameters γ1, γ2, and γ3.
The new values of the Luttinger parameters are calculated by (2.234a) ∼ (2.234c),
but the reported values of F have not yet settled. Pigeon and Brown [16] reported that
the experimental data of the inter band magneto-absorption are well explained by
putting F = 0 for InSb. They used EP0 = 10.96 [eV], EG = 0.2355 [eV], Δ0 = 0.9
[eV], γL

1 = 32.5, γL
2 = 14.3, and γL

3 = 15.4, and they found a good over–all fit of
the magneto-absorption spectra in InSb by putting F = 0. From their data we obtain
F = −34.5 (F/3 = −11.5) and the correction factor F/3 is not negligible. Vurgaft-
man, Meyer, and Ram-Mohan [27] recommend to use EP0 = 23.3 [eV], EG = 0.235
[eV], Δ0 = 0.81 [eV], γL

1 = 34.8, γL
2 = 15.5, γL

3 = 16.5 and F = −0.23 for InSb.
Also they recommend F = −1.94 for GaAs which is about 1/10 of the calculated
value from F = −(EP0/3)[2/EG + 1/(EG + Δ0)] = −17.8. The band parameters
of several semiconductors are summarized in Table 2.1.

7Equations (2.179a) ∼ (2.179c) are obtained by neglecting the spin–orbit splitting, or by putting
Δ0 = 0 in (2.234a) ∼ (2.234c).
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It is well known that the effective masses in III-V semiconductors may be esti-
mated by the relation (2.84), which is rewritten as

m

m∗
0

= 1 + EP0

3

[
2

EG
+ 1

EG + Δ0

]
= 1 − F . (2.235)

However more accurate values are evaluated by taking account of the contribution
from higher lying conduction bands, Γ c

8 and Γ c
7 (which are relate to the single group

representation Γ c
15), and expressed by the following relation [6, 15, 28]

m

m∗
0

= 1 − F − H1 + F ′ , (2.236a)

H1 = − 2

m

P2
1

3

[
2

E(Γ c
8 )

+ 1

E(Γ c
7 ) + Δ15

]
, (2.236b)

where E(Γ c
8 ) and E(Γ c

7 ) are the energies of the conduction bands (related to the
higher lying Γ15 conduction bands in the single group expression) measured from the
valence band top Γ v

8 and Δ15 is the spin–orbit splitting of the bands. The momentum
matrix element P1 is defined by Q = 2P1 in (1.135b) of Chap. 1 and the values are
given in Tables 1.9 and 1.11. Observed effective mass of the lowest conduction band
is known to be well expressed by the above relation with F ′ � −2. [6, 15, 28]

2.8 Problems

(2.1) Estimate the magnetic field strength to observe cyclotron resonance for
microwave frequency 24 GHz for (1) effective mass m2 = 0.3 m (for Si and
Ge) and (2)m∗ = 0.067 m (for GaAs). (3) Discuss the experimental conditions
of the cyclotron resonance for the case of (1) and (2).

(2.2) Prove the commutation relation (2.100)

A · p − p · A = i�∇ · A = 0 ,

(2.3) Assume a non–parabolic conduction band and show what kind of dispersion
relation of the conduction band is expected when the band gap approaches
zero.

(2.4) Figures 2.4 and 2.5 show the cyclotron masses for heavy and light holes in Ge
and Si as a function of applied magnetic field. Heavy holes exhibit maximum
in the magnetic field direction [1, 1, 1], while the light hole cyclotron mass is
minimum. Explain the behaviour by using the constant energy contour of the
valence bands in Fig. 2.13.

(2.5) Estimate electron effective mass m∗
0 and effective g∗

0 factor of InAs using
the following parameters. EG = 0.417 [eV], Δ0 = 0.39 [eV], EP0 = 21.5
[eV], E1 = 4.44 [eV], Δ15 = 0.16 [eV], EP1 = EP0/4 = 5.375 [eV], andC ′ =
−0.02. Experimental values are m∗ = 0.024 m and g = −14.7 sin −17.5.

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
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(2.6) Calculate the matrix element of spin–orbit interaction 〈u−α|L · σ|u−α〉
(2.7) Calculate the density of states in (1) parabolic conduction band (2.85) and (2)

non–parabolic band given by (2.158).
(2.8) When magnetic field is [0, 0, B], show the corresponding vector potential A is

given by [0, Bx, 0]. This representation is called Landau gauge. List the other
representations.
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Chapter 3
Wannier Function and Effective Mass
Approximation

Abstract Effective–mass equation is very useful to understand the transport and
optical properties of semiconductors. In this chapter the effective–mass equation is
derived with the help of Wannier function. Using Schrödinger equation based on
the effective–mass approximation, we discuss the shallow impurity levels of donors
in Ge and Si. Transport properties of electrons and holes are interpreted in terms
of the effective mass in the classical mechanics (Newton equation). In this chapter
the group velocity (the expectation value of the velocity) is shown to be given by
〈v〉 = (1/�)∂E/∂k in a periodic crystal potential. In the presence of an external force
F, an electron is accelerated in k space in the form of �∂k/∂t = F. The electron
motion is then expressed in the classical picture of a particle with the effective mass
m∗ or 1/m∗ = (1/�

2)∂2E/∂k2 and the momentum p = �k = m∗〈v〉. The results are
used to derive transport properties in Chap.6.

3.1 Wannier Function

There have been reported several methods to derive the effective–mass equation. In
this chapter we use theWannier function approach to derive the effective–mass equa-
tion because of its importance in semiconductor physics. However, in this chapter a
simplest case will be dealt with, where only a single band is taken into account. For
this purpose we begin with the introduction of the Wannier function showing that it
is localized at the lattice point and that the Wannier function is obtained from the
Bloch function by the Fourier transform.

When the Bloch function of a energy band n is defined by bkn(r), the Wannier
functionwn(r − R j ) is derived from the Bloch function by the Fourier transform [1]:

wn(r − R j ) = 1√
N

∑

k

exp(−ik · R j )bkn(r) , (3.1)

where N is the number of atoms and R j is the position of j th atom. We have shown
in Chap.1 that the Bloch function extends over the crystal. On the other hand, the

© Springer International Publishing AG 2017
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Wannier function is localized at the atom, as shown later. Here we will investigate
the features of the Wannier function.

First, we will show the Bloch function can be expanded in Wannier functions:

bkn(r) = 1√
N

∑

j

exp(ik · R j ) · wn(r − R j ) . (3.2)

We find that this expansion is just the inverse transform of the Wannier function
given by (3.1) and it is easily proved as follows. Inserting (3.1) in (3.2) we obtain

bkn(r) = 1√
N

∑

j

exp(ik · R j )
1√
N

∑

k′
exp(−ik′ · R j )bk′n(r)

= 1

N

∑

jk′
exp

{
i(k − k′) · R j

}
bk′n(r) ≡ bkn(r) . (3.3)

The final result of the above equation is obtained by using (A.29) of Appendix A.2:

∑

j

exp
{
i(k − k′) · R j

} = Nδk,k′ . (3.4)

Next, we show the orthonormal property ofWannier functions that Wannier func-
tions associated with different atoms are orthogonal and that Wannier functions of
different energy bands are diagonal.

∫
w∗

n′(r − R j ′)wn(r − R j )d
3r

= 1

N

∑

k,k′

∫
d3r exp(ik′ · R j ′ − ik · R j )b

∗
k′n′(r)bkn(r)

= 1

N

∑

k,k′
exp(ik′ · R j ′ − ik · R j )

∫
b∗
k′n′(r)bkn(r)d3r

= 1

N

∑

k

exp
{
ik · (R j ′ − R j )

}
δn,n′ = δ j, j ′δn,n′ , (3.5)

and thus it is proved that Wannier functions are orthonormal.
Let us examine the localization characteristics of the Wannier function wn(r −

R j ) at each lattice point R j . As shown inChap.1 theBloch functions are not localized
in the crystal. For simplicity we assume that the Bloch function is approximated as

bkn(r) = u0n(r) exp(ik · r) (3.6)

and that the term u0n(r) is independent of k. This approximation is understood to
be quite reasonable because the electronic states are well described by the Bloch
function at the band edge as shown in the k · p perturbation method of Sect. 1.7.
Under this assumption the Wannier function is approximated as

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
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wn(r − R j ) = 1√
N
u0n(r)

∑

k

exp
{
ik · (r − R j )

}
. (3.7)

As given by (A.22) and (A.23) in Appendix A.2 the following relation is easily
obtained:

∑

k

eik·(r−R j ) = L3δ(r − R j ), (3.8)

1

L3

∫
d3rei(k−k′)·r = δk,k′ , (3.9)

where δ(r − r ′) is the Dirac delta function and δk,k′ is the Kronecker delta function.
Using this result the Wannier function is written as

wn(r − R j ) = 1√
N
u0n(r)L3δ(r − R j ) , (3.10)

and therefore we find that the Wannier function is localized at the lattice point R j .

3.2 Effective-Mass Approximation

Here we will derive of the effective–mass approximation which may be applied to
a wide variety of calculations of the electronic properties of semiconductors, for
example shallow impurity states, transport, optical properties and so on. Here we
assume that the perturbing potential H1(r) varies very slowly compared with the
lattice constant a. This assumption allows us to simplify the effective–mass equation
based on a single band. The Schrödinger equation for the one-electron Hamiltonian
is written as

[H0 + H1(r)]Ψ (r) = E · Ψ (r) , (3.11)

where

H0 = p2

2m
+ V (r) , (3.12)

and we will show that the solution of above equation is given by the solution

[
− �

2

2m∗ ∇2 + H1(r)
]
F(r) = E · F(r) , (3.13)

wherem∗ is the effective–mass of the electronwe are concernedwith. In the following
we assume the effective–mass is given by a scalar effective–mass for simplicity.
Therefore, the energy of the electron E is assumed to be expressed by the wave
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vector k:

E0(k) = �
2k2

2m∗ . (3.14)

Equation (3.13) is called the effective–mass equation and this approximation is
called the effective–mass approximation. The reasonwhywe call this the effective–
mass approximation is quite clear. The Schrödinger equation (3.11) with the Hamil-
tonian of (3.12) is expressed in a simple Schrödinger equation by replacing the
Hamiltonian of (3.12) by −(�2/2m∗)∇2, where the potential disappears and m is
replaced by m∗. The derivation of the effective–mass equation will be shown later.

First, we calculate the eigenfunctionΨ (r) of (3.11). Since theWannier function is
expressed by the Fourier transform of theBloch functions and thusWannier functions
have orthonormality and completeness, any function may be expanded by Wannier
functions:

Ψ (r) =
∑

n

∑

j

Fn(R j )wn(r − R j ) . (3.15)

In the following we consider a specific band and neglect the band index n of the
subscript.

In the absence of perturbation the Schrödinger equation is expressed in terms of
the Bloch functions bkn(r) as

H0bk(r) = E0(k)bk(r) . (3.16)

Inserting

Ψ (r) =
∑

j ′
F(R j ′)w(r − R j ′) (3.17)

into (3.11), multiplying w∗(r − R j ) on both sides and integrating over the crystal
volume we obtain

∫ ∑

j ′
w∗(r − R j )H0F(R j ′)w(r − R j ′)d

3r

+
∫ ∑

j ′
w∗(r − R j )H1F(R j ′)w(r − R j ′)d

3r

=
∫

E
∑

j ′
w∗(r − R j )F(R j ′)w(r − R j ′)d

3r . (3.18)

When we define the following relations
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(H0) j j ′ =
∫

w∗(r − R j )H0w(r − R j ′)d
3r , (3.19)

(H1) j j ′ =
∫

w∗(r − R j )H1w(r − R j ′)d
3r , (3.20)

(3.18) is rewritten as

∑

j ′
(H0) j j ′ · F(R j ′) +

∑

j ′
(H1) j j ′ · F(R j ′) = E · F(R j ) . (3.21)

The right-hand side of the above equation is rewritten with the help of (3.5). Since we
assume that the perturbing potential varies very slowly, the following approximation
is possible. From the properties of theWannier function,w∗(r − R j ) andw(r − R j ′)

are localized at R j and R j ′ , respectively, and thus only the overlapping part ofw∗(r −
R j ) and w(r − R j ′) will contribute to the integration of (3.20). The integration
arising from small values of (R j − R j ′) or the integration over the nearest neighbor
will contribute. In a more simplified approximation only the contribution from R j =
R j ′ may be taken into account. In this approximation the summation of (3.20) over
j ′ results in

∑

j ′
(H1) j j ′ � H1(R j )

∫
w∗(r − R j )w(r − R j )d

3r = H1(R j ) . (3.22)

It is evident from (3.20) that (H0) j j ′ is a function of (R j − R j ′), which is shown by
using the Wannier function as follows. H0 is independent of the translation vector
R. Therefore, replacing r − R j with r we find

(H0) j j ′ =
∫

w∗(r)H0w(r − R j ′ + R j )d
3r ≡ h0(R j − R j ′) . (3.23)

Using these results (3.21) is rewritten as the following set of equations:

∑

j ′
h0(R j − R j ′)F(R j ′) + H1(R j )F(R j ) = E · F(R j ) . (3.24)

Exchanging the order of the summation of the first term on the left-hand side of the
above equation, (R j − R j ′) → R j ′ , we obtain the following result:

∑

j ′
h0(R j ′)F(R j − R j ′) + H1(R j )F(R j ) = E · F(R j ) . (3.25)

Equation (3.12) gives the relation

E0(k) =
∫

b∗
k(r)H0bk(r)d3r (3.26)
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and it may be rewritten as follows by using (3.2), which is an expansion of the Bloch
function in Wannier functions:

E0(k) = 1

N

∑

j

∑

j ′
exp[−ik · (R j − R j ′)](H0) j j ′

= 1

N

∑

j

∑

j ′
exp[−ik · (R j − R j ′)]h0(R j − R j ′) . (3.27)

It is very important to point out that R j and R j ′ give a combination of the same lat-
tices. Therefore, the summation of R j with respect to j gives the same value for dif-
ferent R j ′ . In other words, the summation is exactly the same for j ′ = 1, 2, 3, . . . , N .
This will lead us to obtain the equation:

E0(k) = 1

N

∑

j

N exp(−ik · R j )h0(R j ) =
∑

j

exp(−ik · R j )h0(R j ) . (3.28)

The resultmay be understood as follows. The energy bandE0(k) is a periodic function
in k space and the period is the lattice vectors R j ; therefore, E0(k) can be expanded
by the lattice vector R j . In addition, the Fourier coefficient h0(R j ) of the expansion
is given by

h0(R j ) = 1

N

∑

k

E0(k) exp(ik · R j ) . (3.29)

Next, let us consider a function F(r − R j ) and apply the Taylor expansion to it at
the position r , which gives rise to the following result in the case of a one–dimensional
crystal:

F(r − R j ) = F(r) − R j
d

dr
F(r) + 1

2! (R j )
2 d2

dr2
F(r) − · · · . (3.30)

In the case of a three-dimensional crystal the function F(r − R j ) is expanded as

F(r − R j ) = F(r) − R j · ∇F(r) + 1

2! (R j · ∇)[R j · ∇F(r)] − · · ·
= exp(−R j · ∇)F(r) , (3.31)

and therefore we obtain

∑

j ′
h0(R j ′)F(r − R j ′) =

∑

j ′
h0(R j ′) exp(−R j ′ · ∇)F(r) . (3.32)

On the other hand, when (3.28) is multiplied by F(r) on the both sides, we find

E0(k)F(r) =
∑

j ′
h0(R j ′) exp(−ik · R j ′)F(r) . (3.33)
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Now, let us compare (3.32) with (3.33), we find that a replacement of k with −i∇
in (3.33) gives exactly the same result as in the right-hand side of (3.32). Therefore,
the following relation may be obtained:

∑

j ′
h0(R j ′)F(r − R j ′) = E(−i∇)F(r) . (3.34)

Using this result and replacing R j by r , (3.25) becomes

∑

j ′
h0(R j ′)F(r − R j ′) + H1(R j )F(r) = E · F(r) (3.35)

and may be rewritten as

E0(−i∇)F(r) + H1(r)F(r) = E · F(r) . (3.36)

Or it is possible to rewrite it in the following form:

[E0(−i∇) + H1(r)] F(r) = E · F(r) , (3.37)

which is called the effective–mass equation. This kind of approximation is called
the effective–mass approximation. We have to note here that the function F(r)
given by (3.37) is an envelope function and that the Fourier coefficients F(R j ) of
the wave function Ψ (r) expanded in Wannier functions are given by F(R j ), which
may be obtained by replacing r of the envelope function F(r) by R j . Now we find
that the envelope function F(r) should be a slowly varying function of r . In other
words the coefficient F(R j ) should vary very slowly over the distance of the lattice
spacing (R j+1 − R j ).

E0(k) is the electronic energy as a function of the wave vector without the per-
turbing potential H1, and thus it gives the energy band of the electron. For simplicity
we assume that the energy band is given by a spherical parabolic band with isotropic
effective mass m∗:

E0(k) = �
2k2

2m∗ . (3.38)

The effective–mass equation is therefore given by

[
− �

2

2m∗ ∇2 + H1(r)
]
F(r) = E · F(r) . (3.39)

When we compare (3.11) with (3.39), we find the following features. The periodic
potential V (r) of (3.11) disappears and the free electron mass m is replaced by
the effective–mass m∗. The effective–mass equation is named after these features.
As stated before, various properties of semiconductors are calculated by using the
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effective–mass equation. This means that the determination of the effective–mass is
very important. We have to note that the effective mass equation or effective–mass
approximation is derived by different approaches [2] and that one of the methods is
shown in the analysis of excitons given in Sect. 4.5.

3.3 Shallow Impurity Levels

One of the best examples of the applications of the effective–mass approximation is
the analysis of donor levels in semiconductors. First, we deal with the donor level
associated with a conduction band expressed by a scalar effective–mass m∗. Under
this assumption the effective–mass equation is given by

[
− �

2

2m∗ ∇2 − e2

4πκε0r

]
F(r) = E · F(r) . (3.40)

Careful observation of the above equation reveals that it is equivalent to the
Schrödinger equation used to derive the electronic states of a hydrogen atom. The
above equation is from the Schrödinger equation of the hydrogen atom, replac-
ing the free electron mass m by m∗ and the dielectric constant of free space by the
dielectric constant of the semiconductor κε0 = ε. Therefore, the ground state energy
E and the effective Bohr radius aI of the donor are

E = − m∗e4

2(4πε)2�2
= − m∗/m

(ε/ε0)2
ER (3.41)

ER = me4

2(4πε0)2�2
(3.42)

aI = 4π�
2ε

m∗e2
= ε/ε0

m∗/m
aB , (3.43)

whereER is the ionization energy of the hydrogen atom (ER = 1Rydberg = 13.6eV).
Let us try to estimate the ionization energy of a donor by assuming the effective–

mass m∗ = 0.25m and the relative dielectric constant ε/ε0 = 16. We obtain the
ionization energy of donor as 0.013eV, which is very close to the ionization energy
observed in Ge. We have already shown in Chaps. 1 and 2 that the conduction band
minima of Ge and Si are located at the L and the Δ points near the X point in the
Brillouin zone, respectively, and that they consist of multiple valleys with anisotropic
effective–masses. Therefore, the above simplified analysis cannot be applied to the
case of donors in Ge and Si. In addition we have to note that the donor levels in many-
valley semiconductors are degenerate due to the multiple conduction band minima.
First, we neglect the degeneracy to analyze the donor levels of Ge and Si, and later
we deal with the degeneracy.

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Let us consider a conduction band with an ellipsoidal energy surface and take
the z direction to be along the longitudinal axis of the ellipsoid. When we measure
the energy with respect to the bottom of the conduction band at k0 and define the
effective–masses along the longitudinal axis as m l and the transverse axis as m t , we
may write the energy band as

Ec(k) = �
2

2

(
k2x + k2y
m t

+ k2z
m l

)
. (3.44)

Therefore, the effective–mass equation for donor levels associated with the conduc-
tion band becomes

[
− �

2

2m t

(
∂2

∂x2
+ ∂2

∂y2

)
− �

2

2m l

∂2

∂z2

− e2

4πε(x2 + y2 + z2)1/2

]
ψ(r) = E · ψ(r) , (3.45)

where ε is the dielectric constant of the semiconductor. Defining the effective–mass
ratio

γ = m t

m l
(< 1) (3.46)

and rewriting (3.45) using cylindrical coordinates we obtain
[
− �

2

2m t

(
1

r

∂

∂r
r

∂

∂r
+ 1

r2
∂2

∂ϕ2
+ γ

∂2

∂z2

)

− e2

4πε(r2 + z2)1/2

]
ψ(r) = E · ψ(r) . (3.47)

The effective–mass Hamiltonian is then written as

H = − �
2

2m t

(
1

r

∂

∂r
r

∂

∂r
+ 1

r2
∂2

∂ϕ2
+ γ

∂2

∂z2

)
− e2

4πε(r2 + z2)1/2
. (3.48)

It is impossible to solve (3.47) analytically. Therefore, we adopt the variational
principle to obtain approximate solutions. In order to obtain the ground state level
of the donor we use the following trial function for the state [3–5]:

ψ = (πa2b)−1/2 exp

[
−
(
r2

a2
+ z2

b2

)1/2
]

, (3.49)

where a > b and ψ is normalized such that 〈ψ|ψ〉 = 1. We use the following trans-
form of the variables to obtain 〈ψ|H|ψ〉:
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r = au cos v ,

z = bu sin v ,∫

V
d3r = 2π

∫ +∞

0
rdr

∫ +∞

−∞
dz

= 2π
∫ +∞

0

∫ +π/2

−π/2
abu2 cos v dy du .

Then the ground state of the donor is given by

E = 〈ψ∗|H|ψ〉
= − �

2

2m t

∫ +∞

0

∫ +π/2

−π/2

{(
cos2 v

a2
+ γ

sin2 v

b2

)
(u−1 + 1)

−
(

2

a2
+ γ

b2

)
u−1 + 2

aI (a2 cos2 v + b2 sin2 v)1/2
u−1

}

×e−2u2u2 cos v dv du

= − �
2

2m t

[
− 2

3a2
− γ

3b2
+ 2

aI
√
a2 − b2

sin−1

√
a2 − b2

a2

]
. (3.50)

The variational principle is used to minimize E in (3.50) by varying the parameters
a and b. To do this we introduce another transform of the variables by

ρ2 = a2 − b2

a2
, (0 < ρ2 < 1) , (3.51)

and eliminate b to obtain

E = − �
2

2m t

[
− 2(1 − ρ2) + γ

3a3(1 − ρ − 2)
+ 2 sin−1 ρ

ρaaI

]
. (3.52)

The value of a to minimize the above equation is easily deduced and is given by

a = ρ[2(1 − ρ2) + γ]
3(1 − ρ2) sin−1 ρ

aI . (3.53)

Inserting this value of a into (3.50) we obtain the ground state energy:

E = 3(1 − ρ2)(sin−1 ρ)2

ρ2[2(1 − ρ2) + γ] EI . (3.54)

where

EI = − m te4

2�2(4πε)2

= −m t

m

(ε0

ε

)2
ER (ER = 13.6 eV = 1 Rydberg) . (3.55)
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Fig. 3.1 Ionization energy
of a donor calculated from
the effective–mass equation
and by the variational
principle plotted as a
function of the
effective–mass ratio
γ = mt/ml

γ

εε
From this expressionwe find that EI is the ground state energy of the donor associated
with a conduction band of a semiconductor with the transverse effective–mass m t

and dielectric constant ε. The ionization energy of the donor may be obtained from
the value of ρ to minimize (3.54) for an arbitrary value of γ = m t/m l. However,
the value to minimize (3.54) may not be obtained analytically, and thus we used a
numerical analysis. The results are shown in Fig. 3.1.

3.4 Impurity Levels in Ge and Si

The parameters used for the calculations of the impurity levels in Ge and Si are
summarized in Table3.1 and the results obtained by the variational principle are
shown in Table3.2, where the ionization energies are 9.05meV for Ge and 29.0meV
for Si. The experimentally observed ionization energies (summarized in Table3.3)
are about 10meV for Ge, in good agreement with the calculation, and about 45meV
for Si, not in good agreement with the calculation. The good agreement is understood
from the large value of the effective Bohr radius in Ge and thus the impurity potential
varies slowly comparedwith the lattice constant, leading to a good condition to use the
effective–mass approximation. On the other hand, the effective Bohr radius for Si is
smaller and the effectivemass approximation seems to be invalid for the calculation of
the ground states in Si. The discrepancy between the calculation and the experimental
values may arise from the neglect of the degeneracy of the conduction band minima
in addition to the validity of the effective–mass approximation. We will discuss these
two factors in the following.

We may expect that the excited states of an impurity give a good agreement
between the calculation and the experiment. This is because the wave functions of
the excited states extend over spacemore than the ground state, and thus the effective–
mass approximation becomes more accurate for the excited states. In order to check
the validity of the effective–mass equation for the excited states we calculate the
excited states using the trial functions shown in Table3.4.
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Table 3.1 Parameters used to calculate the donor levels of Ge and Si. The parameters are given in
dimensionless units

mt/m ml/m γ ε/ε0

Ge 0.082 1.58 0.0519 16.0

Si 0.190 0.98 0.1939 11.9

Table 3.2 Ground state energies of donors in Ge and Si calculated by the effective–mass approxi-
mation and the variational principle

−EI
[meV]

−E/EI (−E)

[meV]
aI
[Å]

a/aI (a)

[Å]
b/aI (b)

[Å]

Ge 4.36 2.08 (9.05) 103.2 0.622 (64.2) 0.221 (22.8)

Si 18.3 1.59 (29.0) 33.14 0.740 (24.5) 0.415 (13.8)

Table 3.3 The ionization energies E0 (meV) of various donors in Ge and Si determined by exper-
iments

Li P As Sb Bi

Si 33 45 49 39 69

Ge 12.0 12.7 9.6

Table 3.4 Trial functions for calculating the excited states of donors by the variational method

States Variational functions

1s (πa2b)−1/2 exp

[
−
( r2

a2
+ z2

b2

)1/2]

2s (C1 + C2r
2 + C3z

2) exp

[
−
( r2

a2
+ z2

b2

)1/2]

2p0 Cz exp

[
−
( r2

a2
+ z2

b2

)1/2]

2p±1 Cr exp

[
−
( r2

a2
+ z2

b2

)1/2]
exp(±iφ)

3p0 (C1 + C2r
2 + C3z

2)z exp

[
−
( r2

a2
+ z2

b2

)1/2]

3p±1 (C1 + C2r
2 + C3z

2)r exp

[
−
( r2

a2
+ z2

b2

)1/2]
exp(±iφ)

Using the parameters given in Table3.4 and the variational method, the excited
states of donors in Ge and Si are calculated and are summarized in Table3.5. As
stated above the discrepancy between theory and experiment is considerable for
the ground state in Si. We compare the calculations based on the effective–mass
approximation with the experimental data in Si, which is shown in Table3.6 and
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Table 3.5 Ground state and excited states levels of the donors in Ge and Si

States Si Ge

1s −29 ± 1 −9.2 ± 0.2

2p, m = 0 −10.9 ± 0.2 −4.5 ± 0.2

2s −8.8 ± 0.6

2p, m = ±1 −5.9 ± 0.1 −1.60 ± 0.03

3p, m = 0 −5.7 ± 0.6 −2.35 ± 0.2

3p, m = ±1 −2.9 ± 0.05 −0.85 ± 0.05

Table 3.6 Experimental values of the ground state and the excited state levels of various donors
(P, As and Sb) in Si (meV) and the calculated values by the effective–mass approximation (shown
by EMA)

Impurities Ground state Excited states

P 45 10.5 5.5 2.4 0.4

As 53 10.9 5.6 2.4 0.1

Sb 43 11.2 6.5 3.1

EMA 29 10.9 5.9 2.9

Fig. 3.2 Experimental
values of the donor levels of
P, As and Sb compared with
the calculated values by the
effective–mass
approximation (EMA)

–

–

–

–

–

in Fig. 3.2. Although the ground state level does not show a good agreement, the
excited states show reasonable agreement between the experiment and calculation.
This suggests us the validity of the effective–mass approximation, giving rise to a
good agreement for the excited states.

From these considerations wemay conclude that the excited states of donors in Ge
and Si are well described by the effective–mass approximation. In order to discuss
the ground state we have to take into account the degeneracy of the conduction band
minima (many valleys), valley–orbit interaction. and later the method for improving
the calculation for the ground state (central cell correction) [6].
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3.4.1 Valley–Orbit Interaction

As an example we discuss the valley–orbit interaction in Si, which has six equiv-
alent valleys located at the Δ point in the 〈100〉 direction of Brillouin zone. The
eigenfunctions of these six valleys are described by

ψ(i)(r) =
6∑

j=1

αi
j Fj (r)u j (r) exp(ik0 j · r) , (i = 1, . . . , 6) (3.56)

where j = 1, 2 . . . , 6 are the indices for the conduction band minima of six valleys
at (±k0, 0, 0), (0,±k0, 0) and (0, 0,±k0), and u j (r) exp(ik0 j · r) and Fj (r) are the
Bloch function of the j th conduction band and the H atom-like envelope function
determined from the effective–mass approximation, respectively. The linear combi-
nation of the wave functions is factorized with the help of group theory to give an
irreducible representation, and the coefficients of the irreducible representation, αi

j ,
are then given by

α1
j : 1/√6(1, 1, 1, 1, 1, 1) (A1)

α2
j : 1/2(1, 1,−1,−1, 0, 0)

α3
j : 1/2(1, 1, 0, 0,−1,−1)

}
(E) (3.57)

α4
j : 1/√2(1,−1, 0, 0, 0, 0)

α5
j : 1/√2(0, 0, 1,−1, 0, 0)

α6
j : 1/√2(0, 0, 0, 0, 1,−1)

⎫
⎪⎪⎬

⎪⎪⎭
(T1)

It may be expected from the above equation that the ground state of a donor in
Si splits into three groups due to the valley–orbit interaction: singlet, doublet and
triplet. The matrix elements of the Hamiltonian Hvo for the valley–orbit interaction
are then described as the following for the wave functions Fj (r) ( j = 1, 2, . . . 6) by
introducing a parameter 〈Fi (r) exp[i(k0i − k0 j ) · r]|Hvo|Fj (r)〉 = −Δ [7, 8]:

〈i |Hvo| j〉 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 −Δ −Δ −Δ −Δ −Δ

−Δ 0 −Δ −Δ −Δ −Δ

−Δ −Δ 0 −Δ −Δ −Δ

−Δ −Δ −Δ 0 −Δ −Δ

−Δ −Δ −Δ −Δ 0 −Δ

−Δ −Δ −Δ −Δ −Δ 0

∣∣∣∣∣∣∣∣∣∣∣∣

. (3.58)

Diagonalization of (3.58) gives rise to a single state with energy 5Δ and a 5–fold
degenerate state with energy −Δ. The single state corresponds to the singlet state
given by (3.58), and the 5–fold degenerate state to the doublet and triplet states of
(3.58). The splitting of the doublet and triplet states is due to the difference in the
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valley–orbit interaction between the sets of the valleys. The valley-orbit interac-
tion between the valleys such as (±k0, 0, 0) (g–type) and between the sets such as
(k0, 0, 0) and (0, k0, 0) (f–type) are expected to be different. When we take account
of the difference and assume the interaction for the g–type as (1 + δ)Δ, the matrix
elements are rewritten as∣∣∣∣∣∣∣∣∣∣∣∣

0 −(1 + δ)Δ −Δ −Δ −Δ −Δ

−(1 + δ)Δ 0 −Δ −Δ −Δ −Δ

−Δ −Δ 0 −(1 + δ)Δ −Δ −Δ

−Δ −Δ −(1 + δ)Δ 0 −Δ −Δ

−Δ −Δ −Δ −Δ 0 −(1 + δ)Δ
−Δ −Δ −Δ −Δ −(1 + δ)Δ 0

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

−5Δ − δΔ 0 0 0 0 0
0 Δ − δΔ 0 0 0 0
0 0 Δ − δΔ 0 0 0
0 0 0 Δ + δΔ 0 0
0 0 0 0 Δ + δΔ 0
0 0 0 0 0 Δ + δΔ

∣∣∣∣∣∣∣∣∣∣∣∣

. (3.59)

From (3.59) we obtain the following results for the ground states, where we have
assumed that the singlet state A1 is the ground state:

E(A1) = 0 (singlet),
E(E) = 6Δ (doublet),
E(T1) = 6Δ + 2δΔ (triplet) ,

(3.60)

where we find that the valley–orbit interaction results in the splitting of the 1s ground
state in three groups. From the analysis by infrared spectroscopy of the donors P, As
and Sb in Si, the binding energies of the 1s states are given by the values listed in
Table3.7 [9]. From the analysis of the intensity of infrared absorption of P donors in
Si, the valley–orbit interaction given by (3.60) is determined to be 6Δ = 13.10 and
2δΔ = −1.37meV, and therefore we can conclude that the 1s donor state splits into
1s(A1) (singlet), 1s(T1) (triplet) and 1s(E) (doublet) in the order from the lowest
to the highest level. The splitting due the valley–orbit interaction is very small and
the difference between experiment and theory cannot be explained. This may require
more detailed analysis of the donor states. The discrepancy may be explained by
taking an exact wave functions for the donor, but it is impossible to go further.
Instead we will derive an appropriate method to analyze the optical spectra of donors
in Ge and Si in the next subsection.

3.4.2 Central Cell Correction

In the derivation of the effective–mass equation we noted that the validity of the
effective–mass approximation requires a larger effective Bohr radius aI of a donor



140 3 Wannier Function and Effective Mass Approximation

Table 3.7 Binding energies of 1s states for donors of P, As and Sb in Si (meV). The splitting is
due to valley-orbit interaction (see text)

States P As Sb

1s(E) 32.21 31.01 30.23

1s(T1) 33.58 32.42 32.65

1s(A1) 45.31 53.51 42.51

compared with the lattice constant a (aI � a). As seen in Table3.2, the variational
parameters a and b are smaller in Si than in Ge. In addition we know that the effective
radius of the orbit is larger for the excited states compared to the ground state. These
results will explain the better agreement of the ground state energy in Ge than in Si
and a reasonable agreement of the excited states in Si between experiment and the
effective–mass theory. We have to note that the difference between the donor states
in different donor atoms cannot be explained by the effective–mass approximation.
The disagreement of the theory may be due to the potential shape near the center
of the impurities and it is expected that the potential near the impurity atom is not
Coulombic. The exchange interaction of donor electrons with core electrons and
their correlations will play an important role in the determination of the ground state.
In addition, the screening effect is weakened in the region near the core. Taking
all of these effects into account, we have to correct the potential near the core in
the effective–mass approximation. Here we will present the “central cell correction”
according to the treatment reported by Kohn [6]. The treatment is based on the
assumption that the ground state reflects the energy observed from experiments. Then
a correction is made for the wave function of the ground state to explain the infrared
absorption spectra between the ground state and the excited states. No corrections for
the excited states are required because of the good agreement between the experiment
and theory.

Since the experimental value of the ground state binding energy Eobs is larger
than the result of the effective–mass approximation in general, the wave function
is expected to increase steeply near the center of the impurity atom, as shown in
Fig. 3.3. Therefore, we assume that

Fig. 3.3 Central cell correction of the donor ground state, where the corrected wave function and
the envelope function of the effective–mass equation are shown. The corrected wave function is
chosen to give the experimental donor level and extrapolated near the center



3.4 Impurity Levels in Ge and Si 141

r ≥ rs : ψ = 1

6
F(r)

6∑

j=1

u j (r)eik j ·r , (3.61)

[
− �

2

2m∗ ∇2 − e2

4πεr

]
F(r) = EobsF(r) , (3.62)

F(∞) = 0 , (3.63)

and use the wave function F(r), which shows a good agreement with experiment.
In other words, we determine the effective Bohr radius of the function

F(r) ≈ e−r/a∗
(3.64)

to give the experimental value of the donor ground state.Wefind that a∗ is determined
by the following relation using the values of the effective–mass equation Eeffmass and
of experiment Eobs.

a∗ =
√
Eeffmass

Eobs aI . (3.65)

In the region r < rs the potential reflects the respective type of the donor and thus
the corresponding correction to the wave function. However, it may be well approx-
imated by

r < rs; F(r) � F(rs) . (3.66)

This procedure is shown in Fig. 3.3 and the process is called the “central cell correc-
tion”. This method is known to give a good explanation of the infrared absorption
spectra and the intensity of the absorption [9].

3.5 Electron Motion Under an External Field

Here we derive equations of electron motion under an external field in a periodic
potential. The equations are well known but the derivation so far reported is based
on an assumption that group velocity vg of an electron in a crystal is given by

vg = 1

�

∂E
∂k

. (3.67)

The above equation is derived by using the following relations

vg = ∂ω

∂k
, E = �ω . (3.68)



142 3 Wannier Function and Effective Mass Approximation

Such a derivation does not deal with electrons in periodic potential correctly, but it is
based on an analogy of electron particle with propagating wave as given by (3.68).
First, we derive the expectation value of electron velocity in periodic potential, which
is shown to coincide with the group velocity given by (3.67). Then we show quantum
mechanical treatment of acceleration of an electron in the energy band. The results
lead to the similarity of electron motion in classical mechanics and to the definition
of effective mass.

3.5.1 Group Velocity

In this subsection we will show that the expectation value of the electron velocity
〈v〉 is defined by the following relation;

〈v〉 = 1

�
gradkE(k) = 1

�
∇kE(k) . (3.69)

The velocity in classical mechanics may be related to the expectation value of the
velocity in quantummechanics. Once we obtain the group velocity, then the electron
motion may be described by the equation of motion in classical mechanics.

The expectation value of the electron velocity should be evaluated by using the
eigenfunction of an electron. Here we calculate the expectation value by using Bloch
function in periodic potential V (r). The Bloch function is given by (1.23) of Chap.1
as

Ψk(r) ≡ |k〉 = 1√
Ω

∑

G

AG(k)ei(k+G)·r , (3.70)

where G is the reciprocal lattice vector and Ω is the volume of the unit cell. In the
following we assume that the external field is weak and the electron moves in the
same band, and thus we omit the index of the energy bands. Since the momentum
operator is given by p = −i�∇, the expectation value of the electron velocity v in
the state |k〉 is given by

〈k|v|k〉 = 1

m
〈k| p|k〉 = − i�

m
〈k|∇|k〉 = − i�

m

∫
Ψ ∗

k (r)∇Ψk(r)d3r . (3.71)

The above equation is evaluated by using the following relations derived in Chap. 1

∇|k〉 = ∇Ψk(r) =
∑

G

i(k + G)ei(k+G)·r AG(k) , (3.72)

∇2|k〉 = ∇2Ψk(r) = −
∑

(k + G)2ei(k+G)·r AG(k) . (3.73)

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
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The Bloch function Ψk(r) is normalized in the unit cell Ω as
∫

Ω

Ψ ∗
k (r)Ψk(r)d3r = 1

Ω

∫

Ω

∑

G

A∗
G(k)AG(k)d3r

=
∑

G

|AG(k)|2 = 1 . (3.74)

Using (3.72) and the reciprocal lattice vectors G and G′, (3.71) is written as

〈k|v|k〉 = �

m

1

Ω

∫ ∑

G′,G

A∗
G′(k)e−i(k+G′)·r(k + G)ei(k+G)·r AG(k)d3r

= �

m

∑

G′,G

(k + G)
1

Ω

∫
A∗
G′(k)AG(k)ei(G−G′)·rd3r , (3.75)

where the above integral becomes 0 except the case G = G′, and thus we obtain the
following equation

〈k|v|k〉 = �

m

∑

G

(k + G)|AG(k)|2 = �k
m

+ �

m

∑

G

G|AG(k)|2 . (3.76)

When the right hand side of (3.76) is shown to be equal to (1/�)∇E(k), then the
relation (3.69) will be proved.

Using (3.73) Schrödinger equation is written as

�
2

2m

∑

G

(k + G)2AG(k)ei(k+G)·r +
∑

G

V (r)AG(k)ei(k+G)·r

= E(k)
∑

G

AG(k)ei(k+G)·r . (3.77)

Multiplying both sides of the above equation by e−i(k+G′)·r and integrating in the unit
cell we obtain

�
2

2m

∑

G

(k + G)2
∫

AG(k)ei(G−G′)·rd3r

+
∑

G

∫
V (r)AG(k)ei(G−G′)·rd3r

= E(k)
∫ ∑

G

AG(k)ei(G−G′)·rd3r . (3.78)

As described inChap.1, the periodic potential of a crystal V (r) can be expanded in
terms of the reciprocal lattice vectors byFourier expansion theorem, and its expansion
coefficient is given by V (G) = (1/Ω)

∫
V (r)eiG·r . Therefore we obtain

http://dx.doi.org/10.1007/978-3-319-66860-4_1
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�
2

2m
(k + G′)2AG′(k) + Ω

∑

G

V (G − G′)AG(k) = E(k)AG′(k) . (3.79)

Since G and G′ are the reciprocal lattice vectors, we exchange G′ and G in (3.79)
and we obtain the following relation

�
2

2m
(k + G)2AG(k) + Ω

∑

G′
V (G′ − G)AG′(k) = E(k)AG(k) . (3.80)

The complex conjugate of the above equation is written as

�
2

2m
(k + G)2A∗

G(k) + Ω
∑

G′
V (G′ − G)A∗

G′(k) = E(k)A∗
G(k) , (3.81)

First, we multiply both sides of (3.80) by ∇kA∗
G(k) and sum up with respect to

∑
G .

Second, we multiply both side of (3.81) by ∇kAG(k) and sum up with respect to∑
G . Then we sum up each side of the derived two equations, and find

�
2

2m

∑

G

(k + G)∇k(A
∗
G · AG)

+Ω
∑

G

∑

G′
V (G′ − G)(AG′∇kA

∗
G + AG′∇kAG)

= E(k)
∑

G

(AG∇kA
∗
G + A∗

G∇kAG) ≡ 0 . (3.82)

The equality (≡ 0) of the above equation is proved by using (3.74) as follows,

∑

G

(AG∇kA
∗
G + A∗

G∇kAG = ∇k

(
∑

G

|AG|2
)

= ∇k(1) ≡ 0 . (3.83)

On the other hand, operating ∇k on both sides of (3.80) and multiplying A∗
G(k)

from the left, then the summing up with respect to
∑

G results in

�
2

2m

∑

G

(k + G)|AG|2 + �
2

2m

∑

G

(k + G)2A∗
G∇kAG

+Ω
∑

G

∑

G′
V (G′ − G)A∗

G∇kAG′

=
∑

G

|AG|2∇kE(k) + E(k)
∑

G

A∗
G∇kAG . (3.84)

In a similar fashion we operate ∇k on both sides of (3.81) and multiply
∑

G AG .
Then we sum up left hand sides and right hand sides of the derived two equations
separately, we obtain the following equation
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�
2

m

∑

G

(k + G)|AG|2 + �
2

2m

∑

G

(k + G)2∇k(A
∗
G AG)

+Ω
∑

G

∑

G′
V (G′ − G)(AG∇kAG′ + AG∇kA

∗
G′)

= 2
∑

G

|AG|2∇kE(k) + E(k)
∑

G

∇k(A
∗
GAG) ≡ 2∇kE(k) . (3.85)

The sum of the second and third terms of the left hand side results in 0 from the
relation of (3.82). Therefore (3.85) reduces to

�
2

2m

∑

G

(k + G)|AG(k)|2 = ∇kE(k) . (3.86)

Using above result in (3.76), we obtain the following relations

〈k|v|k〉 = 1

�
∇kE(k) , (3.87a)

or for the matrix element of momentum operator p = mv

〈k| p|k〉 = m

�
∇kE(k) . (3.87b)

The result means that the expectation value of the electron velocity in periodic poten-
tial is given by the gradient of electron energy E(k) in a band. When we assume the
expectation value of the electron velocity is equivalent to the group velocity, then
the classical representation of (3.67) is verified.

3.5.2 Electron Motion Under an External Force

Next we derive equation of electron motion in a crystal in the presence of an external
force F. In classical mechanics a particle motion, or acceleration, is normally written
as

d p
dt

= F , (3.88)

where p = mv is the momentum of a particle with the mass m and the velocity v.
The most important case in this textbook is the electron motion in an electric field
E, and thus the external force is written as

F = −eE , (3.89)
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where −e is the electronic charge. We assume that a uniform electric field applied to
a crystal is so week that no interband transition occurs and that the wave function of
an electron is described by the following time-dependent Schrödinger equation with
Hamiltonian H .

i�
∂

∂t
Ψ (r, t) = (H − F · r)Ψ (r, t) . (3.90)

Now we expand the wave function Ψ (r) by Bloch functions Ψk(r). Here we
assumed the case where the electric field is so weak that no tunneling occurs, and
thus the electron moves in a specific energy band.1 Also we assume a continuous
function with respect to k and the summation

∑
k is replaced by integration. Then

we obtain

Ψ (k, t) =
∑

k

ak(t)Ψk(r) =
∫

α(k, t)Ψk(r)d3k . (3.91)

Inserting (3.91) into (3.90), and using the relation HΨ (r) = E(k)Ψ (r), we obtain

i�
∫

α̇(k, t)Ψk(r)d3k

=
∫

α(k, t)E(k)Ψk(r)d3k −
∫

α(k, t)(F · r)Ψk(r)d3k . (3.92)

Multiplying the above equation by Ψ ∗
k′(r), integrating in the unit cell, and using

orthonormality relation of theBloch functionΨk(r), we obtain the following relation.

i�α̇(k, t) = α(k, t)E(k) −
∫

α(k, t)F ·
∫

Ψ ∗
k′(r)rΨk(r)d3rd3k . (3.93)

Here we perform the spatial integration of the second term on the right hand side of
(3.93).Using theBloch functionΨk(r) = eik·ruk(r), the spatial integration reduces to

X =
∫

Ψ ∗
k′(r)rΨk(r)d3r =

∫
e−ik′·ru∗

k′ reik·ruk(r)d3r

= i
∫ (

∇k′e−ik′·r
)
u∗
k′(r)eik·ruk(r)d3r

= i
∫ [

∇k′
(
e−ik′ ·ru∗

k′(r)
)

− e−ik′ ·r∇k′u∗
k′(r)

]
eik·ruk(r)d3r

= i∇kδk,k′ − iδk,k′

∫
uk(r)∇ku

∗
k(r)d

3r . (3.94)

1In a general case (3.91) is defined by replacing α(k, t) with
∑

n αn(k, t), where n in the band
index.
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Inserting this into (3.93), we obtain

i�α̇(k, t) = α(k, t)E(k) −
∫

α(k, t)F · Xd3k

= α(k, t)E(k) − iF · ∇kα(k, t)

+iα(k, t)
∫

(F · ∇ku
∗
k(r))uk(r)d3r . (3.95)

Complex conjugate of this equation is given by

− i�α̇∗(k, t) = α∗(k, t)E(k) + iF · ∇kα
∗(k, t)

−iα∗(k, t)
∫

(F · ∇kuk(r))u∗
k(r)d

3r . (3.96)

Multiplying (3.95) by α∗(k, t) and (3.96) by−α(k, t), then summation of each sides
results in

i�
∂

∂t
|α(k, t)|2 = −iF · ∇k|α(k, t)|2

+i|α(k, t)|2
∫ [

F · (uk(r)∇ku
∗
k(r)

) + u∗
k(r)∇kuk(r)

]
d3r . (3.97)

Here we find that the second term of the right side gives rise to 0 as shown below.
Normalization of the Bloch function is given by

∫
Ψ ∗

k (r)Ψk(r)d3r =
∫

u∗
k(r)uk(r)d3r = 1 . (3.98)

Differentiating this equation with respect to k and we obtain

∫
(uk(r)∇ku

∗
k(r) + u∗

k(r)∇kuk(r)d3r = 0 . (3.99)

This result reveals that the second term of the right side of (3.97) becomes 0. There-
fore, (3.97) results in

�
∂

∂t
|α(k, t)|2 = −F · ∇k|α(k, t)|2 , (3.100)

or
[

∂

∂t
+

(
F
�

· ∇k

)]
|α(k, t)|2 = 0 . (3.101)

A general solution of the above equation is given by an arbitrary function G with
k and t ,

|α(k, t)|2 = G

(
k − 1

�
Ft

)
. (3.102)
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Here α(k, t) is the expansion coefficient of the wave function as given by (3.91)
and thus |α(k, t)|2 represents the probability of electrons in the state k at time t .
Therefore we choose a function G to exhibit a maximum at time t = 0 and k = k0.
If the function has a maximum at time Δt and at k′ and no scattering occurs, we
obtain the following relation.2

G(k0) = G

(
k′ − 1

�
FΔt

)
. (3.103)

Therefore we obtain the relation k0 = k′ − FΔt/�, and thus

Δk = k′ − k0 = 1

�
FΔt , (3.104)

In other word, we obtain the following relation

�
dk
dt

= F(= −eE) , (3.105)

and (3.88) is proved.
In general, when there exist no scattering events, the electron wave vector k at

time t changes from the initial state k0 at time 0 according to

k = k0 + 1

�
Ft . (3.106)

In this case the state k should be empty because of Pauli exclusion principle. When
we include interband transition, |α(k, t)|2 should be replaced by

∑ |αn(k, t)|2 and
then (3.102) is valid. In the case of interband transition, the wave vector after the
transition should be equal to k given by (3.102). In the calculation of electrical
conduction, we can neglect such an interband transition because the energy of an
electron is smaller than the band gap energy. If the electron scattering by phonons
exists, we have to take account of momentum and energy conservation, which will
be discussed in Chap.6.

3.5.3 Electron Motion and Effective Mass

We have already learned that the electronic states are given by the relation of electron
energy as a function of electron wave vector, E(k). In the above subsections we find
that an external force induces a change in the electron wave vector k, and thus

2This assumption is based on the fact that the function G will stay un–changed without scattering
and thus the maximum value of G is not changed with time t. Scattering induces a change in the
wave function and the maximum value will stay constant before the next scattering.

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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in the electron energy according the relation E(k). In order to deal with electron
transport, therefore, we have to know the energy band. The electron distribution is
governed by Fermi–Dirac distribution function and electrons in semiconductors in
the thermal equilibrium occupy the states near the conduction band minimum. Such
electrons are well described by the relation E(k) = �

2k2/2m∗, where m∗ is called
the effective mass. Here we will show that the effective mass approximation is valid
for the description of electron transport.

First, we summarize the results obtained in the above two subsections. The expec-
tation value of the electron velocity or the electron group velocity is given by (3.67)

〈v〉 ≡ vg = 1

�

dE
dk

, (3.107)

and an external force F produces a change in the wave vector of the electron as

�
dk
dt

= F(= −eE) . (3.108)

The time derivative of (3.107) is given by

d〈v〉
dt

= 1

�

d

dt

dE
dk

(3.109)

Since the acceleration of the electron in the external force is governed by (3.108),
and the electron energy is given by a function of the wave vector as E(k), the right
hand side of the above equation is rewritten as

d〈v〉
dt

= 1

�

d

dt

dE
dk

= 1

�

dk
dt

d2E
dk2

. (3.110)

Inserting (3.108) into (3.110), we obtain

d〈v〉
dt

= 1

�2

d2E
dk2

F . (3.111)

This relation should be compared with Newton’s law of motion of a particle with the
velocity v and the mass m,

dv

dt
= 1

m
F . (3.112)

Comparing (3.111) with (3.112), we may write (3.111) as

d〈v〉
dt

= 1

m∗ F , (3.113)

1

m∗ = 1

�2

d2E
dk2

, (3.114)
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where m∗ is equivalent to a particle mass and called as the effective mass. In general
the inverse effective mass 1/m∗ is defined as

(
1

m∗

)

i j

= 1

�2

d2E
dkidk j

. (3.115)

Since we are interested in the electrons near the band edge (conduction band
minimum Ec), the energy band is well approximated by parabolic function of the
electron wave vector k

E = �
2

2m∗ k
2 + Ec . (3.116)

This relation is easily derived from (3.114) by carrying out integration with respect
to k. We have already used this relation to develop the effective mass approximation.
From these considerations we conclude that the effective mass defined by (3.114)
can be used to evaluate transport properties of electrons in the form of classical
mechanics.

3.6 Problems

(3.1) Effective mass equation is derived in different ways. The other method not
delt with this textbook is given by Luttinger and Kohn. See the following
paper for the derivation of the effective mass equation used for analysis
of shallow impurity states and of the cyclotron resonance: Joaquin M. Lut-
tinger andWalter Kohn. “Motion of electrons and holes in perturbed periodic
fields.” Phys. Rev. 97 (1955) 869–883.

(3.2) An electron with its effective mass m∗ is put in a magnetic field B applied in
z direction.

(1) Solve the cyclotronmotion of the electron and show its angular frequency
is give by ωc = eB/m∗.

(2) Calculate its cyclotron radius Rc.
(3) Apply Bohr’s quantization condition

∫
pdl = h to the orbital motion,

where p = m∗v with the velocity v of the orbital motion. Then show this
condition leads to the cyclotron radius obtained by solving Schrödinger
equation.
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Chapter 4
Optical Properties 1

Abstract This chapter deals with fundamental theory of optical properties in
semiconductors. First reflection and absorption coefficients are derived by using
Maxwell’s equations. Then quantum mechanical derivations of direct and indirect
optical transition rates are given in addition to the classification of the joint density
of states. Optical transitions associated with electron-hole pair, excitons, are also
discussed. Dielectric functions are discussed in connection with the critical points
of semiconductors. Also we will discuss stress effect on the optical transition such
as piezobirefringence and stress-induced change in the energy band structure. The
results are used in Chap.9 to evaluate the strain effect in quantum well lasers.

4.1 Reflection and Absorption

The classical theory of electromagnetic waves is described by Maxwell’s equations.
Let us define the electric field E, electric displacement D, magnetic field intensity
vector H , magnetic field flux (referred to as “magnetic field” in this text) B, current
density J , and charge density ρ; then the macroscopic domain is governed by the
classical field equations of Maxwell:

∇ × E = −∂B
∂t

, (4.1a)

∇ × H = J = σE + ∂D
∂t

, (4.1b)

∇ · D = ρ, (4.1c)

∇ · B = 0 . (4.1d)

In the case of a material with a complex dielectric constant

κ = κ1 + iκ2 (4.2)

we obtain
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D = κε0E . (4.3)

In the following we assume that there exists no excess charge in the domain we
are interested in. Then we obtain the following relations from Maxwell’s equations.
For simplicity we assume that there is no charge to induce the current, i.e. σ = 0.
When charge carriers exist, the following results may be modified by introducing
the complex conductivity as described by (4.24), (4.25a) and (4.25b), and also as
discussed in Sect. 5.5.

∇ × ∇ × E = − ∂

∂t
(∇ × B) ,

= −μ0
∂

∂t

(
σE + ∂D

∂t

)
,

= −μ0κε0
∂2

∂t2
E , (4.4)

Since there is no excess charge, we put ρ = 0 and find the following result:

∇ × ∇ × E = ∇(∇ · E) − ∇2E,

∇ · E = 0 ,

∇2E = μ0ε0κ
∂2E
∂t2

, (4.5)

Let us assume a plane wave for the electromagnetic field

E ∼ E exp[i(k · r − ωt)] . (4.6)

Inserting this into (4.5) we obtain

(ik)2 = (−iω)2μ0ε0κ . (4.7)

The phase velocity of the electromagnetic wave is then given by

ω

k
= 1√

ε0μ0
√

κ
= c√

κ
= c′ , (4.8)

where c is the velocity of light in vacuum (κ = 1)

c = 1√
ε0μ0

∼= 3.0 × 108 m/s (4.9)

and c′ is the velocity of light in a material with dielectric constant κ

c′ = c√
κ

= c

n
. (4.10)

http://dx.doi.org/10.1007/978-3-319-66860-4_5
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Fig. 4.1 Incident, reflected
and transmitted
electromagnetic waves
(light) at the boundary of a
material surface

κ

=

= −

κ = +

In the above equation we have used the definition of the refractive index n = √
κ.

Since we have defined the dielectric constant by a complex number, we have to
introduce a complex refractive index. Let us assume that the electromagnetic wave
propagates in the z direction with electric field amplitude E⊥:

E(z, t) = E⊥ exp[i(kz − ωt)] = E⊥ exp

[
iω

(
k

ω
z − t

)]

= E⊥ exp

[
iω

(√
κ

c
z − t

)]
. (4.11)

We also define the incident, reflected and transmitted electric fields of the electro-
magnetic field at the boundary shown in Fig. 4.1 by

Ei exp

[
iω

(
1

c
z − t

)]
,

Er exp

[
iω

(
−1

c
z − t

)]
,

Et exp

[
iω

(√
κ

c
z − t

)]
.

Since we assume that there is no excess charge at the boundary, the electric field and
its gradient are required to be continuous at z. The reflection coefficient r (Er = rEi)

and the transmission coefficient t (Et = tEi) have to satisfy the following relations.

1 = r + t (4.12a)

1 = −r + t
√

κ = −r + (1 − r)
√

κ . (4.12b)

From these relations we obtain the reflection coefficient

r =
√

κ − 1√
κ + 1

. (4.13)

When we define complex refractive index n∗ by
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√
κ = n∗ ≡ n0 + ik0 , (4.14)

or

√
κ1 + iκ2 = n0 + ik0 , (4.15)

then we may express the real and imaginary parts of the complex dielectric constant
by

κ1 = n20 − k20, (4.16a)

κ2 = 2n0k0 , (4.16b)

where n0 and k0 are called the refractive index and the extinction coefficient, respec-
tively. From these relations, the amplitude reflection coefficient is given by

r = n0 − 1 + ik0
n0 + 1 + ik0

= |r | tan θ , tan θ = 2k0
n20 + k20 − 1

. (4.17)

The reflection coefficient is generally defined as the power reflection coefficient
(the reflection coefficient for the incident energy), and thus we have to calculate the
reflection coefficient for E2, H 2 or the Poynting vector E × H , which is given by

R = |r |2 = (n0 − 1)2 + k20
(n0 + 1)2 + k20

= (κ2
1 + κ2

2)
1/2 − [2κ1 + 2(κ2

1 + κ2
2)

1/2]1/2 + 1

(κ2
1 + κ2

2)
1/2 + [2κ1 + 2(κ2

1 + κ2
2)

1/2]1/2 + 1
. (4.18)

Inserting (4.14) into (4.11),

E(z, t) = E⊥ exp

[
iω

(√
κ

c
z − t

)]
= E⊥ exp

[
iω

(
n0 + ik0

c
z − t

)]

= E⊥ exp

(
−ωk0

c
z

)
exp

[
iω

(
n0
c
z − t

)]
(4.19)

is obtained and the attenuation of the electric power or the Poynting vector of the
electromagnetic waves is written as

I ∝ E2 ∝ E2
⊥ exp

(
−2

ωk0
c

z

)
≡ E2

⊥ exp(−αz) , (4.20)

where

α = 2
ωk0
c

= ωκ2

n0c
(4.21)
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is called the absorption coefficient which gives rise to an attenuation of the incident
power by 1/e 	 1/2.7 	 0.37 per unit propagation length.

Next we discuss the relation of the complex conductivity and the complex dielec-
tric constant to the power dissipation (power loss) per unit volumeof amaterial,which
is exactly the same as the dielectric loss. Using the complex dielectric coefficient in
the electric displacement in (4.1b), it is rewritten as

D = κε0E = (κ1 + iκ2)ε0E . (4.22)

Since we assume a plane wave for the electromagnetic wave, we may put ∂/∂t →
−iω and then the current density is given by

J = σE + ∂D
∂t

= σE − iω(κ1 + iκ2)ε0E ≡ σ∗E . (4.23)

When we write the complex conductivity σ∗ as

σ∗ = σr + iσi (4.24)

we find the following relations between the complex conductivity and the complex
dielectric constant:

σr = σ + ωκ2ε0, (4.25a)

σi = −ωκ1ε0 . (4.25b)

It is well known that the power loss is given by w = σr E2/2 and thus the power loss
per unit volume of a dielectric with κ = κ1 + iκ2 is written as

w = 1

2
ωκ2ε0E

2 , (4.26)

which is known as the “dielectric loss.” This relation holds exactly for light
absorption in a material and is used later to relate optical transitions and light
absorption. In the case of semiconductors where free carriers exist, the real part
of the complex dielectric constant κ1 is related to the imaginary part of the complex
conductivity by

κ1 = κl − σi

ωε0
, (4.27)

whereκl is the real part of the dielectric constant due to the crystal lattices andwemay
expect κ1 to become zero at a specific frequency (plasma frequency). This relation is
often used to discuss the classical theory of plasma oscillation (see Sects. 5.4.1 and
5.5).

http://dx.doi.org/10.1007/978-3-319-66860-4_5
http://dx.doi.org/10.1007/978-3-319-66860-4_5
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4.2 Direct Transition and Absorption Coefficient

In this section we will consider the band-to-band direct transition of an electron from
the valence band to the conduction band induced by the incident light. To do this we
consider the electron motion induced by the incident light in a perfect crystal. The
Hamiltonian of the electron is given by

H = 1

2m
( p + eA)2 + V (r) , (4.28)

where A is the vector potential of the electromagnetic filed and V (r) is the periodic
potential of the crystal. The vector potential is expressed by the plane wave:

A = 1

2
A0e

[
ei(kp·r−ωt) + e−i(kp·r−ωt)

]
, (4.29)

where kp and e are the wave vector of the electromagnetic field and its unit vec-
tor (polarization vector), respectively. In the above equation the vector potential is
expressed as a real number by adding its complex conjugate. Using the relation
A · p = p · A and neglecting the small term A2, the Hamiltonian is rewritten as

H 	 p2

2m
+ V (r) + e

m
A · p ≡ H0 + H1 . (4.30)

Assuming H1 = (e/m)A · p as the perturbation, the transition probability per unit
timewcv for the electron from the initial state |vk〉 to the final state |ck′〉 is calculated
to be

wcv = 2π

�
|〈ck′| e

m
A · p|vk〉|2δ [Ec(k

′) − Ev(k) − �ω
]

= πe2

2�m2
A2
0

∣∣〈ck′| exp(ikp · r)e · p|vk〉∣∣2
×δ

[Ec(k′) − Ev(k) − �ω
]

. (4.31)

The matrix element of the term which includes the momentum operator p is called
the matrix element of the transition and gives the selection rule and the strength of
the transition. Let us consider the Bloch function to express the electron state:

| jk〉 = eik·ru jk(r) , (4.32)

where j = v and c represents the valence band and conduction band states, respec-
tively. Then the matrix element of the transition is given by

e · pcv = 1

V

∫
V
e−ik′·ru∗

ck′(r)eikp·r e · peik·ruvk(r)d3r

= 1

V

∫
V
ei(kp+k−k′)·ru∗

ck′(r)e · ( p + �k)uvk(r)d3r . (4.33)
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From the property of theBloch function,u(r) = u(r+Rl), where Rl is the translation
vector, and the matrix element is rewritten as

e · pcv = 1

V

∑
l

exp{i(kp + k − k′) · Rl}

×
∫

Ω

ei(kp+k−k′)·ru∗
ck′(r)e · ( p + �k)uvk′(r)d3r , (4.34)

where Ω is the volume of the unit cell. Summation with respect to Rl becomes 0
except for

kp + k − k′ = Gm(= mG) , (4.35)

where Gm is the reciprocal lattice vector (G is the smallest reciprocal lattice vector
and m is an integer). The wave vector of light (electromagnetic waves) with a wave-
length of 1µm is |kp| = 6.28× 104 cm−1 and the magnitude of the reciprocal lattice
vector for a crystal with a lattice constant of 5Å is |G| = 1.06 × 108 cm−1, and
thus the inequality kp  G is fulfilled in general. Therefore, the largest contribution
to the integral in (4.34) is due to the term for Gm = 0 (m = 0). This condition
may be understood to be equivalent to the conservation of momentum. From these
considerations (4.35) leads to the important relation

k′ = k (4.36)

for the optical transition. That is, electron transitions are allowed between states with
the same wave vector k in k space. In other words, when a photon of energy greater
than the band gap is incident on a semiconductor, an electron with wave vector k in
the valence band is excited into a state with the same wave vector in the conduction
band. From this fact the transition is referred to as a direct transition.

Since the integralwith respect to�k in (4.34) vanishes because of the orthogonality
of the Bloch functions, we obtain

e · pcv = 1

Ω

∫
Ω

u∗
ck′(r)e · puvk(r)d3rδk,k′ . (4.37)

Using the above results, the photon energy absorbed in the material per unit time and
unit volume is given by �ωwcv, which is equivalent to the power dissipation of the
electromagnetic waves per unit time and unit volume given by (4.26):

�ωwcv = 1

2
ωκ2ε0E

2
0 . (4.38)

From the relation between the electric field and the vector potential, E = −∂A/∂t ,
we may put E0 = ωA0; thus the imaginary part of the dielectric constant is given by
the equation
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κ2 = 2�

ε0ω2A2
0

ωcv

= πe2

ε0m2ω2

∑
k,k′

∣∣e · pcv
∣∣2 δ

[Ec(k′) − Ev(k) − �ω
]
δkk′ . (4.39)

It is evident that the absorption coefficient is obtained by inserting κ2 into (4.21).

4.3 Joint Density of States

In the previous section we derived the dielectric function for the direct transition,
which is given by (4.39). When we assume that the matrix element e · pcv varies very
slowly as k or is independent of k (this is a good approximation), the term |e · pcv|2
in (4.39) may be moved out of the summation. The imaginary part of the dielectric
constant can then be rewritten as

κ2(ω) = πe2

ε0m2ω2
|e · pcv|2

∑
k

δ[Ecv(k) − �ω], (4.40)

Ecv(k) = Ec(k) − Ev(k) . (4.41)

The summation with respect to k in (4.40) may be understood as the summation of
the pair states of |vk〉 and |ck〉 due to the delta function and called the joint density
of states. Replacing the summation

∑
by an integral in k space, the joint density of

states Jcv(�ω) is written as

Jcv(�ω) =
∑
k

δ[Ecv(k) − �ω] = 2

(2π)3

∫
d3k · δ[Ecv(k) − �ω] , (4.42)

where the spin degeneracy factor 2 is taken into account. Integration of the above
equation is carried out by the following general method.

Consider two constant energy surfaces in k space, E = �ω and �ω + d(�ω). The
density of states in d(�ω) is then obtained as follows.

Jcv(�ω) · d(�ω) = 2

(2π)3

∫
�ω=Ecv

dS

|∇kEcv(k)| · d(�ω) . (4.43)

Therefore, the joint density of states Jcv(�ω) is rewritten as

Jcv(�ω) = 2

(2π)3

∫
�ω=Ecv

dS

|∇kEcv(k)| , (4.44)

where we have to note that the integral is carried out over the constant energy surface,
�ω = Ecv(k), because of the delta function. This general form of the density of states
is derived as follows. Referring to Fig. 4.2, let us consider constant energy surfaces
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Fig. 4.2 Derivation of the
general form of the joint
density of states. Consider
two constant energy surfaces
E and E + δE displaced by
δE . The small element of
volume in k space is then
defined by the product of the
bottom area δS and the
distance δk⊥ perpendicular
to the constant energy
surface

δ

δ

ε
ε δε+

displaced by a small amount of energy δE in k space, E and E + δE . The small
element of the volume δV (k) in k space is defined by the volume contained in the
bottom area δS and its height δk⊥ between the two constant energy surfaces. The
states allowed in a volume element d3k in k space per unit volume is given by

2

(2π)3
d3k = 2

(2π)3
δV (k) . (4.45)

The distance between the constant energy surfaces is given by (∂k⊥/∂E)δE =
(∂E/∂k⊥)−1δE , where ∂E/∂k⊥ is the gradient of E in the direction normal to the
energy surfaces and we find

∂E
∂k⊥

= |∇kE | =
√(

∂E
∂kx

)2

+
(

∂E
∂ky

)2

+
(

∂E
∂kz

)2

, (4.46)

or

δk⊥ = δE
|∇kE | . (4.47)

From the definition of the volume element δV (k) = δS · δk⊥, the density of states
in energy space between E and E + δE is given by

ρ(E)dE = 2

(2π)3

∫
S

dS

|∇kE |dE . (4.48)

It is evident from the above derivation that the joint density of states is obtained by
replacing E(k) by Ecv(k) in the above equation and thus that the derivation of (4.44)
is straightforward.

The joint density of states Jcv(�ω) given by (4.44) diverges when ∇kEcv(k) = 0
is satisfied. This leads to a maximum probability for the optical transition. We may
expect such behavior at various points in the Brillouin zone. Such a point in the
Brillouin zone is called a critical point or singularity of the joint density of states.
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The behavior may be expected to occur under the following two conditions:

∇kEc(k) = ∇kEv(k) = 0, (4.49)

∇kEc(k) = ∇kEv(k) �= 0 . (4.50)

These equations reflect the conditions that the slopes of the two bands are parallel.
The former condition means that the slopes are horizontal and will be satisfied at
points of Brillouin zone with high symmetry. For example, this condition is satisfied
at the Γ point. The second condition is satisfied at various points of Brillouin zone.
The critical points behave differently depending on the type of critical point. The
properties of the critical points were first investigated by van Hove [1] and thus are
called van Hove singularities.

In order to discuss the singularities in more detail we expand Ecv(k) at the point
∇k(k) = 0 (k = k0, Ecv = EG) in a Taylor series and keep terms up to the second
order:

Ecv = EG +
3∑

i=1

�
2

2μi
(ki − ki0)

2 , (4.51)

where the first-order term of k disappears due to the singularity condition∇kEcv = 0.
The constant μi has the dimension of mass and is given by the following equation
with the effective mass m∗

e of the conduction band and m∗
h of the valence band.

1

μi
= 1

m∗
e,i

+ 1

m∗
h,i

. (4.52)

The mass μi is called the reduced mass of the electron and hole. Using this result,
the joint density of states Jcv at the critical point is then calculated in the following
way. Defining the new variable

si = �(ki − ki0)√
2|μi | , (4.53)

Equation (4.51) is rewritten as

Ecv(s) = EG +
3∑

i=1

αi s
2
i , (4.54)

where αi = ±1 is the sign of μi , and αi = +1 for μi > 0 and αi = −1 for μi < 0.
Using the definition of the variable we may calculate the joint density of states given
by (4.44) (for the M0 critical point: αi > 0 for all αi ) as
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Table 4.1 Joint density of states Jcv(�ω) for 3-dimensional critical points

Types of critical points Jcv(�ω)

Types μ1 μ2 μ3 �ω ≤ EG �ω ≥ EG
M0 + + + 0 C1(�ω − EG)1/2

M1 − + + C2−C1(EG−�ω)1/2 C2

M2 − − + C2 C2−C1(�ω−EG)1/2

M3 − − − C1(EG − �ω)1/2 0

C1 = 4π

(2π)3

(
8μ1μ2μ3

�6

)1/2

Jcv(ω) = 2

(2π)3

(
8|μ1μ2μ3|

�6

)1/2 ∫
Ecv=�ω

dS

|∇sEcv(s)|

= 2

(2π)3

(
8|μ1μ2μ3|

�6

)1/2 ∫
Ecv=�ω

dS

2s
, (4.55)

where s = (s21 + s22 + s23 )
1/2. It is straightforward to obtain the density of states for

the M0 critical point. In this case we have Ecv −EG = s21 + s22 + s23 = s2 and then we
obtain

∫
dS = 4πs2 for �ω > EG, which leads to the following result for the joint

density of states Jcv(ω):

Jcv(�ω) =
⎧⎨
⎩
0 ; �ω ≤ EG
4π

(2π)3

(
8μ1μ2μ3

�6

)1/2√
�ω − EG ; �ω ≥ EG .

(4.56)

It is evident from (4.51) or (4.54) that the singularities or critical points are clas-
sified in four categories depending on the combination of the signs of the reduced
masses, or in other words we define the critical point Mj ( j = 0, 1, 2 and 3) by j , the
number of negative μi . The critical point M0 has 3 positive reduced masses ( j = 0:
zero negative reduced mass): μ1 > 0, μ2 > 0 and μ3 > 0. The critical points M1, M2

and M3 are for 1, 2, and 3 negative reduced masses, any of μ1, μ2 and μ3. The joint
density of states Jcv(ω) for the critical points M1, M2 and M3 have been calculated
and the results are summarized in Table4.1 (see for example [2, 3]).

Inserting (4.56) into (4.39) the imaginary part of the dielectric constant for the
M0 critical point is given by

κ2(ω) = e2

2πε0m2ω2
|e · pcv|2

(
8μ1μ2μ3

�6

)1/2 √
�ω − EG , (4.57)
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Fig. 4.3 Joint density of states Jcv(�ω) for a 3D, b 2D and c 1D bands

where �ω > EG . The absorption coefficient is obtained by inserting this equation for
κ2(ω) into (4.21):

α(ω) = e2|e · pcv|2
2πε0m2cn0ω

(
8μ1μ2μ3

�6

)1/2 √
�ω − EG for �ω > EG . (4.58)

It is also evident from (4.51) that Ecv becomes a maximum at k0 for theM0 critical
point (all of μi are positive) and that Ecv becomes a minimum at k0 for the M3 critical
point (all of μi are negative). On the other hand, the M1 (M2) critical point exhibits a
saddle point at k0, where Ecv shows amaximum (minimum) at k0 in one direction and
a minimum (maximum) in other directions. When we consider a pair of conduction
and valence bands, the lowest energy critical point is M0 and the highest energy
critical point is M3.

It should be noted that Fig. 4.3a is calculated by using the relations given in
Table4.1 for 3D case.Wewill present an example of the calculations ofDOS (Density
of states) for the 3D energy bands obtained by a simple treatment of the tight-binding
approximation in the case of the simple cubic lattice. The first Brillouin zone is
determined by the reciprocal lattice vectors Gx = G y = Gz = ±2π/a and thus the
zone edge wave vectors are kx = ky = kz = ±π/a. The energy bands are then given
by

Ecv(k) = (EG + 3γ) − γ
[
cos(akx ) + cos(aky) + cos(akz)

]
(4.59)

The energy band E(kx ) is shown in Fig. 4.4a. The density of states (DOS) of the
energyband is obtained bydiscretizing thefirstBrillouin zone as described inChap.1,
Sect. 1.8, and the results are shown in Fig. 4.4b, where we see M0 M1 M2 and M3

critical points.
The joint densities of states Jcv for 2-dimensional (2D) and 1-dimensional (1D)

bands are summarized in Table4.2 and in Fig. 4.3b–c. It is very important to point
out that in Fig. 4.3b–c the joint densities of states Jcv at the saddle point for the 2D
critical point and at the 1D critical points diverge. The behavior of the 1D critical
point has already been shown in Chap.2 to describe the density of states in a high
magnetic field, where an electron is quantized in the perpendicular direction to the

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. 4.4 Density of states calculated from (4.59) using numerical calculations. a Energy bad struc-
ture obtained by the tight-binding approximation for a simple cubic lattice. b Density of states
(DOS) obtained by numerical calculations from (4.59), where all the four critical points M0, M1,
M2, and M3 are clearly seen

Table 4.2 Joint density of states Jcv(�ω) for 1-dimensional and 2-dimensional critical points

Types of critical points Jcv(�ω)

Dimension Types �ω ≤ EG �ω ≥ EG
1D M0 0 A(�ω − EG)−1/2

1D M1 A(EG − �ω)−1/2 0

2D M0 0 B1

2D M1 (B1/π)(B2 −
log|EG − �ω|)

(B1/π)(B2 −
log|EG − �ω|)

2D M2 B1 0

A = 2

4π
·
(
2|μ|
�2

)1/2

, B1 = 2

4π
·
(
4|μ1μ2|

�4

)1/2

,

B2 = log|2B3 − (EG − �ω) + 2
√
B2
3 − (EG − �ω)B3|

magnetic field and the electron can move along the magnetic field, and thus the
electron behaves like a 1D carrier.

4.4 Indirect Transition

In Sects. 4.1 and 4.2 we considered the process where an electron in the valence
band absorbs one photon and makes a transition to the conduction band vertically in
k space, i.e. a direct transition. This process plays the most important role in direct
gap semiconductors such as GaAs, InSb and so on. On the other hand, we have
shown in Chaps. 1 and 2 that the conduction band minima in Ge and Si are located at

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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the L point and Δ point, respectively, whereas the top of the valence band at the Γ

point. Therefore, the fundamental absorption edge (lowest optical transition) is not
direct, and thus direct transitions of electrons from the top of the valence band to the
lowest conduction band minima is not allowed. Experimental results in Ge and Si
reveal a weak transition for the photon energy corresponding to the indirect band gap
between the top of the valence band at k = 0 and the conduction minima at k �= 0.
This process is interpreted as the indirect transition inwhich an electron in the valence
band absorbs a photon and then absorbs or emits a phonon to make the transition to
the conduction band minima. This process is caused by a higher-order interaction or
second-order perturbation in quantum mechanics, as described below in detail. The
higher-order perturbation produces a weaker transition probability compared with
the direct transition, and thus the weak absorption is explained. In addition we have
to note that the transition is validated through a virtual state for the transition from
the initial to the final states, and for this reason the transition is called an indirect
transition.

Let us define theHamiltonian He for electrons, Hl for lattice vibrations, Hel for the
electron-phonon interaction and Her for the electron-radiation (photon) interaction.
Then the total Hamiltonian is written as

H = He + Hl + Hel + Her . (4.60)

We will discuss the Hamiltonian of the lattice vibrations and the electron-phonon
interaction in Chap. 6 and will not go into detail here. The Hamiltonian of electrons
and phonons is written as H0 = He + Hl and the eigenstates are expressed as

| j〉 =
{ |ck, nα

q 〉 (for an electron in the conduction band)
|vk, nα

q 〉 (for an electron in the valence band)
, (4.61)

where k is the wave vector of the electron and nα
q is the phonon quantum number of

mode α and wave vector q. Expressing the perturbation Hamiltonian as

H ′ = Hel + Her (4.62)

and keeping the perturbation up to the second order, the transition probability from
an initial state |i〉 to a final state | f 〉 through a virtual state |m〉 is then given by

wif = 2π

�

∣∣∣∣〈 f |H ′|i〉 +
∑
m

〈 f |H ′|m〉〈m|H ′|i〉
Ei − Em

∣∣∣∣
2

δ(Ei − E f ) , (4.63)

where it is evident that the relation 〈 f |H ′|i〉 = 〈 f |Her|i〉 + 〈 f |Hel|i〉 = 0 holds
because of the following reasons. The matrix element 〈 f |Her|i〉 is the same as the
element for the direct transition stated in the previous section and the transition is
allowed between the same k vectors in k space. In the case of an indirect transition,
however, the wave vectors k are different between the initial state |i〉 at the top of the
valence band and the final state | f 〉 at the bottom of the conduction band, and thus

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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we find that 〈 f |Her|i〉 = 0. On the other hand, the matrix element 〈 f |Hel|i〉 ensures
momentum conservation (wave vector conservation), δ(ki ± q − k f ), but energy is
not conserved because of the small value of the phonon energy compared with the
band gap. Therefore, we find that 〈 f |Hel|i〉 = 0. From these considerations only the
second term in (4.63) will contribute to the indirect transition and so finally we get

wif = 2π

�

∣∣∣∣
∑
m

〈 f |H ′|m〉〈m|H ′|i〉
Ei − Em

∣∣∣∣
2

δ(Ei − E f ) . (4.64)

When we insert (4.62) into (4.64), such terms as 〈 f |Hel|m〉〈m|Hel|i〉,
〈 f |Her|m〉〈m|Her|i〉 and so on appear. However, these termswill not contribute to the
indirect transition for the reason stated above. Finally, we find that the two processes
shown in Fig. 4.5 will remain. The first process is: (1) an electron at the top of the
valence band A interacts with radiation to absorb a photon and makes a transition to
a virtual state D in the conduction band, followed by a transition by phonon absorp-
tion or emission to the final state C. The second process is: (2) an electron makes a
transition from the top of the valence band A to a virtual state in the valence band B
by absorbing or emitting a phonon and then absorbs a photon to end up at the final
state C. The second process can be understood in a different way: an electron in the
valence band B absorbs a photon, leaving a virtual state of a hole there and making a
transition to the final state C, and an electron at the top of the valence band A is then
transferred to this virtual state by absorbing or emitting a phonon. These processes
are expressed by the following equation:

wif = 2π

�

∣∣∣∣ 〈Ck f , nα
q ± 1|Hel|Dki , nα

q 〉〈Dki , nα
q |Her|Aki , nα

q 〉
Ei − ED

+ 〈Ck f , nα
q ± 1|Her|Bk f , nα

q ± 1〉〈Bk f , nα
q ± 1|Hel|Aki , nα

q 〉
Ei − EB

∣∣∣∣
2

× δ(Ei − E f ) ,

where the upper sign (+) of ± represents phonon emission and the lower sign (−)
of ± corresponds to phonon absorption. When we neglect the phonon energy term
�ωq because of its smallness compared to the photon energy or the band gap, we find
following relations:

k f = ki ∓ q,

Ei − E f = Ev(ki ) + �ω ∓ �ωα
q − Ec(k f ),

Ei − ED = Ev(ki ) + �ω − ED(ki ) ∼= Ec(k f ) − ED(ki ) ∼= Ec0 − Ec1,
Ei − EB = Ev(ki ) ∓ �ωα

q − EB(k f ) ∼= Ev(ki ) − EB(k f ) ∼= Ev0 − Ev1 .

Assuming that the matrix element is independent of the wave vector k, we may
approximate

wif = 2π

�

∑
m,α,±

∣∣Mm,α,±
cv

∣∣2 δ(Ei − E f ) (4.65)
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Fig. 4.5 Processes for the indirect transition. (1) An electron at the top of the valence band A
interactswith radiation to absorb a photon andmakes a transition to a virtual stateD in the conduction
band, followed by a transition by phonon absorption or emission to the final state C. (2) An electron
makes a transition from the top of the valence band A to a virtual state in the valence band B by
absorbing or emitting a phonon and then absorbs a photon to end up at the final state C

for the transition probability and

κ2(ω) = πe2

ε0m2ω2

∑
m,α,±

∣∣Mm,α,±
cv

∣∣2

×
∑
k,k′

δ
[Ec(k′) − Ev(k) − �ω ± �ωα

q

]
(4.66)

for the imaginary part of the dielectric constant. The first summation is carried out
for the virtual state (|m〉), the phonon mode, and its emission (+) and absorption
(−). The probability of phonon emission and absorption is proportional to nα

q +1 and
nα
q , respectively, and the average excited phonon number is given by Bose–Einstein

statistics as

nα
q = 1

exp(�ωα
q /kBT ) − 1

. (4.67)

Using these results (4.65) may be written as

wif = 2π

�

∑
m,α,±

[∣∣Am,±
cv

∣∣2 (nα
q + 1

2
± 1

2

)]

×
∑
k,k′

δ
[Ec(k′) − Ev(k) − �ω ± �ωα

q

]
. (4.68)

The second summation with respect to k and k′ represents the density of states for
the indirect transition, which is calculated as follows.
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J ind
cv =

∑
k,k′

δ
[Ec(k′) − Ev(k) − �ω ± �ωα

q

]

∑
k,k′

δ

[
Ec0 − Ev0 + �

2

2

(
k2x
mhx

+ k2y
mhy

+ k2z
mhz

+ k ′2
x

mex
+ k ′2

y

mey
+ k ′2

z

mez

)
− �ω ± �ωα

q

]
, (4.69)

where the conduction band near the bottom is approximated byEc(k′) = �
2k ′2/2me+

Ec0 with the electron effective massme and the valence band near the top by Ev(k) =
−�

2k2/2mh + Ev0 with the hole effective mass mh. The summation
∑

k is replaced
by 2/(2π)3

∫
d3k and transformations such as x = �kx/

√
2mhx , x ′ = �k ′

x/
√
2mex

etc. are used. Then the density of states is given by

J ind
cv = 2K

(2π)6

∫
dxdydzdx ′dy′dz′

× δ
(
x2 + y2 + z2 + x ′2 + y′2 + z′2 + EG − �ω ± �ωα

q

)
, (4.70)

where we have assumed that the spin of the electron is not changed in the transition
(no spin-flip transition) and that the spin degeneracy is used for one of the bands. In
addition we have used K and EG given by

K =
√
26mhxmhymhzmexmeymez

�12
,

EG = Ec0 − Ev0 .

In order to carry out the integral of J ind
cv we use polar coordinates (x, y, z) = (r, θ,φ)

with r2 = s and r ′2 = s ′ (
∫
sin θdθdφ = 4π), which leads to

J ind
cv = 2K

(2π)6

∫
(4π)2

dsds ′

4

√
ss ′δ(s + s ′ + EG − �ω ± �ωα

q ).

The integral of the above equation is easily carried out by using the δ function, and
we obtain

J ind
cv = 4π2

(2π)6
2K

∫
�ω∓�ωα

q −EG

0

√
s
√

�ω ∓ �ωα
q − EG − s ds

= 2K

(2π)4
· π

8
(�ω ∓ �ωα

q − EG)2 . (4.71)

Finally, we obtain the dielectric function for the indirect transition given by
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κ2(ω) = πe2

ε0m2ω2
· K

(4π)3

∑
m,α,±

∣∣Mm,α,±
cv

∣∣2 (�ω ∓ �ωα
q − EG)2

= πe2

ε0m2ω2
· K

(4π)3

∑
m,α

[∣∣Am,α,+
cv

∣∣2 · (�ω − �ωα
q − EG)2

1 − exp(−�ωα
q /kBT )

+ ∣∣Am,α,−
cv

∣∣2 · (�ω + �ωα
q − EG)2

exp(�ωα
q /kBT ) − 1

]
, (4.72)

where the first and second terms on the right-hand side are associated with the
transition followed by phonon emission and by phonon absorption, respectively.

The virtual state of the indirect transition is determined by the phonon mode and
its deformation potential and also by the selection rule for the electron-radiation field
interaction. As the simplest case we take into account a virtual state and a phonon
mode and calculate the temperature dependence of the absorption coefficient. The
denominator of the second term becomes large for the case kBT  �ωα

q and the tran-
sition followed by phonon absorption disappears at low temperatures. On the other
hand, the denominator of the first term becomes 1 at low temperatures. Therefore,
the indirect transition will be governed by phonon emission at low temperatures.
The feature is shown in Fig. 4.6, where

√
κ2 is plotted as a function of �ω − EG

for different temperatures, by taking into account the fact that the square root of
the imaginary part of the dielectric function and thus of the absorption coefficient
is proportional to �ω ∓ �ωq − EG (

√
κ2 ∝ √

α ∝ (�ω ∓ �ωq − EG) (α: absorp-
tion coefficient). At lower temperatures the process of phonon absorption decreases
and the absorption coefficient becomes very weak. We find that the phonon energy
involved in the process is given by the half-width of the lower straight line and that
the band gap EG lies in the middle of the line. The experimental results for Si are
shown in Fig. 4.7, where the square root of the absorption coefficient

√
α is plotted

as a function of photon energy and find the feature of the indirect transition shown
in Fig. 4.6 [4]. The turning point of the curve shifts to lower photon energy at higher
temperatures, which is explained in terms of the temperature dependence of the band
gap (the band gap decreases with increasing lattice temperature). The experimental

Fig. 4.6 Absorption
coefficient at the indirect
transition edge, where the
square root of the absorption
coefficient

√
α ∝ √

κ is
plotted as a function of
photon energy minus the
band gap �ω − EG for
different temperatures

− ω ω

= ω =
ω

ω

ω ε−

κ
α
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Fig. 4.7 Square root of the
absorption coefficient

√
α

plotted as a function of
photon energy �ω for Si,
where the transitions due to
phonon absorption and
emission are well resolved
(from [4])

α
Fig. 4.8 The square root of
the absorption coefficient√

α of Ge at the indirect
transition edge is plotted as a
function of photon energy
�ω (from [5])

α

results for Ge are shown in Fig. 4.8 [5], where turning points are observed in the
spectrum for T = 249K at about 0.65 and 0.71eV. These turning points correspond
to the transition due to the absorption and emission of one LO phonon, and the tran-
sition due to phonon emission disappears at low temperatures. A weak absorption is
observed at T = 4.2K below the photon energy around 0.77eV due to LA phonon
emission process, which is believed to be due to a forbidden transition followed by
TA phonon emission. It is most important to point out here that the square root of
the absorption coefficient is not a straight line but exhibits a hump. This is caused by
exciton effects as discussed in Sect. 4.5.

4.5 Exciton

4.5.1 Direct Exciton

In Sect. 4.2 we discussed optical absorption spectra due to direct transitions, where
an electron in the valence band (wave vector k) is excited by photon absorption into
the conduction band (the wave vector at the band is k′ = ke) and leaves a hole in the
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valence band (the wave vector of the hole is kh = −k). The two carriers are subject
to the Coulomb interaction, which is disregarded in Sect. 4.2 and also in Sect. 4.4. In
this section we will be concerned with the Coulomb interaction between electrons
and holes at the critical point M0, where we assume the bound state is very weak and
thus the effective mass approximation is valid for the treatment. The bound state of
the electron-hole pair is called an exciton. The exciton based on the approximation
is called a Wannier exciton.

When the electron-hole interaction is neglected, the wave function of the one
electron and one hole system is given by

Ψi j (re, rh) = ψike(re)ψ jkh(rh),

where i and j are the band indices, and re, rh, ke and kh are the coordinates and
wave vectors of the electron and hole, respectively. In the absence of the Coulomb
interaction the Hamiltonians of an electron in a conduction band, He, and an electron
in a valence band, Hv, are written as1

Heψcke(re) = Ec(ke)ψcke(re),

Hvψvkv(rv) = Ev(kv)ψvkv(rv).

In the following calculationswe consider theHamiltonian Hh for a hole in the valence
band and use the Bloch function given by ψv,kh(rh) = ψv,kv(rv). As stated above,
the crystal momentum vectors of an electron and a hole in the valence band have the
same magnitude but different signs, and so we define the total wave vector of the
electron-hole system by

K = k′ + (−k) = ke + kh . (4.73)

In the presence of the electron-hole interaction (Coulomb interaction) V (re − rh),
the Hamiltonian for an exciton (electron-hole pair) is thus written as

H = He + Hh + V (re − rh) , (4.74)

and the wave function of the exciton may be expanded by the Bloch functions of the
electron and hole:

Ψ n,K (re, rh) =
∑

c,ke,v,kh

An,K
cv (ke, kh)ψcke(re)ψvkh(rh) . (4.75)

1Here we are dealing with the Hamiltonian of an electron in a valence band Hv and we express
the state by the Bloch function ψv,k(rv) and its energy eigenvalue by Ev(kv). When a hole state is
considered, we have to use the relations: kh = −kv, Eh(kh) = −Ev(−kv).
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Using the wave function of (4.75) in the Hamiltonian of (4.74), multiplying the
complex conjugate of the Bloch functions ψ∗

c′k′
e
(re)ψ∗

v′k′
h
(rh), and integrating over

re, rh, we obtain

[Ec′(k′
e) + Eh′(k′

h) − E] An,K
c′v′ (k′

e, k
′
h)

+
∑

c,ke,v,kh

〈c′k′
e; v′k′

h|V (re − rh)|cke; vkh〉An,K
cv (ke, kh) = 0 , (4.76)

wherewehaveused the orthonormality of theBloch functions. Sinceweare interested
in theWannier exciton,which isweakly bound, the electron-hole interaction potential
(Coulomb potential) V (re − rh) is assumed to vary very slowly over the distance
of the lattice constant, and thus the interaction term may be moved outside of the
integral. Taking into account the periodicity of the Bloch functions, the integral may
be replaced by a summation of the integral in the unit cell. Therefore, we can derive

[Ec(ke) + Eh(kh) + V (re − rh) − E] An,K
cv (ke, kh) = 0 , (4.77)

where c′, k′
e, . . . are written as c, ke, . . . for simplicity. Here we assume that the

conduction and valence bands are parabolic with scalar masses and that at the top of
the valence band Ev = 0, i.e.

Ec(ke) = �
2k2

2me
+ EG,

Eh(kh) = �
2k2h
2mh

,

where Ec − Ev = EG is the energy gap. The Fourier transform of An,K
cv is given by

Φn,K
cv (re, rh) = 1

V

∑
ke,kh

eike·re eikh·rh · An,K
cv (ke, kh) (4.78)

and the Fourier transform of (4.77) is derived in a similar fashion giving rise to

[Ec(−i∇e) + Eh(−i∇h) + V (re − rh) − E]Φn,K
cv (re, rh) = 0 . (4.79)

In the derivation of the above equation we used the following relation under the
assumption of parabolic bands:

Ec(−i∇e)Φ
n,K
cv (re, rh) =

[
− �

2

2me
∇2

e + EG
]

Φn,K
cv (re, rh)

=
[

�
2k2e
2me

+ EG
]

Φn,K
cv (re, rh) = Ec(ke)Φn,K

cv (re, rh) ,
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and a similar relation for the hole band. Equation (4.79) is the effective-mass equa-
tion for exciton. Equation (4.79) is also obtained from the effective-mass equation
derived in Sect. 3.2.

The effective-mass equation (4.79) for the exciton may be rewritten as[
− �

2

2me
∇2

e + EG − �
2

2mh
∇2

h

− e2

4πε|re − rh| − E
]
Φn,K

cv (re, rh) = 0 . (4.80)

This equation is well known as the two body problem in quantum mechanics and
the solution is obtained by separating the variables into center-of-mass motion and
relative motion. Then we put

r = re − rh, R = mere + mhrh
me + mh

,

1

μ
= 1

me
+ 1

mh
, M = me + mh,

and (4.80) is rewritten as[(
− �

2

2M
∇2

R

)
+

(
− �

2

2μ
∇2

r − e2

4πεr

)]
Φn,K (r, R)

= [E − EG] · Φn,K (r, R) . (4.81)

The solution of this equation is given by

Φn,K (r, R) = φK (R)ψn(r),

where φK (R) and ψn(r) are respectively given by the separate equations

HRφK (R) ≡ − �
2

2M
∇2

R φK (R) = E(K ) · φK (R), (4.82)

Hrψn(r) ≡
[
− �

2

2μ
∇2

r + V (r)
]

ψn(r) = En · ψn(r). (4.83)

The total energy of the system (exciton state) E is then given by

E = E(K ) + En + EG . (4.84)

The energy due to the center-of-mass motion E(K ) is calculated by inserting the
wave function φK (R) ∝ exp(iK · R) into (4.82):

E(K ) = �
2K 2

2M
. (4.85)

http://dx.doi.org/10.1007/978-3-319-66860-4_3
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On the other hand, the energy due to the relative motion En is obtained from (4.83),
which is the same as the bound state energy for shallow donor states derived from
the effective mass equation:

En = − μ

m

(ε0

ε

)2 · EH
n2

= −Eex
n2

(n = 1, 2, 3, . . .), (4.86)

Eex = μ

m

(ε0

ε

)2
EH = μe4

2(4πε)2�2
, (4.87)

where EH is the ionization energy for the hydrogen atom. From these results we
obtain the total energy of an exciton

E = −Eex
n2

+ �
2K 2

2M
+ EG . (4.88)

Here we have to note that the energy of an exciton is measured from the bottom of
the conduction band (Ec = 0). The above calculations reveal that the exciton states
consists of the center-of-mass motion of the electron-hole pair with wave vector K
and of the relative motion bound by the Coulomb attraction force, and that the total
energy of the exciton is the sum of the energies due to the center-of-mass motion
EK = �

2K 2/2M and to the motion of relative coordinates En .
As an example, we assume parameters close to those of GaAs, such as μ/m =

0.05 and ε/ε0 = 13, and then we obtain En = −3 × 10−4EH/n2 which gives the
bound energy of the ground state (n = 1) of about 4meV. The exciton Bohr radius
is estimated from (3.43) to be aex = (m/μ)(ε/ε0)aB which gives aex ≈ 150Å.
Figure4.9 illustrates the energy states of an exciton, where the energy depends on
the wave vector K for the center-of-mass motion. In general, we are concerned with
the optical excitation of excitons and thus we can assume K = 0.

As shown in the above example, the effective Bohr radius of an exciton is much
larger than the lattice constant and thus this condition validates the use of the effective
mass approximation. As described above we divide the exciton motion into two
motions, relative motion in the space r and center-of-mass motion in the space R,
and express the wave functions of the effective mass equation by

Φn,K (r, R) = 1√
V

exp(iK · R)φn(r) , (4.89)

where φn(r) is called the envelope function of an exciton. The ground state of the
exciton is given in analogy to the hydrogen atom with a shallow donor state as

φ1(r) = 1√
πa3ex

exp(−r/aex) , (4.90)

where aex = (m/μ)(ε/ε0)aB is the effective Bohr radius of the exciton. By the inverse
transformation of the wave function (4.89), we obtain the coefficient An,K

cv (ke, kh)

http://dx.doi.org/10.1007/978-3-319-66860-4_3
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Fig. 4.9 Energy states of
exciton as a function of wave
vector K for the
center-of-mass motion.
Discrete states are shown by
solid curves and the
continuum state by the
chequered region

An,K
cv (ke, kh) = 1

V

∫
d3red3rhe−ike·re e−ikh·rhΦn,K

cv (ke, kh)

= 1√
V

∫
d3rd3Re−iR·(ke+kh−K )φn(r)e−ik∗·r

= 1√
V

∫
d3re−ik∗·rφn(r)δK ,ke+kh , (4.91)

k∗ = mhke − mekh
M

. (4.92)

As defined in (4.73), the wave vector K is the sum of the wave vectors of the electron
and hole (ke + kh). The coefficient A1,K

cv (ke, kh) for the exciton ground state is
obtained by inserting (4.90) into the above equation for n = 1:

A1,K
cv (ke, kh) = 1√

V

(
64π

a5ex

)1/2 1

(k∗2 + 1/a2ex)
2

δK ,ke+kh , (4.93)

where A1,K
cv (ke, kh) is found to decrease very rapidly when |ke| and |kh| exceed 1/aex

and thus the wave vectors contributing to the 1s exciton are limited to a narrow region
of the Brillouin zone |k| ≤ 1/aex. In the case of theWannier exciton, aex is very large
compared to the lattice constant and thus only a narrow region of wave vectors in k
space plays an important role in the formation of the exciton. A similar conclusion
is drawn for the case of shallow donors.

Next we will discuss light absorption by excitons. Let us assume the initial state
to be given by Ψ0 = φc,keφv,−kh = φc,keφv,ke before excitation, with an electron in
the valence band, and the transition from the initial state to the excited state of an
exciton given by Ψ λ,K . According to the treatment stated in Sect. 4.2 the transition
probability per unit time wif is written as
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wif = 2π

�
· e2

m2
|A0|2 1

V

∑
λ

∣∣〈Ψ λ,K | exp(ikp · r)e · p|Ψ0〉
∣∣2

×δ(EG + Eλ − �ω)

= 2π

�
· e2

m2
|A0|2 1

V

∑
ke,λ

∣∣Aλ,K
cv (ke,−ke)〈φc,ke |e · p|φv,ke〉

∣∣2

×δ(EG + Eλ − �ω) , (4.94)

where the wave vector of light kp is assumed to be 0 and the momentum conservation
law ke = −kh is used. The total energy of the exciton Eλ includes the continuum
state (En > 0). Since Aλ,K

cv has a large value only in a narrow region of ke ≈ 0, the
term 〈φc,ke |e · p|φv,ke〉 is regarded as constant in the narrow region of k space we are
interested in. Under these assumptions and the condition ke = −kh we obtain

Aλ,K
cv (ke,−kh) = 1

V

∫
d3red3rhe−ike·(re−rh)Φλ,K

cv (re, rh) . (4.95)

The summation in (4.95) with respect to ke is non-zero only when re − rh = 0, as
shown in Appendix A.2. Therefore, we obtain

wif = 2π

�
· e2

m2
|A0|2

∑
λ

|e · pcv|2|φλ(0)|2 δ(EG + Eλ − �ω) , (4.96)

where |e · pcv| is the momentum matrix element defined in Sect. 4.2. The imaginary
part of the dielectric function κ2(ω) = ε2(ω)/ε0 is then written as

κ2(ω) = πe2

ε0m2ω2
|e · pcv|2

∑
λ

|φλ(0)|2 δ(EG + Eλ − �ω) . (4.97)

First, we consider the excitation of the discrete states of the bound exciton and
their transition probability. When we assume parabolic bands with scalar effective
masses for simplicity, the relation φλ(0) �= 0 is fulfilled only for the s state of the
bound exciton. The quantum number λ of the exciton states can then be expressed
only by the principal quantum number n:

|φn(0)|2 = 1

πa3exn
3
, (4.98)

Eλ = En = −Eex
n2

, (4.99)

and therefore we find the following relation for the bound states:

κ2(ω) = πe2

ε0m2ω2
|e · pcv|2

1

πa3ex

∑
n

1

n3
δ

(
EG − Eex

n2
− �ω

)
. (4.100)
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In the above equation the spin degeneracy is disregarded and κ2(ω) differs by a
factor of 2 from the result in Sect. 4.2. Equation (4.100) reveals that the oscillator
strength of exciton absorption spectra is proportional to 1/n3 and that the discrete
lines converge to �ω = EG.

On the other hand, the continuum states of exciton is given by φλ(0) �= 0 only
for the magnetic quantum number m = 0, and its state is determined by the wave
vector k. Elliott [6] has shown that

|φk(0)|2 = πα0 exp(πα0)

sinh(πα0)
, (4.101)

Eλ = Ek = �
2k2

2μ
, (4.102)

where α0 = (aex|k|)−1 = [Eex/(�ω − EG)]1/2. We obtain the imaginary part of the
dielectric function for the continuum state:

κ2(ω) = πe2

ε0m2ω2

2π

(2π)3

(
8μ1μ2μ3

�6

)1/2

E1/2
ex |e · pcv|2

π exp(πα0)

sinh(πα0)
. (4.103)

Now, we consider two extreme conditions. The asymptotic solutions of κ2(ω) for
α0 → 0 (�ω → ∞) and for α0 → ∞ (�ω → EG) may be given by, respectively,

κ2(ω)α0→0 = πe2

ε0m2ω2

2π

(2π)3

(
8μ1μ2μ3

�6

)1/2

×|e · pcv|2
√

�ω − EG, (4.104a)

κ2(ω)α0→∞ = πe2

ε0m2ω2

1

2π

(
8μ1μ2μ3

�6

)1/2

E1/2
ex |e · pcv|2 . (4.104b)

In the case of α0 → 0, Eex is very small and the relation �
2k2/2μ � Eex holds.

Therefore, the energy of the exciton is much larger than the electron-hole interac-
tion potential and thus we may neglect the Coulomb interaction, giving rise to the
result obtained for the one-electron approximation. This is evident from the fact that
(4.104a) agrees with (4.39) obtained for the M0 critical point in Sect. 4.3 except for
the spin degeneracy factor 2. In the case ofα0 → ∞, on the other hand, (4.104b)may
be expected to agree with κ2(ω) for the discrete excitons. When n is large, the exci-
ton absorption lines will overlap each other and cannot be distinguished each other,
leading to a quasi-continuum state. The density of states for this case is estimated
from (dE/dn)−1 = n3/2Eex, and then we obtain

|φn(0)|2 ·
(
dE
dn

)−1

= 1

2πa3exEex
= 1

2π

(
8μ3

�6

)1/2

E1/2
ex . (4.105)

Now we find that the dielectric functions κ2(ω) obtained from the bound (discrete)
states and from the continuum state agree with each other at �ω = EG . Figure4.10
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Fig. 4.10 Absorption spectra (κ2) due to direct excitons and due to the one-electron approximation
(without electron-hole interaction) are plotted in the region near the fundamental absorption edge
as a function of photon energy, where the spectrum for exciton absorption is calculated by assuming
Γ = 0.2Eex and the Lorentz function for the discrete (bound) exciton

shows absorption spectra (spectra of α(ω) ∝ κ2(ω)) calculated by taking account of
the electron-hole interaction, where the dielectric function without the electron-hole
interaction (one-electron approximation) is also plotted for comparison. We have
to note here that the calculations are approximated by using the Lorentz function
with the broadening parameter Γ = 0.2Eex and by neglecting the spin degeneracy
factor 2. We see exciton absorption associated with n = 1 and n = 2 in Fig. 4.10.

Here wewill discuss the Lorentz function approximation of the dielectric function
for the discrete (bound) exciton. We express (4.100) by

κ2(ω) = C · δ

(
EG − Eex

n2
− �ω

)
.

As shown in Appendix A, the Dirac delta function can be approximated by the
Lorentz function in the limit of Γ → 0. Using the Dirac identity in the limit of
Γ → 0, we may write

1

EG − Eex/n2 − (�ω + iΓ )

= P
{

1

EG − Eex/n2 − �ω

}
+ iπδ

(EG − Eex/n2 − �ω
)

(4.106)

and a comparison of the dielectric function κ2(ω) with the imaginary part of above
equation gives the following relation:

κ2(ω) = �
{

C/π

EG − Eex/n2 − (�ω + iΓ )

}
= CΓ/π(EG − Eex/n2 − �ω

)2 + Γ 2

= C · δ

(
EG − Eex

n2
− �ω

)
. (4.107)
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The second relation of the above equation with C = 1 is called the Lorentz function.
The Lorentz function is characterized by the center located at �ω = (EG − Eex/n2)
and by its full-width half-maximum Γ . The integral of the Lorentz function with
respect to �ω is equal to unity. In the limit of Γ → 0, therefore, the Lorentz function
is equivalent to δ(EG − Eex/n2 − �ω). From these considerations it is possible to
replace the delta function by the Lorentz function. As shown in Sect. 4.6, the real part
of the dielectric function is obtained from the Kramers–Kronig relation of (4.126a):

κ1(ω) = 2

π
P
∫ ∞

0

ω′κ2(ω
′)

(ω′)2 − ω2
dω′

= 2

π
P
∫ ∞

0

ω′ · C · δ(EG − Eex/n2 − �ω′)
(ω′)2 − ω2

dω′

= 2C

π

EG − Eex/n2
(EG − Eex/n2)2 − (�ω)2

. (4.108)

The above result may be approximated by

κ1(ω) = 2C

π

EG − Eex/n2
(EG − Eex/n2)2 − (�ω)2

= C/π

EG − Eex/n2 − �ω
+ C/π

EG − Eex/n2 + �ω

	 C/π

EG − Eex/n2 − �ω
. (4.109)

The final relation of the above equation is obtained from the second relation by
assuming that the second term is non-resonant and small compared to the first term,
enabling us to neglect the second term. The complex dielectric function of the exciton
is therefore approximated by

κ(ω) = κ1(ω) + iκ2(ω) = C/π

EG − Eex/n2 − (�ω + iΓ )
. (4.110)

The above relation coincides with the result obtained by the second quantization
method [7]. The experimental results for the optical absorption in GaAs is shown in
Fig. 4.11 [8]. At low temperatures (T = 186, 90, 21K) the exciton absorption peak
for n = 1 is clearly seen and the overall features are in good agreement with the
calculated absorption spectrum shown in Fig. 4.10.

4.5.2 Indirect Exciton

In the above calculations, we dealt with excitons associated with the fundamental
absorption edge of the M0 critical point at the Γ point (direct transition), where the
top of the valence band and the bottom of the conduction band are located at k = 0.
We have also shown that a weak absorption will appear for the indirect transition
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Fig. 4.11 Experimental
results of the optical
absorption in GaAs at
different temperatures. The
exciton peak is clearly
observed at low temperatures
from (M.D. Sturge [8]) and
the overall features are in
good agreement with the
calculated results shown in
Fig. 4.10

ω

α
where the top of the valence band and the bottom of the conduction band are located
at different k in the Brillouin zone and is an indication of the existence of the exciton
effects in such indirect gap semiconductors. In this subsection we will be concerned
with exciton effect in indirect gap semiconductors such as Ge, Si, GaP and so on.
The top of the valence band and the bottom of the conduction band are assumed to
be located at kv0 (= −kh0) and kc0 (= ke0) (kv0 �= kc0), respectively, and the bands
are approximated by the parabolic functions

Ec = EG + �
2

2me
(kc − kc0)2,

Eh = −Ev = �
2

2mh
(kv − kv0)2.

Putting k′
e = kc − kc0 = ke − kc0, k

′
h = −(kv − kv0) ≡ kh − kh0, then the effective

mass equation for this exciton is written as[
− �

2

2me
∇2

e − �
2

2mh
∇2

h − e2

4πεr

]
Φλ,K ′

(re, rh)

= EλΦ
λ,K ′

(re, rh) , (4.111)

where K ′ = k′
e + k′

h = (ke + kh) − (ke0 + kh0). Following the treatment of the
direct exciton, the wave function Φλ,K ′

(re, rh) may be separated into translational
(center-of-mass) motion (R) and relative motion (r):

Φλ,K ′ = 1√
V

φλ(r) exp(iK ′ · R)

where we find that φλ(r) satisfies (4.83) and thus the total energy of the exciton is
given for the bound state by

Eλ = En = −Eex/n2 + �
2K ′2

2M
. (4.112)
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Fig. 4.12 Optical absorption
spectra associated with an
indirect exciton, where
α(ω) ∝ κ2(ω) is plotted as a
function of photon energy.
The absorption coefficient
increases at photon energies
associated with phonon
emission and absorption

+ ω− ω

ω

ω ε ε− −

Therefore, we obtain the dielectric function of the indirect exciton for the bound state
as

κ2(ω) = πe2

ε0m2ω2

∑
m,α,±

|e · pm,α,±
cv |2|φn(0)|2

× δ

[
EG − Eex

n2
+ �

2

2M
{ke + kh − (ke0 + kh0)}2 − �ω ± �ωα

q

]

= πe2

ε0m2ω2
· 1

2π2

∑
m,α,±

|e · pm,α,±
cv |2 1

πa3ex
·
(
2M

�2

)3/2

· 1

n3

×
√

�ω − EG ∓ �ωα
q + Eex/n2 . (4.113)

It is evident from these results that the dielectric function κ2(ω) for the bound state
of the indirect exciton does not exhibit any discrete lines but a continuum spectrum.
This feature may be understood by noting that the wave vector K ′ of the indirect
exciton is different from the direct exciton due to the exchange of momentum of the
indirect exciton with the lattice vibrations, giving rise to the possibility of the wave
vector taking arbitrary values.

Figure4.12 shows an illustration of (4.113). As stated in Sect. 4.5, the absorp-
tion coefficient calculated from the one-electron approximation shows an increase
at the photon energies corresponding to phonon absorption and phonon emission.
When the Coulomb interaction between the electron and hole is taken into account,
κ2(ω) increases at photon energies EG − Eex/n2 ± �ωqα and the distance between
the two rising points is equal to twice the phonon energy. The most significant dif-
ference between the two curves is the photon energy dependence of the absorption
coefficients. The dielectric function κ2(ω) exhibits quadratic behavior with respect
to photon energy in the case without Coulomb interaction, whereas κ2(ω) for the
indirect exciton shows a square root dependence of photon energy. These features
explain the deviation from a linear relation of the

√
α versus photon energy plot of Ge

in Fig. 4.8 by means of the exciton effect. The experimental observation of indirect
excitons in GaP is shown in Fig. 4.13, where the square root of the absorption coef-
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Fig. 4.13 Square root of the
absorption coefficient α1/2 in
GaP is plotted as a function
of photon energy. The arrows
indicate an increase in the
absorption coefficient due to
exciton effect (phonon
emission) (Gershenzon et al.
[9])

α
ficient is plotted as a function of photon energy. The results are in good agreement
with (4.113) [9], where phonon modes involved with the transition are indicated. We
note here that a general expression of κ2(ω) as a function of �ω is not obtained, but
that an asymptotic form is obtained for �ω −EG � Eex, which agrees with the result
of the one-electron approximation without the exciton effect (see [6]).

4.6 Dielectric Function

The polarization vector P(ω) in a material due to an external field E(ω) of angular
frequency ω is defined by

P(ω) = χ(ω)ε0E(ω) , (4.114)

whereχ(ω) is the susceptibility tensor. Since the susceptibility tensor is an analytical
function of frequency in real numbers, it is rewritten by using the Cauchy relation as

χ(ω) =
∫ +∞

−∞
dω′

2πi

χ(ω′)
ω′ − ω − iε

, (4.115)

where ε is an infinitely small positive number. In Appendix A we derive the Dirac
identity relation given by (A.2)

lim
ε→0

1

ω − iε
= P 1

ω
+ iπδ(ω) . (4.116)

The integration of (4.115) is carried out by using the Dirac identity relation, which
gives rise to
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χ(ω) = P
∫ ∞

−∞
dω′

2πi

χ(ω′)
ω′ − ω

+ 1

2

∫ ∞

−∞
dω′χ(ω′)δ(ω′ − ω) , (4.117)

or

χ(ω) = P
∫ ∞

−∞
dω′

πi

χ(ω)

ω′ − ω
. (4.118)

Now, we define the complex dielectric function by

χ(ω) = χ1(ω) + iχ2(ω) (4.119)

and then we obtain the following relation from (4.118):

χ1(ω) = P
∫ ∞

−∞
dω′

π

χ2(ω
′)

ω′ − ω
, (4.120a)

χ2(ω) = −P
∫ ∞

−∞
dω′

π

χ1(ω
′)

ω′ − ω
. (4.120b)

We divide the integration for χ1 into the following two regions:

χ1(ω) = P
∫ 0

−∞
dω′

π

χ2(ω
′)

ω′ − ω
+ P

∫ ∞

0

dω′

π

χ2(ω
′)

ω′ − ω
.

The reality condition for the susceptibility tensor (dielectric tensor) χ(ω) = χ∗(−ω)

leads to the following relations

χ1(ω) = χ1(−ω), (4.121a)

χ2(ω) = −χ2(−ω) . (4.121b)

Using these relations we obtain for χ1(ω)

χ1(ω) = P
∫ ∞

0

dω′

π
χ2(ω

′)
[

1

ω′ + ω
+ 1

ω′ − ω

]

= P
∫ ∞

0

dω′

π
χ2(ω

′)
2ω′

ω′2 − ω2
. (4.122)

In a similar fashion we calculate χ2(ω) and therefore obtain the following relations:

χ1(ω) = 2

π
P
∫ ∞

0

ω′χ2(ω
′)

ω′2 − ω2
dω′ , (4.123a)

χ2(ω) = −2ω

π
P
∫ ∞

0

χ1(ω
′)

ω′2 − ω2
dω′ . (4.123b)

The above relations are called the Kramers–Kronig relations, and the transform
between the real and imaginary part of the susceptibility tensors is called the
Kramers–Kronig transform. The dielectric constant κ(ω) is related to the suscep-
tibility by using the definition of electric displacement D through
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Fig. 4.14 Energy band
structure of Ge calculated by
the k · p perturbation method
and the direct transitions at
several important critical
points (shown by arrows) Δ

Δ

Δ

Δ

ΔΛ

Λ

Λ

Λ

Λ

Γ

Γ

Γ

+ Δ+ Δ+ Δ

π π

D = ε0E + P = (1 + χ)ε0E

≡ κε0E ≡ εE , (4.124)

and the following relation holds:

κ(ω) = 1 + χ(ω) . (4.125)

Therefore, the Kramers–Kronig relations for the dielectric constant κ(ω) are given
by

κ1(ω) = 1 + 2

π
P
∫ ∞

0

ω′κ2(ω
′)

ω′2 − ω2
dω′ (4.126a)

κ2(ω) = −2ω

π
P
∫ ∞

0

κ1(ω
′)

ω′2 − ω2
dω′ , (4.126b)

or, using (4.40), the relations

χ2(ω) = κ2(ω) = π

ε0

( e

mω

)2 ∑
k

|e · pcv|2δ [Ecv(k) − �ω] , (4.127a)

χ1(ω) = κ1(ω) − 1 = 2

π

∫ ∞

0

ω′κ2(ω
′)dω′

ω′2 − ω2

= 2

ε0

(
e�

m

)2 ∑
k

|e · pcv|2
Ecv(k) · 1

E2
cv(k) − �2ω2

(4.127b)

are obtained.
The energy band structure of Ge calculated by the k · p perturbation method is

shown in Fig. 4.14, where the optical transitions at the critical points are indicated
by arrows and the notation of the critical points is after Cardona [2, 10]. It should
be noted that the representation used for the energy bands is the notation for the
single group instead of the double-group representation. The reason is due to the fact
that the basis functions used for the k · p perturbation calculations are those for the
single-group representation. In the following we will derive the dielectric functions,
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real and imaginary parts, at the critical points shown in Fig. 4.14. The results are
very important for understanding the optical properties of semiconductors. First, we
derive the imaginary part of the dielectric function for a critical point, and the real
part is calculated by using the Kramers–Kronig relation.

4.6.1 E0, E0 + Δ0 Edge

The critical points E0 and E0 + Δ0 are associated with the direct transition from
the valence band and the spin-orbit split-off band to the lowest conduction band at
the Γ point and thus they are M0 type. The imaginary part of the dielectric function
κ2(ω) is calculated in Sects. 4.2 and 4.3. The real part of the dielectric function is
calculated from the Kramers–Kronig relations.2 The imaginary part of the dielectric
function for the E0 edge is

κ2(ω) =
∑
i=1,2

A|〈c|p|vi 〉|2 1

ω2
(ω − ω0)

1/2 , (4.128)

A = e2�1/2

2πε0m2

(
2μi

�2

)3/2

, (4.129)

where i represents the heavy and light hole valence bands and the summation is
carried out for the two bands. μi is the reduced mass of the valence bands and the
conduction band, and ω0 = E0/� ≡ EG/�. Similarly the absorption coefficient for
the transition at the E0 +Δ0 edge between the spin-orbit split-off and the conduction
band is calculated, which is given by replacing the momentum matrix element by
|〈c|p|vso〉|2 = |〈c|p|vi 〉|2 ≡ P2

0 (P0 is defined in (2.83b) and (2.203d)), the reduced
mass by μso and ω0 by ω0s = (EG + Δ0)/�.

Using (4.126a) we obtain

κ1(ω) − 1

= AP2
0 ω

−3/2
0

1

x20

[
2 − (1 + x0)

1/2 − (1 − x0)
1/2

] ; for x < x0 (4.130a)

= AP2
0 ω

−3/2
0

1

x20

[
2 − (1 + x0)

1/2
] ; for x > x0 (4.130b)

where x0 = ω/ω0.

2In this section we follow the custom adopted in the optical spectroscopy of semiconductors, and
the critical points are expressed by symbols such as E0, E1 and E2 instead of the notation for energy
E j used in this text. In later sections we use E for the electric field, which will not introduce any
complication or confusion.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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According to the k · p perturbation method described in Sect. 2.4, the effective
mass is defined as a function of the momentum matrix element P0 and the energy
gaps. From (2.82) we have

1

m(Γ2′)
= 1

m
+ 2P2

0

3m�

(
2

ω0
+ 1

ω0 + Δ0

)
(4.131)

for the electron in the conduction band at the Γ point. We take into account the Γ2′

conduction and the Γ25′ valence bands and neglect the perturbation due to higher
bands. The effective mass in the 〈001〉 direction is obtained from (2.65) and (2.67)
as

�
2/2

mhh(001)
= −A − |B| , (4.132a)

�
2/2

m lh(001)
= −A + |B| , (4.132b)

�
2/2

mso
= −A − Δ0 . (4.132c)

Using the definitions of Luttinger (2.226), (2.227) and (2.228) in Sect. 2.7 and
neglecting contribution from the higher lying conduction bands, we obtain

A = �
2

2m
[1 + F + 2G] 	 �

2

2m
[1 + F] , (4.133a)

B = �
2

2m
[1 + H1 + H2] 	 �

2

2m
[1] , (4.133b)

C = �
2

2m
[F − G + H1 − H2] 	 �

2

2m
[F] . (4.133c)

and using (2.234)

F = −EP0

3

[
2

EG + 1

EG + Δ0

]
, EP0 = 2

m
P2
0 . (4.134)

m

mhh(001)
= −2 − F (4.135a)

m

mhh(001)
= −F (4.135b)

m

mso(001)
= −(1 + F) (4.135c)

m

m(Γ2′)
= 1 − F (4.135d)

Therefore the reduced masses are given by

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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m

μhh
= m

m(Γ2′)
+ m

mhh
= −1 − 2F = −1 + 2EP0

3

[
2

EG + 1

EG + Δ0

]

	 −1 + 2EPO

EG (4.136a)

m

μlh
= m

m(Γ2′)
+ m

m lh
= 1 − 2F = 1 + 2EP0

3

[
2

EG + 1

EG + Δ0

]

	 1 + 2EPO

EG (4.136b)

m

μso
= m

m(Γ2′)
+ m

mso
= −2F = 2EP0

3

[
2

EG + 1

EG + Δ0

]

	 2EPO

EG (4.136c)

The above results reflect that the electron effective massm(Γ2′) is small compared
with the effective masses of the heavy, light, and spin-orbit split off bands. As an
example we consider the case of GaAs, where EG = 1.51 [eV]. Δ0 = 0.341 [eV],
and EP = 28.8 [eV]. Assuming EG � Δ0 and EPO/EG � 1, we obtain the following
simple relation:

1

μhh
= 1

μlh
= 1

μso
= 2EPO

mEG = 2EPO

m�ω0
(4.137)

μi ≡= mEG
2EPO

= m�ω0

2EPO
(4.138)

Therefore, the real part of the dielectric function due to the contribution from the E0

edge and the E0 + Δ0 edge is given by

κ1(ω) − 1 = C0
′′
[
f (x0) + 1

2

(
ω0

ωso

)3/2

f (x0s)

]
(4.139)

where C0
′′ 	 2AP2

0 ω
−3/2
0 with μi = m�ω0/(2EPO) = mEG/2EP0, x0 = ω/ω0 and

x0s = ω/(ω0 + Δ0). The function f (x) is defined as

f (x) = x−2
[
2 − (1 + x)1/2 − (1 − x)1/2

]
. (4.140)

4.6.2 E1 and E1 + Δ1 Edge

We have already mentioned that the joint density of states for the optical transition
given by (4.44) exhibits a divergence when the condition given by (4.49) or (4.50) is
satisfied. The energy band calculations show that the conduction band and the valence
band are parallel over a wide range of the wave vector k in the 〈111〉 direction of
k space, satisfying the condition of (4.50). As discussed in Chap.2, the conduction
bandΛ1 originated fromΓ2′ and the valence bandsΛ3 (doubly degenerate bands split

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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into heavy and light hole bands due to the spin-orbit interaction) originated from Γ25′

exhibit the parallel behavior, and these features appear in almost all semiconductors,
giving rise to a critical point called E1 and E1 + Δ1. Since the critical point is
associated with the parallel feature over a wide range in the 〈111〉 direction, the
critical point may be approximated as being two-dimensional and the density of
states can be expressed by the step function

E1 : κ2 = B|〈c|p|v〉|2ω−2H(ω − ω1)

E1 + Δ1 : κ2 = B ′|〈c|p|v〉|2ω−2H(ω − ω1 − Δ1)

}
, (4.141)

where B = √
3πμ(E1)e2/ε0�2m2a0, B ′ = √

3πμ(E1 + Δ1)e2/ε0�2m2a0 	 B, and
H is the step function defined as H(x) = 0 for x < 0 and H(x) = 1 for x > 0. The
detail of the derivation is found in the papers by Cardona [11] and Higginbotham
et al. [12]. The lattice constant a0 appears in the above equation from the integral∫
dkz = 2π

√
3/a0. The real part of the dielectric function for the E1 edge and the

E1 + Δ1 edge is calculated from the Kramers–Kronig relation as

κ1(ω) − 1 = − B

π
|〈c|p|v〉|2ω−2log

∣∣∣∣ω
2
1 − ω2

ω2
1

∣∣∣∣
= B

π
|〈c|p|v〉|2ω−2

1

(
1 + 1

2

ω2

ω2
1

+ · · ·
)

(4.142)

for the E1 edge, and

κ1(ω) − 1 = − B ′

π
|〈c|p|v〉|2ω−2log

∣∣∣∣ (ω1 + Δ1)
2 − ω2

(ω1 + Δ1)2

∣∣∣∣
= B ′

π
|〈c|p|v〉|2(ω1 + Δ1)

−2

(
1 + 1

2

ω2

(ω1 + Δ1)2
+ · · ·

)
(4.143)

for the E1 + Δ1 edge.

4.6.3 E2 Edge

The reflectance R and the imaginary part of the dielectric function κ2(ω) in semicon-
ductors exhibit a large peak at around �ω 	 4eV and the peak is called the E2 edge.
The origin of the E2 edge is not well identified, but is believed to be associated with
a combination of several critical points. Here the dielectric function of the E2 edge
is treated by the method proposed by Higginbotham, Cardona and Pollak [12]. Since
the E2 edge has a large peak at �ω = E2, the dielectric function is approximated
by using a simple harmonic oscillator model, the Drude model. Then the dielectric
function is given by

κ1(ω) − 1 	 C2
′′ω2

2

ω2
2 − ω2

	 C2
′′(1 + x22 ) , (4.144)

where �ω2 = E2 and x2 = ω/ω2.
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4.6.4 Exciton

As we discussed in Sect. 4.5, exciton absorption will occur in semiconductors with
a direct gap, where excitons consists of electron-hole pairs interacting through the
Coulomb potential and the absorption energy is below the fundamental absorption
edge by the exciton binding energy (a few meV). For simplicity, we will consider
the ground state excitons excited at the E0 edge, and then the absorption may be
approximated by the Lorentz function. The real part of the dielectric function for the
exciton is derived in Sect. 4.5 and given by (4.108):

κ1(ω) 	 Cex
′′ω2

ex

ω2
ex − ω2

= Cex
′′

1 − x2ex
, (4.145)

where �ωex is the energy of the exciton, the binding energy is Eex = �(ω0 − ωex),
and xex = ω/ωex.

The above results are summarized to give the real part of the dielectric function
below the E0 edge as

κ1(ω) − 1 = Cex
′′

1 − x2ex
+ C0

′′
[
f (x0) + 1

2

(
ω0

ω0s

)3/2

f (x0s)

]
,

+C1
′′
[
h(x1) +

(
ω1

ω1s

)2

h(x1s)

]
+ C2

′′(1 + x22 ), (4.146)

where x1 = ω/ω1, x1s = ω/(ω1 + Δ1) and

h(x) = 1 + 1

2
x2 . (4.147)

It is well known that the higher-energy edges exhibit only a weak dispersion in the
dielectric constant and thus the contribution is approximated by replacing 1 with a
constant D in κ1(ω) − 1. This approximation is known to give good agreement with
experiment in many semiconductors.

Examples of the comparison between the theory and experiment are shown in
Fig. 4.15 for Ge and in Fig. 4.16 for GaAs, where the solid curves are best fitted by
using (4.146) by neglecting the contribution from the exciton effect and we find good
agreement between the theory and experiment. The parameters used to calculated
the theoretical curves in Fig. 4.15 for Ge and in Fig. 4.16 for GaAs are shown in
Table4.3.

It has been shown that the dielectric function is well expressed by taking the
contribution from the E0 edge and the E0 + Δ0 edge into account [13]. When we
adopt this approximation, the real part of the dielectric function is given by the terms
due to the E0 edge and the E0 +Δ0 edge and the constant D due to the contributions
from the other edges. Therefore, the dielectric function is well expressed by
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Fig. 4.15 The real part of
the dielectric function for
Ge, where experimental
results are compared with the
best fitted curve calculated
from (4.146) (without the
exciton effect) (from [12])

κ
Fig. 4.16 The real part of
the dielectric function for
GaAs, where experimental
results are compared with the
best fitted curve calculated
from (4.146) (without the
exciton effect) (from [12])

κ

Table 4.3 Parameters use to fit the theoretical curves of the dielectric functionwith the experimental
results in Ge and GaAs. All the parameters are for T = 300K and the critical point energies are
shown in units of [eV]

Ge GaAs

Experiment Calculation Experiment Calculation

C0
′′ 4.85 1.90 7.60 1.53

C1
′′ 5.60 3.22 2.05 2.50

C2
′′ 3.10 3.50

E0 0.797 1.43

E0 + Δ0 1.087 1.77

E1 2.22 2.895

E1 + Δ1 2.42 3.17

E2 4.49 4.94

κ1(ω) = C0
′′
[
f

(
ω

ω0

)
+ 1

2

(
ω0

ω0s

)3/2

f

(
ω

ω0s

)]
+ D . (4.148)

The difference in C0
′′ between the fit and the theory is believed to be due to the

exciton effect and neglect of the contribution from the higher-energy critical points.
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4.7 Piezobirefringence

4.7.1 Phenomenological Theory of Piezobirefringence

When a stress is applied to a semiconductor crystal, it produces a change in the
refractive index in the parallel and perpendicular directions. This effect is called
piezobirefringence. The plane of polarization of the light makes an angle of 45◦
with the stress direction. Experimentally, one obtains the phase differenceΔ between
the components of the light polarized parallel and perpendicular to the stress axis.
Assuming a sample thickness t the phase difference per unit length is given by [12]

Δ

t
= 2π

(
n‖ − n⊥

)
λ

, (4.149)

where λ is the wavelength of the incident light, and n‖ and n⊥ are the refractive
indices of the polarization in the directions parallel and perpendicular to the stress.
Normally the piezobirefringence experiment is carried out in the transparent region
of the optical spectrum, where the absorption coefficient is small, enabling us to
neglect the imaginary part of dielectric function (κ2 	 0) and thus to use (4.149)

Δ

t
= 2π

λ

[
(κ1)‖ − (κ1)⊥

n‖ + n⊥

]
	 π

λn0

[
(κ1)‖ − (κ1)⊥

]
, (4.150)

where n0 is the refractive index without stress and relations derived from (4.15) are
used such as n‖ = √

(κ1)‖. Piezobirefringence has a very important property for
investigating the stress effect on the energy bands, especially on the valence bands.
In this subsectionwewill deal with a phenomenological theory of piezobirefringence
and microscopic theory based on the band structure of semiconductors. It may be
easily understood by replacing stress with phonons that piezobirefringence is related
to Brillouin scattering and Raman scattering as discussed later.

When a stress Tkl is applied to a crystal, the dielectric constant tensor κi j is
changed by Δκi j . We define the change by

Δκi j = Qi jklTkl , (4.151)

where Qi jkl is called the piezobirefringence tensor of fourth rank. The fourth-rank
tensor is often expressed by Qαβ (α,β = 1, 2, . . . , 6) and the non-zero components
are Q11, Q12, Q44 for a crystal with cubic symmetry. We consider the case where the
stress is applied in the [100] direction (Txx = T1 = X ) as an example. The change
in the dielectric constant for light polarized parallel to the stress is then given by

Δκ‖ = Δκxx = Qxxxx Txx = Q11X,

and for light polarized perpendicular to the stress is given by
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Δκ⊥ = Δκzz = Qzzxx Txx = Q31T1 = Q12X.

Therefore, piezobirefringence coefficient α(100) is given by

α(100) = κ‖ − κ⊥
X

= Q11 − Q12 . (4.152)

Similarly, we can obtain the piezobirefringence coefficient for the stress applied in
the other directions.

The above treatment is phenomenological and the piezobirefringence coefficients
reflect the stress-induced change in the energy band structure and thus depend on the
critical points. In general, a stress induces a change in the lattice constant, giving rise
to a change in the energy band structure. The change is estimated quantitatively by
using the deformation potential, which will be discussed in more detail in Chap.6 in
connection with the electron-phonon interaction. In this section we will consider the
general theory of the deformation potential and its application to piezobirefringence
theory.

4.7.2 Deformation Potential Theory

Defining the coordinate vectors before and after the deformation by r and r ′ and the
displacement vector by u, we find

u = r − r ′ = e · r , (4.153)

where e is the strain tensor defined by

e = ei j = 1

2

(
∂ui
∂r j

+ ∂u j

∂ri

)
. (4.154)

Equation (4.153) can be rewritten as

r ′
i = ri −

∑
j

ei j r j . (4.155)

Then the operator ∇ of the old coordinates r is expressed by new coordinates r ′ as

∂

∂ri
= ∂

∂r ′
i

−
∑
j

ei j
∂

∂r ′
j

, (4.156)

and thus we obtain

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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∂2

∂r2i
=

(
∂

∂r ′
i

−
∑
j

ei j
∂

∂r ′
j

)2

	 ∂2

∂r ′2
i

− 2
∑
j

ei j
∂2

∂r ′
i∂r

′
j

, (4.157)

where the above equation takes account of the first order of ei j and neglects the
higher-order terms. Then we obtain

∇2 = ∇′2 − 2
∑
i, j

ei j
∂2

∂r ′
i∂

′
j

. (4.158)

Since the crystal potential is given by

V (r) = V (r ′ + e · r) 	 V (r ′ + e · r ′) , (4.159)

it is expanded with respect to e as:

V (r) = V0(r ′) +
∑
i, j

Vi j (r ′)ei j , (4.160)

where the expansion coefficient Vi j (r ′) is given by3

Vi j (r ′) = ∂V (r ′ + e · r ′)
∂ei j

∣∣∣∣
e=0

= −∂V (r ′)
∂r ′

i

r ′
j . (4.161)

In the following we neglect the stress effect on the spin-orbit split-off-band, because
experiments have shown no significant stress effect on this band. Therefore, the
Hamiltonian of an electron is written as

H = H0 + Hso + Hs , (4.162)

H0 = − �
2

2m
+ V0(r) , (4.163)

where H0 is theHamiltonianwithout stress, Hso is spin-orbit interaction, and Hs is the
Hamiltonian for the stress effect. Using (4.158) and (4.160), the stress Hamiltonian
is written as:

Hs = �
2

m

∑
i j

ei j
∂2

∂ri∂r j
+ Vi j ei j ≡

∑
i j

Di j ei j , (4.164)

where

3From (4.155) we obtain

∂V

∂ei j
= ∂V

∂r ′
i

∂r ′
i

∂ei j
= −∂V

∂r ′
i
r j 	 −∂V

∂r ′
i
r ′
j .
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Di j = �
2

m

∂2

∂ri∂r j
+ Vi j (4.165)

is called the deformation potential operator.
For simplicity we discuss the stress effect in a cubic crystal. It may be understood

that the treatment can be applied to any crystal by taking the crystal symmetry into
account. The valence bands are assumed to be 3-fold degenerate p states, which
is equivalent to taking into account the Γ25′ valence bands as shown in Sect. 2.2 to
analyze the valence band structure. Following the treatment of Sect. 2.2, the matrix
elements of Hs are shown to be

〈k|Hs|l〉 =
∑
i j

〈k|Di j |l〉ei j ≡
∑
i j

Dkli j ei j , (4.166)

where

Dkli j = 〈k|Di j |l〉 . (4.167)

Dkli j is a fourth-rank tensor, called the deformation potential tensor, and has elements
similar to (2.43). Using (2.53a), we obtain for example

〈u+|Hs|u+〉 = 1

2

(
Dxxxxexx + Dxxyyeyy + Dxxzzezz

+ Dyyxxexx + Dyyyyeyy + Dyyzzezz
)

(4.168)

= 1

2
(D11 + D12)(exx + eyy) + D12ezz

≡ G1 . (4.169)

In a similar fashion other elements are calculated and finally we obtain the following
result:

〈k|Hs|l〉 =
∣∣∣∣∣∣
G1 G2 G4

G∗
2 G1 G∗

4
G∗

4 G4 G3

∣∣∣∣∣∣ , (4.170)

G1 = 1

2
(D11 + D12)(exx + eyy) + D12ezz ,

G2 = 1

2
(D11 − D12)(exx − eyy) − 2iD44exy ,

G3 = D12(exx + eyy) + D11ezz ,

G4 = √
2D44(exz − ieyz) .

From the above analysis we find that the deformation of the valence bands due to
stress or strain is described by three potential constants D11, D12 and D44. Another

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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approach to the stress effect has been reported by Picus and Bir [14], who introduced
the deformation potential due to the volume deformation (exx +eyy +ezz ; hydrostatic
term) and to the uniaxial term. The strain Hamiltonian for the Γ25′ bands at k = 0 is
then written as

H (i)
s = −a(i)(exx + eyy + ezz) − 3b(i)

[(
L2
x − 1

3
L2

)
exx + c.p.

]

−6d(i)

√
3

[{Lx L y}exy + c.p.
]

, (4.171)

where the index i represents one of the three valence bands, L is a dimensionless
operator given by the angular momentum operator for the quantum number l = 1
of (2.52) divided by �, c.p. is the cyclic permutation of x , y, z, and {Lx L y} =
(1/2)(Lx L y + LyLx )

4 The constant a(i) is the hydrostatic deformation potential
for the band i , and b(i) and d(i) are the deformation potentials for the uniaxial strain
(ei j , i = j) and the shear strain (ei j , i �= j), respectively. Since experimentsmeasure
the change in the energy gap between the Γ2′ (Γ1) conduction band and the Γ25′ (Γ15)
valence bands under hydrostatic pressure, the deformation potential a(i) corresponds
to the relative change in the energygap (not the valencebands only). InChap. 9wewill
discuss the strain effect on the quantum well lasers, where the deformation potential
ac for the conduction band and av for the valence bands are defined. When the
conduction band-edge shift is expressed by E(X)−Ec(X = 0) = ac(exx +eyy +ezz)
and the valence band top by −av(exx + eyy + ezz), then the change in the energy
gaps due to the hydrostatic pressure is given by (ac +av)(exx + eyy + ezz). Therefore
the total deformation potential is sometimes defined by a = ac + av. It should be
noted here that the Hamiltonian Hs with Dαβ and the Hamiltonian with a(i), b(i), d(i)

give rise to the same results as expected from the analysis given above and that the
relations between the two types of deformation potential is easily obtained.

4.7.3 Stress-Induced Change in Energy Band Structure

A typical energy band structure in the vicinity of k = 0 (Γ ) such as Ge and GaAs
is shown schematically in Fig. 4.17 for the conduction band and the valence bands.
The valence bands without stress consist of doubly degenerate bands | 32 , 3

2 〉, | 32 , 1
2 〉

and the spin-orbit split-off band | 12 , 1
2 〉, as shown on the left of Fig. 4.17. When

4The reported matrix elements of the strain Hamiltonian are evaluated by using the angular momen-
tum operators in terms of “spin” matrices corresponding to spin unity according to Picus and Bir
[14], where the basis functions are taken as

S+ = 1√
2
|X + iY 〉 , S0 = |Z〉 , S− = 1√

2
|X − iY 〉 .

The corresponding operators are then expressed by the relation (2.52). The matrix elements of the
strain Hamiltonian in the text are evaluated by using the basis functions and the corresponding
operators.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. 4.17 Energy band
structure of semiconductors
such as Ge and GaAs near
k = 0 with and without
stress. The degenerate
valence bands without stress
split into three bands under
the compressive uniaxial
stress (X < 0) as shown on
the right. The bands V ′

1, V
′
2

and V ′
3 originate from V1, V2

and V3 bands but they are
mixed up with each other at
k �= 0

stress is applied, the degeneracy is removed, as shown on the right of Fig. 4.17 for
the compressive uniaxial stress. Therefore, we may expect a remarkable change in
the optical properties of semiconductors by the application of stress. In experiments
uniaxial stress along the [001], [111] or [110] direction is applied. Using the results in
Appendix C the strain components for the stress X are (X > 0 and X < 0 correspond
to the tensile and compressive stresses, respectively),

[001] stress

ezz = s11X ,

exx = eyy = s12X ,

exy = exz = eyz = 0 ,

[111] stress

exx = eyy = ezz = (s11 + 2s12)

(
1

3
X

)
,

exy = eyz = ezx =
(
1

2
s44

)(
1

3
X

)
,

[110] stress

exx = eyy = (s11 + s12)

(
1

2
X

)
,

ezz = s12X ,

exy =
(
1

2
s44

)(
1

2
X

)
,

exz = eyz = 0 ,

where sαβ (ei j = si jkl Tkl , eα = sαβTβ ; i, j = x, y, x ; α,β = 1, 2, . . . , 6) is the
elastic compliance tensor (see Appendix C). In the following the band index i is
dropped out.
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The matrix elements of the strain Hamiltonian are easily evaluated using (4.171)
and the wave functions (2.63a) ∼ (2.63f), which will be used to derive the 6 × 6
Hamiltonian matrix in Sects. 9.6.2 and 9.6.4. We rewrite the strain Hamiltonian Hs

in the following form.

Hs = −av
(
exx + eyy + ezz

) − 3b

[(
L2
x − 1

3
L2

)
exx + c.p.

]

= H hydro
s + H shear

s , (4.172a)

H hydro
s = −av

(
exx + eyy + ezz

)
, (4.172b)

H shear
s = −3b

[(
L2
x − 1

3
L2

)
exx + c.p.

]
, (4.172c)

where the deformation potential av is defined for the valence bands. When we define
the hydrostatic pressure dependence of the conduction band edge by ac(exx + eyy +
ezz), the total band gap change due to the hydrostatic pressure is given by (ac +
av)

(
exx + eyy + ezz

)
.

Then the matrix elements for H hydro are given by〈
3

2
,
3

2

∣∣∣H hydro
s

∣∣∣3
2
,
3

2

〉
=

〈
3

2
,
1

2

∣∣∣H hydro
s

∣∣∣3
2
,
1

2

〉
=

〈
1

2
,
1

2

∣∣∣H hydro
s

∣∣∣1
2
,
1

2

〉

= −av
(
exx + eyy + ezz

)
, (4.173)

and the matrix elements for H shear
s are5〈

3

2
,
3

2

∣∣∣H shear
s

∣∣∣3
2
,
3

2

〉
= +b

2
(exx + eyy − 2ezz) , (4.174a)

〈
3

2
,
1

2

∣∣∣H shear
s

∣∣∣3
2
,
1

2

〉
= −b

2
(exx + eyy − 2ezz) , (4.174b)

〈
3

2
,
1

2

∣∣∣H shear
s

∣∣∣1
2
,
1

2

〉
= −i

1√
2
b
(
exx + eyy − 2ezz

)
., (4.174c)

where we have to note that
〈
3/2, 3/2

∣∣H shear
s

∣∣3/2, 1/2〉 = 0 because of the diagonal
property of the spin directions. We define these non-zero components as

Δhydro = −av(exx + eyy + ezz) = −av (s11 + 2s12) X , (4.175a)

Δshear = +b

2

(
exx + eyy − 2ezz

) = −b (s11 − s12) X . (4.175b)

These results give the Hamiltonian matrix

| 32 , 3
2 〉 | 32 , 1

2 〉 | 12 , 1
2 〉∣∣∣∣∣∣

Δhydro + Δshear 0 0
0 Δhydro − Δshear −i

√
2Δshear

0 i
√
2Δshear −Δ0 + Δhydro

∣∣∣∣∣∣ ,
(4.176)

5The relation of (4.174a) is sometimes expressed by using negative sign (−b/2 · · · ·) as discussed
in Chap.9. The change of expressions, however, is just the change in the sign of the deformation
potential b.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
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where the energy is measured from the top of the doubly degenerate valence band
edge. Equation (4.176) will be used to derive 6 × 6 Hamiltonian matrix (9.161) for
a quantum well with strain in Sect. 9.6.4.

In the case of [001] stress, the parameters defined by Pollak and Cardona [15] are
given by

δEH = −Δhydro = +a(s11 + 2s12)X , (4.177a)

δE001 = −2Δshear = +2b(s11 − s12)X , (4.177b)

wherea = ac+av and thus δEH = a(s11+2s12)X = (∂Eg/∂P)·P is the change in the
energy gap due to the hydrostatic component of the strain (P: hydrostatic pressure).
The term δE001 = 2b(s11 − s12)X is the linear splitting of the

∣∣ 3
2 ,± 3

2 〉 and
∣∣ 3
2 ,± 1

2 〉
valence bands, and the mixing between

∣∣ 3
2 ,± 1

2 〉 and
∣∣ 1
2 ,± 1

2 〉 valence bands. Since
the stress does not remove the Kramers degeneracy of each state, diagonalization
of the matrix of the Hamiltonian Hso + Hs is done by diagonalizing the matrix for
positive mJ of the valence states |J,mJ 〉, which gives rise to the following matrix
[15]

| 32 , 3
2 〉 | 32 , 1

2 〉 | 12 , 1
2 〉∣∣∣∣∣∣∣

1
3Δ0 − δEH − 1

2δE001 0 0

0 1
3Δ0 − δEH + 1

2δE001
1
2

√
2δE001

0 1
2

√
2δE001 − 2

3Δ0 − δEH

∣∣∣∣∣∣∣
,

(4.178)

where the origin of the energy is set to the top of the triply degenerate valence bands
without spin-orbit interaction. Diagonalizing the matrix, the energy splitting and
corresponding eigenstates are obtained. Figure4.17 shows a schematic illustration
of the stress induced change of the three valence bands for a compressive stress. Thus
the energy band gap shift at k = 0 is given by the following equations, where the
approximation is valid for δE001  Δ0:

Δ(Ec − Ev1) = −1

3
Δ0 + δEH + 1

2
δE001 , (4.179a)

Δ(Ec − Ev2) = 1

6
Δ0 + δEH − 1

4
δE001

− 1

2

[
Δ2

0 + Δ0δE001 + (9/4)(δE001)
2
]1/2

(4.179b)

≈ −1

3
Δ0 + δEH − 1

2
δE001 − 1

2
(δE001)

2/Δ0 + · · · , (4.179c)

Δ(Ec − Ev3) = 1

6
Δ0 + δEH − 1

4
δE001

+ 1

2

[
Δ2

0 + Δ0δE001 + (9/4)(δE001)
2]1/2 (4.179d)

≈ +2

3
Δ0 + δEH + 1

2
(δE001)

2/Δ0 + · · · . (4.179e)

The wave functions under the application of stress are then given by

http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
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uv1,X =
∣∣∣∣32 ,

3

2

〉
, (4.180a)

uv2,X =
∣∣∣∣32 ,

1

2

〉
+ 1√

2
α0

∣∣∣∣12 ,
1

2

〉
, (4.180b)

uv3,X =
∣∣∣∣12 ,

1

2

〉
− 1√

2
α0

∣∣∣∣32 ,
1

2

〉
, (4.180c)

where α0 = δE001/Δ0. Using these results the momentum matrix elements between
the valence and conduction bands which determine the strength of the optical tran-
sition are calculated as

|〈c|p‖|v1〉|2 = 0 , (4.181a)

|〈c|p⊥|v1〉|2 = 1

2
P2 , (4.181b)

|〈c|p‖|v2〉|2 = 2

3
P2

(
1 + α0 − 3

4
α2
0 + · · ·

)
, (4.181c)

|〈c|p⊥|v2〉|2 = 1

6
P2

(
1 − 2α0 + 3

2
α2
0 + · · ·

)
, (4.181d)

|〈c|p‖|v3〉|2 = 1

3
P2

(
1 − 2α0 + 3

2
α2
0 + · · ·

)
, (4.181e)

|〈c|p⊥|v3〉|2 = 1

3
P2

(
1 + α0 − 3

4
α2
0 + · · ·

)
. (4.181f)

In the above equations P is themomentummatrix element between the |Γ25′ 〉 valence
band and the |Γ2′ 〉 conduction band, which is written as

P = 〈c ↑ |px |X ↑ 〉 = 〈c ↑ |py|Y ↑ 〉 = 〈c ↑ |pz|Z ↑ 〉 . (4.182)

For the cases of [111] and [110] stresses the analysis is similarly straightforward and
the results are given in [15].

The change in the real part of the dielectric constant due to stress is calculated
from these results and (4.130a). For E0 we find

Δκ1(ω) =
∑
v1,v2

(
∂κ1

∂M
ΔM + ∂κ1

∂ω0
Δω0

+ 1

2

∂2κ1

∂ω2
0

(Δω0)
2 + ∂2κ1

∂ω0∂M
Δω0ΔM

)
, (4.183)

where M = |〈c|p‖,⊥|v〉|2. This may be rewritten as
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Fig. 4.18 Experimental
setup for piezobirefringence
measurements. P and A are
the polarizer and analyzer,
respectively, S is the sample,
D is the detector, C is the
light chopper, and the load
cell is a stress transducer to
detect the stress magnitude

(κ1)‖ − (κ1)⊥ = Aω
−3/2
0 P2

{
α0

[
f (x0) − Δ0

4�ω0
g(x0)

]

− 3

4
α2
0

[
f (x0) + Δ0

2�ω0
g(x0)

]

+ 1

2

α0αHΔ0

�ω0

[
g(x0) + Δ0

4�ω0
l(x0)

]}
. (4.184)

For the E0 + Δ0 gap, we obtain

(κ1)⊥ − (κ1)‖ = Aω
−3/2
0s P2

{[
−α0 + 3

4
α2
0

]
f (x0s)

−
[
α0αHΔ0

2�ω0s

]
g(x0s)

}
, (4.185)

where

f (x) = (1/x2)[2 − (1 + x)1/2 − (1 − x)1/2] , (4.186a)

g(x) = (1/x2)[2 − (1 + x)−1/2 − (1 − x)−1/2] , (4.186b)

l(x) = (1/x2)[2 − (1 + x)−3/2 − (1 − x)−3/2] , (4.186c)

x0 = ω/ω0, x0s = ω/ω0s , αH = δEH/Δ0 . (4.186d)

When we take account of the E0, E0 + Δ0, E1, E1 + Δ1 and E2 critical points, the
real part of the dielectric constant in the presence of a [100] stress is given by [12]

(κ1)‖ − (κ)⊥ = C0X

{
−g(x0) + 4ω0

Δ0

[
f (x0) −

(
ω0

ω0s

)3/2

f (x0s)

]}

= C1X

{
1 + 1

2
x21 −

(
ω1

ω1s

)2 (
1 + 1

2
x21s

)}

+C2X
{
1 + 2x22

}
. (4.187)

The piezobirefringence experiment is carried out by using the setup shown in
Fig. 4.18. The light from the source is chopped into pulses, dispersed by a mono-
chromator. The polarizer is oriented so that the beam incident on the sample is
polarized at 45◦ to the stress axis. Under these conditions, the light components
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Fig. 4.19 Piezobirefringence coefficient [(κ1)‖−(κ1)⊥]/X ofGaAs plotted as a function of photon
energy [12]. The calculated result from (4.187) is shown by a solid curve fitted to the experimental
data. The critical point energies are those listed in Table4.3 and C0 = −0.51, C1 = −10.0,
C2 = 3.6 [10−11 cm2/dyne]

polarized parallel and perpendicular to the stress are equal. The signal is obtained as
a function of stress for the analyzer with its polarization plane either perpendicular
or parallel to that of the polarizer. The signal intensity is given by [12]

I = 1

2
I0(1 ± cosΔ) , (4.188)

where Δ is the phase difference between the parallel and perpendicular components
of the transmitted light, and is given by (4.149) or (4.150). The symbol ± corre-
sponds to the configuration of the analyzer with respect to the polarizer, parallel or
perpendicular. The transmitted light intensity oscillates as a cosine function with a
frequency depending on the stress, and thus the relation between Δ/t and stress X
is obtained. When we plot Δ/t as a function of X , the slope with the help of (4.150)
gives [(κ1)‖ − (κ1)⊥]/X . The measured data are plotted as a function of photon
energy in Fig. 4.19, where the calculated result from (4.187) is shown by a solid
curve fitted to the experimental data. It is evident from Fig. 4.19 that piezobirefrin-
gence in GaAs is well explained by the theory stated above. From the analysis we
may deduce the deformation potentials.

4.8 Problems

(4.1) Using the relation of (4.18), calculate reflectivity R as a function real part of
dielectric constant κ1 for κ2 = 0.1, 5.0 and 10 and show the result in figure.

(4.2) We assume that a conduction band and a valence band are given by
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Ec = �
2k2

2mc
+ EG

Ev = �
2k2

2mv

where EG is the band gap, and

Ecv = �
2

2μ
k2 + EG,

1

μ
= 1

mc
+ 1

mv

(1) Calculate the joint density of states by using (4.42).
(2) Calculate the joint density of states by using (4.44)

(4.3) Absorption coefficient due to indirect transition is shown in Fig. 4.6. Explain
the temperature dependence of the absorption coefficient with respect to the
following two features:
(1) Absorption coefficient increases with temperature.
(2) A clear bending point is observed at a low temperature.

(4.4) Express the dielectric functions κ2 and κ1 as a function of x = �ω/ω0 with
parameters A, P2

0 , and ω0 = EG/�.

(4.5) Evaluate the coefficient AP2
0 ω

−3/2
0 for GaAs with the parameters EG =

1.51eV, EP0 = 28.8, and the reduced mass μi = μ = 0.067m.

(4.6) Plot κ2(x) and κ1(x) as a function of x using the parameters given above for
GaAs for E0 transition. Since the E0 critical point reflects the transition from
the heavy and light hole bands to the conduction band, we may put 2C0 as
stated in the text.

(4.7) Derive real part of the dielectric constant of GaAs at the band edge from
(4.130a) for E0 transition. The material constants are EG = 1.51eV, EP0 =
28.8. The reduced mass μi is assumed to be the conduction electron effective
mass m∗

c = 0.067m.
(1) Evaluate κ1 for the case of simple bands with a conduction band and a
heavy hole band.
(2) Evaluate κ1 for the case with three valence bads with spin-orbit split band.
(3) At higher temperature the energy pap EG becomes smaller. Evaluate above
two cases for EG = 1.43eV.
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Chapter 5
Optical Properties 2

Abstract In this chapter precision optical spectroscopy is discussed. Modulation
spectroscopy has been successfully used to investigate energy band structure of semi-
conductors. Electroreflectance spectroscopy is described in detail, which is shown
to be related to the third derivative form of the dielectric function with respect to
the photon energy. Electric field–induced change in the dielectric functions is shown
to reflect the type of the critical point. Other optical spectroscopy such as Raman
scattering and Brillouin scattering is also described. In addition, resonant Raman
scattering and resonant Brillouin scattering are discussed. In the last part of this
chapter we deal with coupled modes such as phonon polariton and exciton polariton,
and finally free–carrier absorption and plasmon.

5.1 Modulation Spectroscopy

5.1.1 Electro-Optic Effect

Two phenomena are known as the electric field induced change in reflectivity. One
is linearly proportional to the electric field and is known as the Pockels effect and
the other is quadratically proportional to the electric field and is known as the Kerr
effect. These two phenomena are called the electro-optic effect and are observed
in the transparent region and thus well below the fundamental absorption edge. For
example, the Pockels effect is expressed by

(δκ−1)i j = ri jk Ek(≡ δβi j )

where E is the electric field applied to a crystal, (δκ−1)i j is the i j component of the
change in the inverse dielectric constant and ri jk is called the Pockels electro-optic
constant. In this Section we will not go into detail on this kind of phenomenological
treatment but we will consider the magnitude of the change in the dielectric con-
stant near the fundamental absorption edge induced by the applied electric field in a
semiconductor.

© Springer International Publishing AG 2017
C. Hamaguchi, Basic Semiconductor Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-66860-4_5
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The application of an electric field E results in the addition of the potential energy
term −eE · r to the electron Hamiltonian and thus the translational symmetry is lost
in the direction of the electric field. This gives rise to a mixing of the electronic states
of the wave vectors k0 and k = k0 − eEt/� as discussed later. First, wewill consider
optical transition under an applied d.c. electric field. When the Coulomb interaction
is neglected, the effective mass equation for the relative motion of an electron–hole
pair is[

− �
2

2μ
∇2 − eE · r

]
ψ(r) = Eψ(r) , (5.1)

or

[
− �

2

2μx

d2

dx2
− �

2

2μy

d2

dy2
− �

2

2μz

d2

dz2

− e(Ex x + Ey y + Ezz)

]
ψ(x, y, z) = Eψ(x, y, z) , (5.2)

where μi is the value in the direction of the principal axis of the reduced effective
mass tensor. The solutions of the above equation are given by the product of the wave
functions ψ(x)ψ(y)ψ(z), where each function satisfies the equations.[

− �
2

2μi

d2

dr2i
− eEiri − Ei

]
ψ(ri ) = 0, (5.3a)

E = Ex + Ey + Ez . (5.3b)

Equation (5.3a) may be solved easily by changing the variables:

�θi =
(
e2E2

i �
2

2μi

)1/3

, (5.4)

ξi = Ei + eEiri
�θi

. (5.5)

Then (5.3a) can be rewritten as

d2ψ(ξi )

dξ2i
= −ξiψ(ξi ) . (5.6)

The solution of this equation is known to be given by the Airy function [1], and we
obtain

ψ(ξi ) = CiAi(−ξi ) , (5.7)

where Ci is a normalization constant of the function ψ(ξ) and is given by

Ci =
√
e|Ei |
�θ

. (5.8)
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Fig. 5.1 Wave function of
an electron–hole pair in a
static electric field, with a
tilted potential barrier. The
wave function penetrates into
the region x < 0
(E < V = −eEx)

ψ θ= −

θ

= −

ψ
Therefore, the solution of (5.3a) is written as

ψ(ξx , ξy, ξz) = CxCyCzAi(−ξx )Ai(−ξy)Ai(−ξz) . (5.9)

5.1.2 Franz–Keldysh Effect

For simplicity we consider the case where the electric field is applied in the x direc-
tion. Since we have Ey = Ez = 0, (5.3a) gives rise to

[
− �

2

2μx

d2

dx2
+ �

2k2y
2μy

+ �
2k2z
2μz

− eEx

]
ψ(x, y, z) = Eψ(x, y, x) (5.10)

and the solution is given by

ψ(x, y, z) = C · Ai
(−eEx − E + �

2k2y/2μy + �
2k2z /2μz

�θx

)

× exp{i(ky y + kzz)} . (5.11)

It is evident from this result that the wave function in the y, z directions is periodic,
given by a Bloch function, but the localization of the electron–hole pair function
occurs in the x direction due to the lack of translational symmetry due to the electric
field. As an example, if we assume ky = kz = 0 and E = 0, then the wave function
is written as

ψ(x) = C · Ai(−eEx/�θx ) . (5.12)

Figure5.1 shows a plot of the wave function as a function of x . Let us consider
the one-dimensional motion of a particle with effective mass μx . In the classical
picture the particle cannot penetrate into the region (x < 0) of positive potential
(−eEx > 0), and thus the point x = 0 is the turning point for the motion. In the
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quantummechanical picture, however, the particle can penetrate into the region x < 0
and the wave function has an exponential tail in that region as shown in Fig. 5.1. As a
result, an electron in a valence band is allowed to be excited into a conduction band
by absorbing a photon with its energy below the band gap. This effect is known as
the Franz–Keldysh effect [2, 3] and the detailed treatment is given later.

Nextwe discuss the effect of the electric field on the interband transition. Thewave
function ψ(x, y, z) given by (5.9) is the same as the envelope function described in
Sect. 4.5 and represents the wave function of the relative motion of the electron–hole
pair. Therefore, the imaginary part of the dielectric function κ2(ω, E) = ε2(ω, E)/ε0
in the presence of a static electric field may be obtained by inserting (5.9) into (4.97).
Replacing the summation with respect to λ in (4.97) by

∫
dExdEydEz , we obtain

κ2(ω, E) = πe2|e · pcv|2
ε0m2ω2

e3|Ex EyEz|
(�θx�θy�θz)2

∫
dExdEydEz

×
∣∣∣∣Ai

(
− Ex

�θx

)
· Ai

(
− Ey

�θy

)
· Ai

(
− Ez

�θz

)∣∣∣∣
2

×δ
[EG + Ex + Ey + Ez − �ω

]
, (5.13)

and the evaluation of this equation for the van Hove critical points is straightforward.
For example, we will show the calculations for the case of the M0 critical point
(μx ,μy,μz > 0). When we assume that the electric field E is parallel to one of the
principal axes, x , (Ex �= 0, Ey = Ez = 0), the results are the same as stated above.
The integral with respect to dExdEy is given by the joint density of states for the
two-dimensional band J 2D

cv (�ω − EG − Ex ), and thus we obtain

κ2(ω, E) = πe2

ε0m2ω2
|e · pcv|2

e|Ex |
(�θx )2

×
∫ +∞

−∞
J 2D
cv (�ω − EG − Ex ) ·

∣∣∣∣Ai
(

− Ex
�θx

)∣∣∣∣
2

dEx . (5.14)

The two-dimensional joint density of states is shown in Table4.2, which is

J 2D
cv (�ω) =

⎧⎪⎨
⎪⎩

B1 = (μyμz)
1/2

π�2
, �ω > EG

0, �ω < EG .

(5.15)

Then (5.14) is given by

κ2(ω, E) = πe2

ε0m2ω2
|e · pcv|2

e|Ex ||μyμz|1/2
(�θx )2π�2

∫
�ω−EG

−∞

∣∣∣∣Ai
(

− Ex
�θx

)∣∣∣∣
2

dEx

= e2

2ε0m2ω2
|e · pcv|2(�θx )

1/2

(
8|μxμyμz|

�6

)1/2

× [|Ai′(−η)|2 + η|Ai(−η)|2] , (5.16)

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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where

η = �ω − EG
�θx

. (5.17)

Here we will discuss the properties of the Airy functions in the limiting case
where the photon energy is well above the fundamental absorption edge. In the case
of η � 0 (η → ∞) and thus in the case of �ω � EG, (5.16) is approximated by
using asymptotic forms of the Airy functions

lim
z→∞Ai(−z) = 1√

π
z−1/4 sin

(
2

3
z3/2 + π

4

)
, (5.18a)

lim
z→∞Ai′(−z) = 1√

π
z1/4 cos

(
2

3
z3/2 + π

4

)
, (5.18b)

and then we find

|Ai′(−η)|2 + η|Ai(−η)|2 =
√

η

π
= (�ω − EG)1/2

π(�θx)1/2
. (5.19)

Insertion of (5.19) into (5.16) gives exactly the same dielectric function as that for
the one-electron approximation derived in Chap.4 (4.39).

On the other hand, we find a very interesting result in the other limiting case
where the photon energy is below the fundamental absorption edge. In this case we
find η 	 0 (η → −∞) and thus �ω 	 EG. The asymptotic solutions for the Airy
functions are

lim
z→∞Ai(z) = 1

2
√

π
z−1/4 exp

(
−2

3
z3/2

)[
1 − 3C1

2z3/2

]
, (5.20a)

lim
z→∞Ai′(z) = 1

2
√

π
z1/4 exp

(
−2

3
z3/2

)[
1 + 21C1

10z3/2

]
, (5.20b)

where C1 = 15/216 [1]. Therefore, the dielectric function for the incident photon
energy below the band gap is

κ2(ω, Ex ) = e2|e · pcv|2
2ε0m2ω2

1

2π

(
8|μxμyμz|

�6

)1/2

(EG − �ω)1/2

× exp

[
−4

3

(EG − �ω

�θx

)3/2]

= 1

2
κ2(ω) exp

[
−4

3

(EG − �ω

�θx

)3/2]
, (5.21)

or inserting this into (4.21) the absorption coefficient α is given by the relation

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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ε

ω

G

Fig. 5.2 Illustration of Franz–Keldysh effect in a semiconductor. In the presence of a high electric
field the wave functions of the electron and the hole penetrate into the band gap and an optical
transition is allowed in the photon energy region below the band gap �ω < EG

Fig. 5.3 κ2(ω, 0)/A without
electric field and
κ2(ω, E)/A with electric
field are plotted as a function
of photon energy near the
M0 critical point

κ ω

κ ω

ω ε θ−

κ

α(ω, Ex ) = e2|e · pcv|2
2ε0m2cn0ω

1

2π

(
8|μxμyμz|

�6

)1/2

(EG − �ω)1/2

× exp

[
−4

3

(EG − �ω

�θx

)3/2]

= 1

2
α(ω) exp

[
−4

3

(EG − �ω

�θx

)3/2]
, (5.22)

where κ2(ω) and α(ω) are the imaginary part of the dielectric constant without
and with electric field, respectively. These results indicate that absorption occurs
for an incident photon with an energy less than the band gap in the presence of an
electric field and that the absorption coefficient has an exponential tail. This effect
is predicted independently by Franz and Keldysh and is called the Franz–Keldysh
effect. This effect is well explained in terms of the penetration of the wave function
in the presence of a high electric field with the help of the illustration of Fig. 5.2,
where the electron and hole penetrate into the band gap due to quantum mechanical
effects and an optical transition becomes allowed in the region �ω < EG. It may be
expected that the absorption coefficient shows an exponential decay as the photon
energy decreases.

Using the result for theM0 point given by (5.16),κ2(ω, E) andκ2(ω, 0) are plotted
in Fig. 5.3. In the absence of electric field, E = 0, the dielectric constant κ2(ω, 0)
is zero in the region �ω < EG. In the presence of an electric field E �= 0, however,
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the wave function penetrates into the band gap and the dielectric constant κ2(ω, E)

is not zero in the region below the fundamental absorption edge (�ω < EG), giving
rise to an exponential tail. Although κ2(ω, 0) exhibits an increase as

√
�ω − EG in

the photon energy region above the fundamental absorption edge, κ2(ω, E) exhibits
an oscillatory behavior (with a modulation by a weak oscillatory component) and
converges to κ2(ω, 0) in the region well above the fundamental absorption edge.

5.1.3 Modulation Spectroscopy

In the previous section we discussed the change in dielectric constant in the presence
of an electric field. The change is pronounced near critical points such that it decreases
exponentially below the fundamental absorption edge and oscillates beyond the edge,
converging to the dielectric constant without electric field at higher photon energies.
When we introduce new variables, (5.16) is written as

κ2(ω, E) =
∫ ∞

−∞
dω′ ω

′2

ω2
κ2(ω

′, 0)
{

1

|Ω|Ai
(

ω′ − ω

Ω

)}
, (5.23)

where Ω (�Ω has the dimensions of energy) is defined by

Ω = θ

22/3
= (θxθyθz)

1/3

22/3
=

(
e2E2

8�μE

)1/3

(5.24)

and μE is the reducedmass in the direction of the electric field. It should be noted that
(5.23) behaves as κ2(ω, 0) but modulated by the Airy function and that the behavior
arises from the mixing of the different states of k induced by the electric field, as
pointed out earlier.

The change in the dielectric constant in an electric field is quite small and even
in an available high electric field such as (≤105 V/cm) will give rise to a change of
a small fraction. Therefore, it is very difficult to observe the exponential tail and
oscillatory behavior of the dielectric constant shown in Fig. 5.3. However, applying
a periodically oscillating electric field and using a phase-sensitive detector (lock-in
amplifier), the change in dielectric constant Δκ

Δκ(ω, E) = κ(ω, E) − κ(ω, 0) (5.25)

can be measured with high accuracy. This method is often referred to as electrore-
flectance or electroabsorption and has been applied to study the optical properties of
semiconductors in the region from the ultraviolet to the infrared since the 1960s and
gives us very important information about the band structure of semiconductors. The
method is also called modulation spectroscopy, including many other modulation
methods. In general modulation spectroscopy is carried out by using the experi-
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Fig. 5.4 Experimental setup
for modulation spectroscopy.
Different modulation
methods produce different
types of modulation
spectroscopy

ΔR
R

mental setup shown in Fig. 5.4. Modulation methods have been reported so far such
as electric field modulation (electroreflectance), laser excitation (photoreflectance),
applying high current to a sample or to a sample holder and modulating the sam-
ple temperature (thermoreflectance) and stress modulation by using a piezoelectric
element (piezoreflectance), and so on.

Let us the dielectric constant of the sample is κ = κ1 + iκ2 and the modulation
is uniform in the modulated sample, then the relation between the change in the
reflectance ΔR/R and the change in the dielectric constants Δκ1 and Δκ2 is given
by

ΔR

R
= α(κ1,κ2)Δκ1 + β(κ1,κ2)Δκ2 . (5.26)

The above relation is easily calculated to give the following result by using (4.18)

R = (κ2
1 + κ2

2)
1/2 − [2κ1 + 2(κ2

1 + κ2
2)

1/2]1/2 + 1

(κ2
1 + κ2

2)
1/2 + [2κ1 + 2(κ2

1 + κ2
2)

1/2]1/2 + 1
, (5.27)

and the coefficients are given as follows:

α = 2γ

γ2 + δ2
, (5.28a)

β = 2δ

γ2 + δ2
, (5.28b)

γ = n(n2 − 3k2 − n0)

n0
, (5.28c)

δ = k(3n2 − k2 − n0)

n0
, (5.28d)

http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 5.5 Electric
field-induced change in the
real part of the dielectric
constant for the M0 critical
point Δκ1(ω, E)

η ω ε θ= −

−η

Δκ
ω

where n0 is the refractive index of the non-absorbing medium of incidence and
assumed to be n0 = 1 for the air or vacuum. Note here that n and k are the refractive
index and the extinction coefficients of a semiconductor as defined in Sect. 4.1 (n +
ik = √

κ1 + iκ2). The coefficients α and β are functions of the incident photon
energy and are called the Seraphin coefficients [4].

The spectra of the electric field induced change in the dielectric constantΔκ(ω, E)

have been calculated for all the critical points under the assumption of the one-
electron approximation and parabolic energy bands [5, 6]. For example, the change
for the M0 critical point is obtained from (4.39) and (5.16) as

Δκ2(ω, E) = κ2(ω, E) − κ2(ω, 0)

= A · {π[Ai′2(−η) + ηAi2(−η)] − u(η) · √
η}

≡ A · F(−η) . (5.29)

The real part of the dielectric function is easily derived through the Kramers–Kronig
transform given by (4.126a), giving rise to

Δκ1(ω, E) = A · G(−η) , (5.30)

where the functions F(−η) and F(−η) are

F(−η) = π[Ai′2(−η) + ηAi2(−η)] − √
η · u(η) , (5.31a)

G(−η) = π[Ai′ · Bi′(−η) + ηAi(−η) · Bi(−η)] + √−η · u(−η) , (5.31b)

and u(x) is the step function such that u(x) = 0 for x < 0 and u(x) = 1 for x ≥ 0.
The coefficient A is defined as

A = e2

2πε0m2ω2
|e · p|2

(
8|μxμyμz|

�6

)1/2

|�θ|1/2 . (5.32)

These functions are shown in Figs. 5.5 and 5.6.
From these considerations we find that the change in the dielectric functions

exhibit spectra rich in structures reflecting the critical points. The component of the
modulated dielectric function is quite weak but phase-sensitive detection with the
help of a lock-in amplifier provides clear spectra with high signal-to-noise ratio.

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 5.6 Electric
field-induced change in the
imaginary part of the
dielectric constant for the M0
critical point Δκ2(ω, E)

−η

η ω ε θ= −

Δκ
ω

Fig. 5.7 Spectra of
reflectance and
electroreflectance of GaAs at
room temperature (300K) in
the photon energy region
from near infrared to
ultraviolet. The critical
points are not well resolved
in the reflectance spectra,
whereas the
electroreflectance spectra
exhibit sharp structures near
the critical points and the
critical points are easily
identified with good
accuracy. The reflectance
data are from [7]
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These features are well displayed in Fig. 5.7. The upper part of the figure shows the
reflectivity of GaAs as a function of photon energy and several peaks are noticed such
as the E1, E1 + Δ1 and E2 critical points, but the critical points E0 and E0 + Δ0 are
not well resolved. On the other hand, the lower part of the figure shows electrore-
flectance spectra of GaAs, where all the critical points E0, E0 + Δ0, E1, E1 + Δ1,
E ′
0, and E2 are well resolved with high signal-to-noise ratio. The electroreflectance

spectra are affected by the uniformity and strength of the applied electric field, exci-
ton effects and so on, and thus the spectra are not obtained in the same sample and
in the same experiment. However, measurements in the relevant region of photon
energy will provide similar spectra to those found in the literature.

5.1.4 Theory of Electroreflectance and Third-Derivative
Form of Aspnes

Electroreflectance experiments and their analysis have revealed that the obtained
spectra do not exhibit Franz–Keldysh oscillations but very simple structures. From
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κ

κ
κ

κ

Δκ

− Δκ

ω

ω

Fig. 5.8 Schematic illustration of the change in the imaginary part of the dielectric constant. The
upper figure is the case for a static external force (such as stress modulation) which preserves the
periodicity of the lattice, and the change in the dielectric constant is given by the first derivative of
the dielectric function with respect to photon energy. On the other hand, electric field modulation
breaks the lattice periodicity and the perturbation will give rise to a mixing of the electronic states,
resulting in a complicated structure of the change in the dielectric constant. See text for details

the detailed analysis the spectra were found to agree well with the third derivative of
the dielectric function with respect to the photon energy. This effect was found by
Aspnes [8–11] and is called the third derivative form of Aspnes, cited often as third-
derivative modulation spectroscopy. The principle of third-derivative modulation
spectroscopy is illustrated in Fig. 5.8. In the case of static modulation, the periodicity
of the lattice is preserved and thus no mixing of the electronic states occurs, resulting
only in the displacement of the critical point, as shown in the upper part of Fig. 5.8.
Therefore, static modulation gives rise to the first-derivative form of the dielectric
function. This is the case for stress modulation, thermo-modulation and so on. For
example, let us consider the change in the band gap ΔωG(X), which is given by

Δκ2(ω, X) = κ2(ω, X) − κ2(ω, 0) = dκ2(ω, 0)

dω
ΔωG(X) . (5.33)

On the other hand, the application of an electric field gives rise to a potential energy
term −eEx and to a lack of periodicity in the electric field direction (x). As a result
such transitions as those shown in the lower part of Fig. 5.8 become possible. In order
to understand the theory of third-derivative modulation spectroscopy, a qualitative
discussion will be given first and then we will present its theoretical analysis.

Equation (4.39) of Sect. 4.3 or (4.128) of Sect. 4.6 may be rewritten as

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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κ2 = C · 1

E2
[E − (Ec − Ev)]1/2 , (5.34)

where Ec and Ev are the bottom of the conduction band and the top of the valence
band, respectively, and E = �ω is the photon energy. The constant C contains the
momentummatrix element, the effectivemass and so on and is assumed to be constant
in the region near the critical point we are concerned with. The time required for the
transition is estimated from the Heisenberg uncertainty principle as

τ = �

E − (Ec − Ev) . (5.35)

Under the electric field Ex an electron–hole pair with the reduced mass μ‖ will move
a distance x given by

x = −eEx

2μ‖
τ 2 = −eEx

2μ‖
�
2

[E − (Ec − Ev)]2 . (5.36)

This displacement is caused by the term −eEx of the potential energy of the Hamil-
tonian. The term gives rise to a perturbation to the electron in the conduction band
and the hole in the valence band, and as a result produces a change in the energy
given by

Δ(Ec − Ev) = e2E2
x

2μ‖
�
2

[E − (Ec − Ev)]2 . (5.37)

The change in the dielectric constant due to the change in energy is estimated from
(5.34) as

Δκ2 = dκ2

d(Ec − Ev) · Δ(Ec − Ev) = −C
e2E2

x

4μ‖E2

�
2

[E − (Ec − Ev)]5/2

= 2�
2e2E2

x

3μ‖E2

∂3

∂E3
(E2κ2) = 4

3E2
(�θx )

3 ∂3

∂E3
(E2κ2) . (5.38)

In a similar fashion the change in the real part of dielectric constant is estimated.1

From this qualitative analysis, we find that the change in the dielectric constant due to
an applied electric field is expressed by the third derivative of the dielectric constant
with respect to the photon energy. Aspnes [8, 9, 11] has shown from analysis of
ellipsometry measurements that the third derivative of the dielectric constant shows
good agreement with the electroreflectance data.

Theoretical analysis of third-derivative modulation spectroscopy has been done
by Aspnes and the outline of his treatment is given below. Several methods have
been reported for the derivation and the details are given in the paper by Aspnes and
Rowe [10]. The dielectric constant is expressed as follows in terms of the energy E ,

1Use (5.96) and the calculations are straightforward [12].
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broadening constant Γ , and electric field E [10] (the dielectric function is derived
from the polarization current under the one-electron approximation and from its
Fourier transform):

κcv(E, Γ, E)

= 1 + e2

ε0m2ω2�

∫
B.Z.

d3k
∫ ∞

0
dt

[
e · pcv

(
k − 1

2

t

�
eE

)]

×
[

e · pcv

(
k − 1

2

t

�
eE

)]
exp[i(E + iΓ )t/�]

× exp

[
−i

∫ t/2

−t/2
(dt ′/�)Ecv(k − eEt ′/�)

]
. (5.39)

In the above equation the integral with respect to t ′ is carried out by expanding the
exponential term in the following way under the condition of weak electric field:

exp

[
−i

∫ t/2

−t/2
(dt ′/�)Ecv(k − eEt ′/�)

]
 t

�
Ecv + 1

3
t3Ω3 , (5.40)

where

(�Ω)3 = 1

3
e2(E · ∇k)

2Ecv = e2E2
�
2

8μ‖
(5.41)

and the relation between θ defined by (5.4) andΩ is given by (5.24). From this result
(5.39) is rewritten as

κcv(E, Γ, E)

= iQ

πω2

∫
B.Z.

d3 k
∫ ∞

0

dt

�
exp

[
−1

3
it3Ω3 + it (E + iΓ − Ecv)/�

]
, (5.42)

where the relative dielectric constant of 1 for air is omitted. Q is given by

Q = πe2|e · pcv|2
ε0m2

· 2

(2π)3
, (5.43)

where we have assumed that Γ � |�Ω|. In addition we assume that the integration
may be carried out in the region where −it3Ω3/3 is not significantly large, and thus
we can expand as

exp(−it3Ω3/3) = 1 − it3Ω3/3 − · · · . (5.44)

Then we obtain
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κcv(E, Γ, E) ∼ −Q

πω2

∫
B.Z.

d3k
1

E + iΓ − Ecv(k)

+ 2Q

πω2

∫
B.Z.

d3k
(�Ω)3

[E + iΓ − Ecv(k)]4
≡ κcv(E, Γ, 0) + Δκcv(E, Γ, E). (5.45)

In the absence of an electric field, we have E = 0 and thus �Ω = 0, which leads to
the result

κcv(E, Γ, 0) = −Q

πω2

∫
B.Z.

d3k
1

E + iΓ − Ecv(k)
. (5.46)

It is evident from the Dirac delta function shown in Appendix A that the above
relation is exactly the same as (4.40), (4.42) and (4.39) of Sect. 4.43 or (4.128) of
Sect. 4.6. From these results we obtain the following relation

Δκcv(E, Γ, E) ≡ 1

3E2

(
�Ω

∂

∂E
)3

E2κcv(E, Γ, 0) . (5.47)

Equation (5.47) agrees with the result obtained from qualitative analysis except for
the constant of the prefactor. Therefore, we may conclude that the electroreflectance
spectra are given by the third derivative of the dielectric function with respect to
photon energy. From this fact (5.47) is referred to as the third-derivative form
of Aspnes. When we keep the higher-order term in the expansion of (5.44), the
experimental data show a better agreement with the theory [13].

The third-derivative modulation spectra valid in the low electric field region are
written as

ΔR

R
= �

[∑
j

C je
iθ j (E − E j + iΓ j )

−m j

]
, (5.48)

where E j is the energy of the j th critical point, C j is the amplitude constant, θ j

is the phase constant, Γ j is the broadening constant, and � means the real part of
the equation. m j = 4 − d/2 depends on the dimension d of the critical point and
m j = 5/2, 3, and 7/2 for 3-, 2-, and 1-dimension, respectively.

Figure5.9 shows electroreflectance spectra of n-GaAs epitaxially grown on an n+
GaAs substrate, where a semitransparent electrode of Ni on the surface of n-GaAs
and a Au electrode on the back of the GaAs substrate were formed and a weak
a.c. voltage was applied to the electrodes to produce electric field modulation in the
low-field limit. The dotted curve is fitted to the experimental curve by using the third-
derivative form of Aspnes. It is evident from Fig. 5.9 that the electroreflectance data
are well explained by the Aspnes theory. The electroreflectance measurements and
analysis based on the Aspnes theory provide detailed information about the critical
points. From the above analysis we obtain E1 = 2.926eV, E1 + Δ1 = 3.153eV.

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 5.9 Electroreflectance spectra of GaAs at T = 300K. The solid curve is experimental and
the dotted curve is a best fit to the experimental curve using the third-derivative theory of Aspnes.
In the analysis the following data were used: Eg1 = E1 = 2.926eV, Γ1 = 46.4meV, θ1 = 3.275,
C1 = 0.00386, Eg2 = E1 + Δ1 = 3.153eV, Γ2 = 59.1meV, θ2 = 3.061, C2 = 0.003015

5.2 Raman Scattering

When an electric field E is applied to a medium, a polarization vector P is induced
which is related to the field by

P = ε0χE

and its components are given by

Pj = ε0χ jk Ek

(
≡

∑
k

ε0χ jk Ek

)
, (5.49)

where χ jk is the electric susceptibility and is a second-rank tensor. Let us consider
an electromagnetic field with frequency ω incident on the medium and express the
field by the plane wave

E(r, t) = E(ki ,ωi ) cos(ki · r − ωi t) . (5.50)

Then the polarization is written as

P(ki ,ωi ) cos(ki · r − ωi t) . (5.51)

Therefore, we find the following relation between the amplitudes of the electric field
and the polarization:
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P(ki ,ωi ) = ε0χ(ki ,ωi )E(ki ,ωi ) . (5.52)

The light scattering in which we are interested in this section is induced by a local
change of the susceptibility χ. Here we are concerned with the light scattering by
lattice vibrations and we express the atomic displacement by

u(r, t) = u(q,ωq) cos(q · r − ωq t) , (5.53)

where q and ωq are the wave vector and angular frequency of the lattice vibrations.
The modes of the lattice vibrations will be described in Chap6. When the amplitude
of the lattice vibrations is small compared to the lattice constant, the change in the
susceptibility due to the lattice vibrations is expanded in a Taylor series as

χ(ki ,ωi, u) = χ(0)(ki ,ωi) +
(

∂χ

∂u

)
u=0

u(r, t) + · · · , (5.54)

and thus the susceptibility tensor is expressed as

χ jk = χ(0)
jk + χ jk,lul + χ jk,lmulum + · · · , (5.55)

where

χ jk,l =
(

∂χ jk

∂ul

)
u=0

, χ jk,lm =
(

∂2χ jk

∂ul∂um

)
u=0

. (5.56)

It is evident from the result that χ jk,l and χ jk,lm are the third-rank and fourth-rank
tensors, respectively. The first terms on the right hand sides of (5.54) and (5.55)
are the susceptibility without perturbation and the terms beyond this are the compo-
nents induced by the perturbation. Keeping up to the second term on the right-hand
side of (5.54) and inserting them into (5.52), we obtain the following result for the
polarization:

P(r, t, u) = P (0)(r, t) + P (ind)(r, t, u) , (5.57)

and the two components on the right-hand side are given by

P (0)(r, t) = χ(0)(ki ,ωi)ε0E(ki ,ωi) cos(ki · r − ωit), (5.58)

P (ind)(r, t, u) =
(

∂χ

∂u

)
u=0

u(r, t)ε0E(ki ,ωi) cos(ki · r − ωit) . (5.59)

The term P (ind) in the above equation is the polarization induced by the lattice vibra-
tions and is related to Raman scattering. It is rewritten as:

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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Fig. 5.10 Geometry of the light scattering experiment. aGeneral case,b right-angle (90◦) scattering
geometry, and c back scattering geometry. ki is the wave vector of the incident photon, ks is the
wave vector of the scattered photon, and q is the phonon wave vector

P (ind)(r, t, u)

=
(

∂χ

∂u

)
u=0

u(q,ωq) cos(q · r − ωqt)ε0E(ki ,ωi) cos(ki · r − ωit)

= 1

2
ε0

(
∂χ

∂u

)
u=0

u(q,ωq)E(ki ,ωi)

× [
cos{(ki + q) · r − (ωi + ωq)t}

+ cos{(ki − q) · r − (ωi − ωq)t}
]

. (5.60)

The above results are understood as follows. The polarization P (ind) consists of
the Stokes shifted wave with wave vector kS = (ki − q) and angular frequency
ωS = (ωi − ωq) and of the anti-Stokes wave with wave vector kAS = (ki + q) and
angular frequency ωAS = (ωi + ωq). In Raman scattering experiments, therefore, we
observe two scattered beams, one is a Stokes shifted wave and the other is an anti-
Stokes shifted wave. In other words, these two different scattered lines appear on
both sides of the laser line shifted by the phonon frequency and the shift is called the
Raman shift.

In the scattering event the energy conservation law and momentum conservation
law hold:

ωi = ωs ± ωq, (5.61)

ki = ks ± q, (5.62)

where the sign ± means Stokes scattering for + and anti-Stokes scattering for −.
Since the difference between ωi and ωs is small, |ki | and |ks | are almost the same.
In this case the scattering angle θ in Fig. 5.10a is given by

q = 2ki sin(θ/2) . (5.63)

From these discussions we may understand that the intensity of the Raman scat-
tering is determined by P (ind). In the following we will derive the Raman scattering
intensity, where the intensity is defined by using the Raman tensor. Here we will
discuss the Raman tensor first. The polarization due to the lattice vibrations χi j is
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defined by

χi j = χ(0)
i j +

∑
k

χi j,kuk +
∑
k,l

χi j,klukul + 0(u3) , (5.64)

where

χi j,k =
(

∂χi j

∂uk

)
u=0

, χi j,kl =
(

∂2χi j

∂u j∂ul

)
u=0

. (5.65)

The term proportional to u gives the first-order Raman scattering and the first deriv-
ative of χ of the above equation is called the first-order Raman tensor. In a similar
fashion the second derivative of χ gives second-order Raman scattering, which
will not be discussed in detail. It is evident that χi j,k is the third-rank tensor and its
non-zero components are determined from the crystal symmetry. The intensity of the
first-order Raman scattering has been derived by Smith [14], and the result for the
intensity of unpolarized light is given by

Is = 3�ω4
s LdΩ

ρc4ωq
|χzy,x |2(nq + 1) , (5.66)

where L is the sample length along the light wave vector ki, ρ is the crystal density,
nq is the occupation number of phonons (given by Bose–Einstein statistics), and
dΩ is the detector solid angle. The above equation is for Stokes scattering, and the
intensity for anti-Stokes scattering is obtained by replacing nq + 1 by nq . The result
is derived from classical mechanics and its quantum mechanical treatment will be
described later.

In standard experiments, Raman scattering is measured by using polarized light,
and the electric polarization to produce the scattering is expressed as

P (ind) ∝
(

∂χ

∂u

)
u(q,ωq) · e(i) =

(
∂χi j

∂uk

)
uk(q,ωq) · e(i)

= (χi j,k)uk · e(i)
j ∼ Rk

ji · e(i)
j ,

where e(i) is the unit polarization vector of the incident light. The scattered light
intensity of the polarization direction e(s) is given by e(s) · P (ind), and thus we obtain
for the scattered intensity

Is ∝
∣∣∣∣e(s) ·

(
∂χ

∂u

)
u · e(i)

∣∣∣∣
2

∼
∣∣∣∣e(i) · Rk

ji · e(s)

∣∣∣∣
2

∼
∣∣∣∣e(i)

j Rk
ji e

(s)
i

∣∣∣∣
2

, (5.67)

where the subscripts i, j, k mean the x, y, z components, and the superscripts (i) and
(s) are for incident and scattered light, respectively.

As mentioned before, χi j,k is the third-rank tensor, and χi j,k multiplied by a
displacement vector u = ξ · u (ξ is the unit vector of the displacement) results in the
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second-rank tensor. In other words

χi j,k · u =
∑
k

χi j,k uk ∼
∑
k

Rk
jiξk

is the second-rank tensor and its non-zero components are determined by the crystal
symmetry. For the same reason the Raman tensor Rk

ji or χi j,k is determined by the
crystal symmetry. The Raman tensor Rk

ji depends on the incident light polarization
j , scattered (Raman) light polarization i , and phonon polarization k. The unper-
turbed susceptibility χ(0)

i j is a second-rank tensor. In the case of Raman scattering
the frequencies of the incident and scattered light are different, and thus the Raman
tensor Rk

ji (χi j,k) is no longer a second-rank tensor in the strict sense. The Raman
tensor determines the selection rule of Raman scattering, and Raman scattering and
infrared absorption are complementary. TheRaman tensorχi j,k = (∂χi j/∂u) reflects
the crystal symmetry. As an example, we consider the Raman tensor of a crystal with
inversion symmetry. TheRaman tensor of a crystal with inversion symmetry is invari-
ant under the operation of inversion, whereas there are two types of phonon modes:
one does not change sign under the inversion operation (even parity) and the other
changes sign under the inversion operation (odd parity). Since the displacement u
of a phonon mode with odd parity changes sign under the inversion operation, the
sign of χi j,k = (∂χi j/∂u) is changed. In other words, we may conclude that the
Raman tensor for the phonon modes with odd parity vanishes. It should also be
noted that phonons with odd parity are infrared-active and phonons with even parity
are infra-red-inactive.

It iswell known that a crystalwithout inversion symmetry exhibits piezoelectricity.
As an example we consider a zinc blende crystal such as GaAs. Piezoelectricity is a
phenomenon in which a strain e jk induces an electric field, and the i component of
the electric field Ei is related to the strain according to

Ei = ei jke jk,

where ei jk is a piezoelectric constant and a third-rank tensor. The definition of strain
is given in Appendix C. Here we adopt the contraction of the subscripts of the tensor
defined in Appendix C: xx = 1, yy = 2, zz = 3, yz = zy = 4, zx = xz = 5, and
xy = yx = 6 for jk. Then the piezoelectric constant tensor of a cubic crystal Td is
given by⎡

⎣ 0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e14

⎤
⎦ , (5.68)

and its non-zero components consist of one independent constant e14. The non-zero
components arise from the components xyz, yzx , zxy. The Raman tensor Rk

ji is
expected to have the same properties as the piezoelectric tensor. Detailed analysis
has been done with the help of group theory. Here we adopt the notation used so far
and express the Raman tensor by the 3 × 3 matrices.
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Rx
yz, R

x
zy =

⎡
⎣0 0 0
0 0 d
0 d 0

⎤
⎦ , Ry

zx , R
y
xz =

⎡
⎣ 0 0 d
0 0 0
d 0 0

⎤
⎦ , Rz

xy, R
z
yx =

⎡
⎣ 0 d 0
d 0 0
0 0 0

⎤
⎦ .

(5.69)

As described earlier, the Raman tensor (
∑

k R
k
ji ) is a second-rank tensor and it

may be possible to express it by an irreducible representation as is the case for the
strain tensor. Referring to Appendix C, the Raman tensor shown above belongs to
the Γ4 group. Using (C.15) in Appendix C we obtain the following result:

R(Γ1) =
⎡
⎣a 0 0
0 a 0
0 0 a

⎤
⎦ , (5.70)

R(Γ3) =
⎡
⎣b 0 0
0 b 0
0 0 −2b

⎤
⎦ ,

√
3

⎡
⎣b 0 0
0 −b 0
0 0 0

⎤
⎦ , (5.71)

R(Γ4) =
⎡
⎣0 0 0
0 0 d
0 d 0

⎤
⎦ ,

⎡
⎣ 0 0 d
0 0 0
d 0 0

⎤
⎦ ,

⎡
⎣ 0 d 0
d 0 0
0 0 0

⎤
⎦ . (5.72)

The Raman tensor R(Γ4) of the above equation is equivalent to Rz
xy , R

x
yz and so on of

(5.69). The factor
√
3 of (5.71) arises from the normalization of the basis functions

shown in Appendix C such as (1/
√
2)(exx − eyy) and (1/

√
6)(exx + eyy − 2ezz).

When we use the form of the strain tensor (C.16) in Appendix C, (5.71) is rewritten
as

R(Γ3) =
⎡
⎣b 0 0
0 b 0
0 0 b

⎤
⎦ ,

⎡
⎣b 0 0
0 b 0
0 0 b

⎤
⎦ . (5.73)

In the above equation two equivalent tensors are listed because the phonons are
doubly degenerate.

A table of Raman tensors have been reported which are obtained with the help
of group theory. In this section we show the Raman tensors in Table5.1 derived by
Loudon [15], where the modes with (x), (y), and (z) are both Raman-active and
infrared-active with the polarization direction x , y, and z, respectively. It should be
noted that all of the Raman-active modes are not observed as the first-order Raman
scattering. As shown in the previous example of a crystal with Td symmetry, optical
phonons have Γ4 symmetry and phonons with Γ1 (A1) and Γ3 (E) symmetry are
not optical phonons. These phonon modes are normally observed as the second-
order Raman scattering. Also, it should be noted that Table5.1 obtained under the
assumption of infinite phonon wave vectors (wave vector: q = 0) and that the tensors
are classifiedwith the help of the point group of the crystals. In experiments onRaman
scattering, phonons with the wave vector q �= 0 are involved.
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Table 5.1 Raman tensors of a cubic crystal and Raman-active phonon modes⎡
⎢⎣
a 0 0

0 a 0

0 0 a

⎤
⎥⎦

⎡
⎢⎣
b 0 0

0 b 0

0 0 b

⎤
⎥⎦

⎡
⎢⎣
b 0 0

0 b 0

0 0 b

⎤
⎥⎦

⎡
⎢⎣
0 0 0

0 0 d

0 d 0

⎤
⎥⎦

⎡
⎢⎣
0 0 d

0 0 0

d 0 0

⎤
⎥⎦

⎡
⎢⎣
0 d 0

d 0 0

0 0 0

⎤
⎥⎦

T A E E F(x) F(y) F(z)

Th Ag Eg Eg Fg Fg Fg

O Ag Eg Eg Fg Fg Fg

Td A1 E E F2(x) F2(y) F2(z)

Oh A1g Eg Eg F2g F2g F2g

5.2.1 Selection Rule of Raman Scattering

Here we will discuss the first order Raman intensity (single phonon Raman scat-
tering) using the results obtained above. For the purpose of better understanding,
we will consider Raman scattering in a crystal with inversion symmetry (Oh group)
and a crystal without inversion symmetry (Td group). From Table5.1 we find that
optical phonons in a crystal with inversion symmetry Oh consist of triply degenerate
F2g (Γ25′ ) phonons at the Γ point: two transverse optical phonon modes and one
longitudinal phonon mode. The scattering intensity is given by

I = A

[ ∑
j,i=x,y,z

e(i)
j R ji e

(s)
i

]2
, (5.74)

where A is a constant determined from by the material and the scattered photon
frequency, and e(i)

j and e(s)
i are the j and i components of the unit polarization

vector of the incident and scattered light. Referring to Fig. 5.10a, we calculate the
scattering intensity for the two cases where the polarization of the scattered light is
parallel and perpendicular to the scattering plane (x, z plane), respectively. Noting
that the summation is carried out for degenerate phonon modes, the intensities for
the two cases are given by

I‖ = A

[(
e(i)
x Rxz

)2 +
(
e(i)
y Ryx

)2 +
(
e(i)
y Ryz

)2]

= A|d|2
[(

e(i)
x sin θ

)2 +
(
e(i)
y

)2
(cos2 θ + sin2 θ)

]

= A|d|2
[(

e(i)
x sin θ

)2 +
(
e(i)
y

)2]
, (5.75a)

I⊥ = A

[(
e(i)
x Rxy

)2] = A|d|2
[(

e(i)
x

)2]
. (5.75b)

On the other hand, in a crystal without inversion symmetry Td the doubly degenerate
transverse optical (TO) phonons and longitudinal optical (LO) phonons split. In such
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Table 5.2 Selection rule for Raman scattering in the Td group (includes zinc blende crystal such
as GaAs) in back scattering and right-angle scattering geometries

Scattering geometry Selection rule

TO phonons LO phonons

Back scattering z(y, y)z̄; z(x, x)z̄ 0 0

z(x, y)z̄; z(y, x)z̄ 0 |dLO|2
90◦ scattering z(x, z)x |dTO|2 0

z(y, z)x |dTO|2/2 |dLO|2/2
z(x, y)x |dTO|2/2 |dLO|2/2

a case the Raman tensor depends on the phonon polarization direction. Defining the
unit polarization vector of the phonons by ξ, the scattering intensity is given by

I = A

[ ∑
j,i,k=x,y,z

e(i)
j Rk

jiξke
(s)
i

]2
. (5.76)

For the scattering geometry shown in Fig. 5.10a, the scattering intensity for LO
phonons is given by

I‖(LO) = ALO
[
e(i)
y Rx

yzξxe
(s)
z + e(i)

y Rz
yxξze

(s)
x

]2
= ALO|dLO|2 (e(i)

y sin(3θ/2)
)2

, (5.77a)

I⊥(LO) = ALO
[
e(i)
x Rz

xyξze
(s)
y

]2 = ALO|dLO|2 (e(i)
x sin(θ/2)

)2
, (5.77b)

and for TO phonons

I‖(TO) = ATO

[(
e(i)
x Ry

xzξye
(s)
z

)2 + (
e(i)
y Rx

yzξxe
(s)
z + e(i)

y Rz
yxξze

(s)
x

)2]

= ATO|dTO|2
[(
e(i)
x sin θ

)2 + (
e(i)
y cos(3θ/2)

)2]
, (5.78a)

I⊥(TO) = ATO
[
e(i)
x Rz

xyξze
(s)
y

]2 = ATO|dTO|2 (e(i)
x cos(θ/2)

)2
. (5.78b)

When we put ALO|dLO|2 = ATO|dTO|2 = A|d|2, we obtain I‖(LO) + I‖(TO) = I‖,
and I⊥(LO) + I⊥(TO) = I⊥, which agree with (5.75a) and (5.75b), respectively.

In the cases of the right angle scattering and back scattering geometries shown
in Fig. 5.10b and c, the scattered intensities are obtained by putting θ = π/2 and
θ = π, respectively. Raman scattering geometry or selection rule is often defined by
ki (e(i), e(s))ks , where four vectors are used; two wave vectors ki and ks and two
polarization vectors e(i) and e(s) for incident and scattered light, respectively. When
we use this notation the selection rule of Td crystal is given by Table5.2 in the case
of back and 90◦ scattering geometries.

Raman scattering experiments are usually carried out by using a laser in the visible
region. The photon energy is higher than the band gap of many semiconductors such
as GaAs and Si and thus the light is not transmitted. In such semiconductors the
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Fig. 5.11 Raman scattering intensity for two different configurations of Si. The results on Si, Oh
group, may be applied to GaAs, Td group. The intensity is obtained from Table5.1

incident photon is absorbed in the surface region and thus Raman measurements
with a right-angle (90◦) scattering geometry are not possible. In such a case the
back-scattering geometry is adopted. From Table5.2, we find that only LO phonons
are detected byRaman scattering. In order to detect TO phonons byRaman scattering
we have to use the following configuration. When we define new axes y′ and z′ along
the directions [011] and [01̄1], respectively, the Raman configurations y′(z′, x)ȳ′ and
y′(z′, z′)ȳ′ will provide a Raman intensity proportional to |dTO|2 for TO phonons and
zero for LO phonons.

We now discuss the experimental results on Raman scattering. There have been
numerous papers published so far and it is not the purpose of this textbook to survey
all of the data. Instead, only very recent experimental results will be reported, which
were obtained for the purpose of this book. First, we will show the experimental
results on GaAs, which belongs to the Td group. As shown in Table5.1, Raman-
active optical phonons are F2 (Γ4 or Γ15 after the notation of BSW). In addition, we
find fromTable5.2 that LO phonons are observed by using the z(x, y)z̄ configuration
in the (001) plane of GaAs, and that TO phonons are detected by using the x ′(z′, y′)x̄ ′
configuration in the (110) plane of GaAs. Here, [x, y, z] are the coordinates along the
crystal axes and [x ′, y′, z′] are new coordinates obtained by rotating by 45◦ around
the z axis. Therefore, the (x ′, z′) or (y′, z′) plane corresponds to the (110) plane. This
definition is the same for other cubic crystals. The selection rule and the intensity
of Raman scattering in the new coordinates are summarized in Fig. 5.11. Although
Fig. 5.11 is for the results on Si, Oh group, the same results may be obtained for
GaAs, Td group, referring to Table5.1.

Raman scattering experiments have been carried out by utilizing a double mono-
chromator or a triple monochromator and photon counting system or a CCD camera.
The data shown here are taken by a new Raman spectrometer “Ramascope” (Raman
microscope) made by Renishaw which utilizes a notch filter to remove Rayleigh
scattering components and provides high accuracy and convenience. Raman scatter-
ing signals of Si observed with the equipment are shown in Fig. 5.12a, where the
Raman configuration is z(x, y)z̄. Under this configuration Raman scattering due to
LO phonons is expected to be observed, while the experimental result shows signals
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(a) (b)

Fig. 5.12 Raman scattering data of GaAs at room temperature. a In addition to LO phonon scat-
tering, which is allowed for the z(x, y)z̄ configuration, a weak signal due to TO phonon scattering,
which is forbidden in this configuration, is observed due to misalignment of the configuration. b
For the configuration x ′(z′, y′)x̄ ′, TO phonon scattering is allowed but LO phonon scattering is
forbidden

due to forbidden TO phonons in addition to LO phonon scattering in the region 200–
300cm−1. The signal may arise from imperfect polarization of light and from the fact
that the incident light angle depends on the depth of focus. Raman scattering due to
TO phonons may be observed under the Raman configuration x ′(z′, y′)x̄ ′ using the
(100) plane, which is determined from Fig. 5.11. The results are shown in Fig. 5.12b,
where a strong peak of TO phonons and a weak peak of LO phonons are observed.

Temple andHathaway [16] have reported detailed results formulti-phononRaman
scattering in Si. Referring to this paper, we discuss how to observe the firs-t and
second-order Raman scattering. Experiments are carried out by utilizing the Ram-
ascope of Renishaw in a similar way as used for GaAs. Since Si belongs to the Oh

group, the phonon modes of A1g (Γ1), Eg (Γ12), F2g (Γ25′) are found to contribute
to Raman scattering from Table5.1. In the following we adopt the notation of BSW
(Bouckaert, Smoluchowski and Wigner [13] in Chap. 1) (in brackets). Since optical
phonons belong to Γ25′ , the first-order Raman scattering arises from the Raman ten-
sor belonging to Γ25′ . The experimental results in the (001) plane of Si are shown in
Fig. 5.13.

It is evident fromFig. 5.11 that the z(x ′, x ′)z̄ configuration of Fig. 5.13a enables us
to observe all the phonon modes of the representations Γ1 + Γ12 + Γ25′ . The strong
peak at 519cm−1 is due to one-phononRaman scatteringdue to the degenerateTOand
LO phonons (Γ25′) at the Γ point. The broad peak in the region 200–450cm−1 is due
to the second-order Raman scattering of two acoustic phonons, and the peak slightly
above the peak due to the one-phonon Raman scattering arises from the second-order
Raman scattering of simultaneously emitted optical and acoustic phonons. The peak
near 1000cm−1 is due to second-order Raman scattering which involves two optical
phonons. It should be noted here that the energy and momentum conservation rules
hold for the second-order Raman scattering and that the two phonons have wave
vectors in the reverse direction to each other. The intensity of the second-order
Raman scattering reflects the density of states for the phonon mode and thus will
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(a) (b)

(c) (d)

Fig. 5.13 Raman scattering observed in the (001) plane of Si at T = 300K. a z(x ′, x ′)z̄ configura-
tion: all the phonon modes of representations Γ1 + Γ12 + Γ25′ are observed. The peak at 519cm−1

is due to first-order Raman scattering by Γ25′ optical phonons at the Γ point, and the other sig-
nals arise from second-order Raman scattering. b z(x, y)z̄ configuration: only Γ25 phonons will
provide allowed Raman scattering. c z(x, x)z̄ configuration: second-order Raman scattering due to
phonons of representations Γ1 + Γ12 is observed. d z(x ′, y′)z̄ configuration: Raman scattering due
to Γ12 phonons is expected. According to the slight misalignment second-order Raman scattering
is observed in the region 900–1000cm−1 in addition to the strong peak due to first-order Raman
scattering

provide information about the dispersion of the phonon branches. Figure5.13b shows
Raman scattering for the z(x, y)z̄ configuration, where Raman scattering due to Γ25′

phonons is allowed. In the figure, however, we find first-order Raman scattering
due to optical phonons at the Γ point and second-order Raman scattering due to
two optical phonons. Raman scattering for the z(x, x)z̄ configuration is shown in
Fig. 5.13c, where phonons of the Γ1 + Γ12 representations may be observed. In other
word, we observe only the second-order Raman scattering due to acoustic and optical
phonons except for aweak component due toΓ25′ phonons. TheRaman configuration
z(x ′, y′)z̄ of Fig. 5.13d enables us to observe the Γ12 phonons. The second-order
Raman scattering is so weak that the first-order Raman scattering due to optical
phonons of Γ25′ type appears, which may be caused by a slight misalignment of the
optical path. Although the intensity is very low, second-order Raman scattering is
observed in the region 900–1000cm−1.
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(a) (b)

Fig. 5.14 Quantum mechanical representation of Raman scattering. Interband transition induced
by an incident photon, electron or hole scattering by a phonon, and emission of a scattered photon

5.2.2 Quantum Mechanical Theory of Raman Scattering

The microscopic interpretation of Raman scattering is as followings. An incident
photon creates an excited state of an electron from its ground state, or an electron–
hole pair, and the electron or the hole (or electron–hole pair, exciton) interacts with
a phonon (phonon scattering) to create a new excited state. Then the electron and
the hole recombine to emit a photon. Therefore, we may expect that the scattering
intensity increases rapidly when the incident photon energy approaches the funda-
mental absorption edge. This rapid increase is discussed later and called resonant
Raman scattering. The processes are schematically illustrated in Fig. 5.14, where
the conduction band and the heavy and light hole bands are considered. Figure5.14a
corresponds to the case where an excited electron is scattered by a phonon and (b) to
the case of hole scattering by a phonon. In such a quantummechanical process, three
interactions are involved: (1) interaction of an incident photon with an electron in
the semiconductor, (2) interaction of an exciton or electron–hole pair with a phonon,
(3) recombination (the electron-hole pair with a scattered photon), and therefore the
process may be treated by third-order perturbation theory of quantum mechanics.
Theoretical analysis has been done by Loudon [17]. Usually quantum mechanical
calculations have been carried out with the help of diagrams and various methods
have been adopted. Among them two methods adopted by Loudon [17] and by Yu
and Cardona [12] are very convenient for us. The process in Fig. 5.14 is shown by
diagrams in Fig. 5.15, where (a) is after Loudon and (b) is after Yu and Cardona.

In this textbook we will follow the method of Yu and Cardona. First we define
the following rules to draw a diagram:

(a) Excitations such as the photon, electron–hole pair and phonon are called prop-
agators, and are drawn by dotted, solid and dashed lines as shown in Fig. 5.16.

(b) The interaction between these excitations is indicated by an intersection con-
necting two propagators, and the intersection is called a vertex. Vertices are



5.2 Raman Scattering 231

ωω ω ω

ω
ω(a) (b)

Fig. 5.15 Representations of Raman scattering by diagrams: a after Loudon [17] and b after Yu
and Cardona [12]

Fig. 5.16 Propagator and
vertex used to express
diagrams

er

el

expressed by various notations, but here we use • for electron–photon (radiation
field) interaction and � for the electron–phonon interaction.

(c) Propagators are drawn with arrows. The direction of the arrows represents the
creation and annihilation at the interaction. An arrow toward a vertex indicates
annihilation and an arrow leaving a vertex indicates creation.

(d) The sequential progress of the interactions are from the left to the right and all
the interactions are lined up according to this rule.

(e) Once a diagram is drawn, then draw all the diagrams by changing the order of
the vertices.

Using these rules, 6 diagrams for Raman scattering are easily obtained by taking
account of 3 vertices, which are shown in Fig. 5.17. Next, we will consider the
perturbation calculations of Raman scattering. Defining an initial state by |i〉 and the
final state by |f〉, the scattering rate is calculated by using Fermi Golden Rule as
follows. We consider the case of Fig. 5.17a as an example. The Hamiltonian to be
solved is

H = H0 + Her + Hel,

where H0 = He + Hl is the sum of the electron and lattice vibration Hamiltonians,
Her is the interaction Hamiltonian of an electron–photon pair (radiation field), and
Hel is the interaction Hamiltonian for electron–lattice vibrations. The next step is to
calculate the perturbation expansion of the scattering probability using the diagrams,
which is shown as follows.

1. From the first vertex we obtain
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5.17 Six diagrams for Raman scattering (Stokes)

∑
n

〈n|Her(ωi)|i〉
[�ωi − (En − Ei)] , (5.79)

where |i〉 is the initial state with energy Ei, and |n〉 is the intermediate state with
the energy En . The term �ωi of the energy denominator has + sign for absorption
of the quanta (photon) and − sign for emission. The summation is carried out
over all the intermediate states |n〉.

2. Using this rule, the contribution from the second vertex is carried out and summed
as

∑
n,n′

〈n′|Hel(ωq)|n〉〈n|Her(ωi)|i〉[
�ωi − (En − Ei) − �ωq − (En′ − En)

]
[�ωi − (En − Ei)]

, (5.80)

where |n′〉 is another intermediate state and theminus sign of the term−�ωq arises
from rule (1), corresponding to the phonon emission. This equation is rewritten
as

∑
n,n′

〈n′|Hel(ωq)|n〉〈n|Her(ωi)|i〉[
�ωi − �ωq − (En′ − Ei)

]
[�ωi − (En − Ei)]

. (5.81)

In a similar fashion wemay take account of other vertices and obtain higher-order
perturbations.

3. Note here that the total energy is conserved when we calculate the final vertex
term, which is done as follows. The energy denominator for the final (third) vertex
is given by

[
�ωi − (En − Ei) − �ωq − (En′ − En) − �ωs − (Ef − Ei)

]
= [

�ωi − �ωq − �ωs − (Ei − Ef)
]

. (5.82)
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However, the electron returns to the ground state after Raman scattering, and
thus the final state |f〉 is the same as the initial state |i〉. Therefore we obtain the
following relation

[
�ωi − �ωq − �ωs

]
.

The energy conservation rule tells us that the above term should be zero. The
calculation of the scattering probability is done by replacing the above term by
the Dirac delta function δ[�ωi − �ωq − �ωs], and the scattering probability is
given by

w(−ωi,ωs,ωq)

= 2π

�

∣∣∣∣∣
∑
n,n′

〈0|Her(ωs)|n′〉〈n′|Hel(ωq)|n〉〈n|Her(ωi)|i〉[
�ωi − �ωq − (En′ − Ei)

]
[�ωi − (En − Ei)]

∣∣∣∣∣
2

×δ
[
�ωi − �ωq − �ωs

]
. (5.83)

In a similar fashion the calculations for other five diagrams in Fig. 5.17 are straight-
forward. Summing up all the contributions we obtain the following result, where the
initial and final states are assumed to be the ground state |0〉 and we have used the
relation |i〉 = |f〉 = |0〉.

w(−ωi,ωs,ωq)

= 2π

�

∣∣∣∣
∑
n,n′

〈0|Her(ωs)|n′〉〈n′|Hel(ωq)|n〉〈n|Her(ωi)|0〉[
�ωi − �ωq − (En′ − E0)

]
[�ωi − (En − E0)]

+ 〈0|Her(ωs)|n′〉〈n′|Her(ωq)|n〉〈n|Hel(ωi)|0〉
[�ωi − �ωs − (En′ − E0)] [�ωi − (En − E0)]

+ 〈0|Her(ωs)|n′〉〈n′|Hel(ωq)|n〉〈n|Her(ωi)|0〉[−�ωs − �ωq − (En′ − E0)
]
[−�ωs − (En − E0)]

+ 〈0|Her(ωs)|n′〉〈n′|Her(ωq)|n〉〈n|Hel(ωi)|0〉
[−�ωs + �ωi − (En′ − E0)] [−�ωs − (En − E0)]

+ 〈0|Her(ωs)|n′〉〈n′|Hel(ωq)|n〉〈n|Her(ωi)|0〉[−�ωq + �ωi − (En′ − E0)
] [−�ωq − (En − E0)

]

+ 〈0|Her(ωs)|n′〉〈n′|Hel(ωq)|n〉〈n|Her(ωi)|0〉[−�ωq − �ωs − (En′ − E0)
] [−�ωq − (En − E0)

]
∣∣∣∣
2

× δ[�ωi − �ωq − �ωs]. (5.84)

Loudon deduced the Raman scattering intensity using the above result [15], which
is shown below, where the scattering geometry is the same as in thee classical theory
used by Smith (5.66):
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I = e4ωsV (nq + 1)LdΩ

4�3m4d2Mc4ωqωi

[|Rx
yz|2 + |Ry

zx |2 + |Rz
xy |2

]
, (5.85)

where e and m are the magnitude of the electronic charge and the effective mass
of electron, d the lattice constant, V the volume of the crystal, M (1/M = 1/M1 +
1/M2) the reduced mass of the lattice atoms, and nq the phonon occupation number.
Rx
yz used in (5.85) is the Raman tensor defined previously and given by the following

relation for diamond type (Oh) and for zinc blende type crystals(Td ):

Rx
yz(−ωi,ωs,ωq)

= 1

V

∑
α,β

[
pz0βΞ x

βα p
y
α0

(ωi − ωq − ωβ)(ωi − ωα)
+ 5 other terms

]
, (5.86)

where

�ωα = Eα − E0, �ωβ = Eβ − E0

and py
α0 = 〈α|py|0〉 is the momentum matrix element for the light polarization y.

Ξ i
αβ is given by

〈α|Hel|β〉 = Ξ i
αβ

ūi
d

,

where u is the relative displacement of the optical phonons and ūi is the amplitude in
the x direction of its quantized representation (the quantization of the lattice vibra-
tions will be treated in Chap.6). Ξ i

αβ is the deformation potential constant defined
by Bir and Picus [18]. According to the analysis of Loudon [15], the scattering effi-
ciency is estimated to be about 10−6 to 10−7 from (5.85). It is impossible to calculate
the scattering efficiency from (5.84) because of the uncertainty of the coefficients
involved. Therefore, we pick up the term of the most important contribution from
(5.84) and treat the other terms as background, replacing them by a constant. This
approximation has been successfully used to analyze resonant Raman scattering and
resonant Brillouin scattering.

From these discussions we learn the relation between the macroscopic (classical)
theory of the Raman tensor and the quantum mechanical result of the Raman tensor.
We have to note here that relations such as χx

yz = χzy,x hold from the macroscopic
theory, but there are no such relations for the quantum mechanical Rx

yz . This may
be understood from the fact that the subscripts y, z of Rx

yz are for the polarization
directions of incident (y) and scattered (z) photons and that Rx

zy corresponds to the
time reversal sequence of Fig. 5.17a, from the right to the left, which should be
expressed from the quantum mechanical point of view (time reversal) as

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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Rx
yz(−ωi,ωs,ωq) = Rx

zy(−ωi + ωq,ωs + ωq,−ωq) . (5.87)

The phonon energy is much smaller than the photon energy in Raman scattering and
we may safely put ωq  0 to obtain

Rx
yz(−ωi,ωi, 0) = Rx

zy(−ωi,ωi, 0) . (5.88)

Therefore, we find that Rx
yz has the same property as χyz,x .

5.2.3 Resonant Raman Scattering

As shown in Fig. 5.14, Raman scattering involves the creation of an electron–hole pair
as the intermediate state. Therefore, when the incident photon energy approaches the
fundamental absorption edge, the efficiency of creating electron–hole pairs increases
and the Raman scattering efficiency is enhanced dramatically. The resonant enhance-
ment is called resonant Raman scattering. This enhancement is clear from the scat-
tering efficiency obtained in Sect. 5.2.2. The strongest contribution in (5.84) comes
from the diagram shown in Fig. 5.17a, which is evident from the following result.
From (5.86) we put

Rx
yz = 1

V

∑
α,β

pz0βΞ x
βα p

y
α0

(ωi − ωq − ωβ)(ωi − ωα)
, (5.89)

and assuming that the bands are isotropic and parabolic and that the momentum
matrix element is independent of the wave vector, we find

Rx
yz = 2

(2π)3
pz0βΞ x

βα p
y
α0

×
∫
B.Z.

4πk2dk(
ωgβ + ωq − ωi + �k2

2μ

)(
ωgα − ωi + �k2

2μ

) , (5.90)

where �ωgα and �ωgβ are the energy gaps for the incident and scattered light. In the
case of the zinc blende crystals shown in Fig. 4.17, �ωgα = �ωgβ . μ is the reduced
mass of the electron–hole pair of the intermediate state andwe assume that themasses
are the same for the states α and β. Integration of (5.90) is easily performed by using
the result shown in the first footnote of in Appendix A.1. When we put the upper
bound of the integration as the band edge energies (bandwidths of the joint state of
the conduction and valence bands) �Δωα and �Δωβ , we obtain

http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 5.18 The resonant term
of resonant Raman scattering
(resonant Brillouin
scattering) calculated from
(5.92) is plotted as a function
of incident photon energy;
ωq/ωg = 0.025 assumed.
When the incident photon
energy approaches the
fundamental absorption
edge, the scattering
efficiency increases
resonantly

Rx
yz = 4

(2π)2
· pz0βΞ x

βα p
y
α0

ωgβ − ωgα + ωq
·
(
2μ

�

)3/2

×
[(

ωgβ − ωs
)1/2

arctan

(
Δωβ

ωgβ − ωs

)1/2

− (
ωgα − ωi

)1/2
arctan

(
Δωα

ωgα − ωi

)1/2]
. (5.91)

For simplicity we put �ωgα = �ωgβ = �ωg , and then (5.91) reduces to

Rx
yz(−ωi,ωs,ωq) = 1

2π

(
2μ

�

)3/2

pz0βΞ x
βα p

y
α0

× 1

ωq

[(
ωg − ωs

)1/2 − (
ωg − ωi

)1/2]
. (5.92)

The scattering efficiency |Rx
yz|2 versus photon energy curve calculated from (5.92) is

plotted in Fig. 5.18, where we put ωq/ωg = 0.025. It is clear from this figure that the
scattering efficiency increases resonantly as the incident phonon energy approaches
the band gap. From this reason the phenomenon is called resonant Raman scatter-
ing. As discussed later, we find a similar result for resonant Brillouin scattering,
where the difference is the phonon energy ωq involved.

Next, wewill show that Raman scattering is interpreted in terms of themodulation
of the dielectric function with respect to the phonon energy. This was first pointed out
by Cardona [19, 20]. This idea was introduced from the following investigation [12].
When we take into account the finite lifetime of the intermediate state, the Raman
tensor is rewritten by introducing the damping constant or the broadening constant
Γα as

Rx
yz = �

V

∑
α

pz0βΞ x
αα p

y
α0

(�ωs − Eα + iΓα)(�ωi − Eα + iΓα)
. (5.93)

We rewrite this equation as
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Rx
yz = pz0βΞ x

αα p
y
α0

ωq

∑
k

[
1

Ecv(k) − �ωi − iΓα
− 1

Ecv(k) − �ωs − iΓα

]
, (5.94)

where we put �ωα = Eα = Ec(k) − Ev(k) ≡ Ecv(k). Using the Dirac delta function
of Appendix A.1, we find the following relation:

1

Ecv(k) − �ωi − iΓα
= 1

Ecv(k) − �ωi
+ iπδ [Ecv(k) − �ωi] . (5.95)

Comparing (5.95) with (4.127b), we find that the imaginary part of (5.95) corre-
sponds to the imaginary part of the dielectric function (or electric susceptibility).
In addition, assuming that the photon energy is close to the fundamental absorption
edge (Ecv(k) = Eg + �

2k2/2μ ∼ ω), we rewrite (4.127b) as

∑
k

|e · pcv|2
Ecv(k)

· 1

E2
cv − �2ω2

=
∑

k

|e · pcv|2
Ecv(k)

· 1

(Ecv + �ω)(Ecv + �ω)

∼ |e · pcv|2
2�2ω2

∑
k

1

Ecv(k) − �ω
, (5.96)

and this gives the real part of (5.95). From these considerations we obtain

Rx
yz(−ωi,ωs,ωq) ∝ 1

�ωq
[κ(ωi) − κ(ωs)] . (5.97)

If the phonon energy �ωq is much smaller than ωi and ωs, then (5.97) is equivalent
to the first derivative of the dielectric function with respect to the energy; in other
words, we obtain

Rx
yz(−ωi,ωs,ωq) ∝ ∂κ(ω)

∂(�ω)
. (5.98)

Therefore, the scattering efficiency is given by

I ∝
∣∣∣∣∂κ

∂E
∣∣∣∣
2

, (5.99)

where we put �ω = E . This approximation is more accurate because the phonon
energy involved is much smaller [20–22]. This approximation is called the quasi-
static approximation. Experiments on resonant Raman scattering have been carried
out by utilizing a laser with a wavelength very close to the band gap. One of the best
examples is the experiment on GaP near the E0 edge, which is shown in Fig. 5.19.
In the experiment TO phonon Raman scattering is observed by using several laser
lines, which is shown by +. The solid curve is calculated from (5.99) by taking into
account the two band edges, the E0 edge and the spin–orbit split-off band E0 + Δ0,
whereas the dashed curve takes into account of the E0 edge only [23]. As seen in
Fig. 5.19 we find good agreement between the experiment and theory.

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 5.19 The Raman scattering intensity for TO phonons in GaP is plotted as a function of incident
photon energy �ωL , where resonant enhancement is observed at the E0 edge and the E0 + Δ0 edge.
The solid curve is calculated by taking the E0 and E0 + Δ0 edges into account, whereas the dashed
curve is calculated by taking account of the E0 edge only. The theoretical curves are obtained by
putting �(ωg + ωq) for the band gap in the derivative form of the dielectric function (quasi-static
approximation)

5.3 Brillouin Scattering

Brillouin scattering involves the interaction of acoustic phonons instead of optical
phonons in Raman scattering, and thus its treatment is quite similar to that for Raman
scattering. While the optical phonon energy is about several 10meV, the acoustic
phonon energy involved in Brillouin scattering is about 4 × 10−6 eV = 4µeV for
1GHzphonons and 4meV for 1THzphonons. Therefore, it is very difficult to observe
Brillouin scattering with the double or triple monochromator used in Raman scatter-
ing experiments. Brillouin scattering was predicted theoretically by L. Brillouin in
1922 [24]. Brillouin scattering should be included in the Pockels effect reported by
F. Pockels in 1889 [25]. The Pockels effect is often referred to as the photoelastic
effect, where the optical property is changed by a change in the dielectric function
induced by elastic deformation of a solid. Elastic deformation includes static stress
and thermal disturbance (lattice vibrations or sound propagation); the latter is to be
understood as Brillouin scattering. In general, the photoelastic effect is characterized
by the photoelastic constant tensor pi jkl . When a strain ekl is applied to a crystal, a
change in the inverse dielectric constant δκ−1 is expressed as

(δκ−1)i j = pi jklekl , (5.100)

where pi jkl is called the photoelastic constant tensor of Pockels. From this relation
we obtain

δκi j (r, t) = −κim pmnkleklκnj , (5.101)
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where we have dropped the summation
∑

with respect to the subscripts on the
right-hand side. For simplicity we consider the cases for cubic and wurtzite crystals,
where their tensors contain diagonal elements only, and then the change in dielectric
constant is given by

δκi j (r, t) = δχi j (r, t) = −κi iκ j j pi jklekl . (5.102)

The scattering efficiency, therefore, is given by an equation similar to (5.66) for
Raman scattering and obtained by replacing χi j,kuk with δκi j (= δχi j ). Theoretical
calculations of the Brillouin scattering cross section in cubic crystals have been
reported by Benedek and Fritsch [26], in hexagonal crystals by Hamaguchi [27], and
in a general form by Nelson, Lazay and Lax [28]. Although δκi j is a second-rank
tensor and the same as the Raman tensor χk

i j uk , the change in the dielectric constant
for Brillouin scattering contains the fourth-rank tensor of the photoelastic constant
pi jkl , which has three non-zero components p11, p12 and p44 for cubic crystals and
five non-zero components p11, p12, p13, p44 and p66 = (1/2)(p11 − p12), where p66
is not independent. The Brillouin scattering cross section per unit solid angle σB(ωi)

(scattering efficiency I : I ∝ σB(ωi)) is given by [28]

σBΔΩ ∝ ω4
i kBTΔΩ

8π2c4ρv2
μ sin(θ′

s)n
(s)n(i)

∣∣∣e(s)
i χi jkle

(i)
j bkal

∣∣∣2 , (5.103)

where

χi jkl = −1

2
κim pmnklκnj (5.104)

and ω is the angular frequency of the incident light and the angular frequency of the
scattered light is given by ωs = ωi ± ωq  ωi. c is the light velocity, ρ the density
of the material, vμ the sound velocity, ΔΩ the solid angle of the detector to collect
the scattered light, e(s)

i and e(i)
j are the polarization directions of the incident and

scattered light, respectively, θ′ the scattered angle inside the material, n(s) and n(i)

are the refractive indices for the incident and scattered light, respectively, and bk
and al are the unit displacement vector and unit wave vector of the elastic waves
[28]. It should be noted that the rotational components of the strain tensor are taken
into account in [28] and that the authors define a new photoelastic constant p(i j)kl

instead of the photoelastic constant pi jkl used in this book. In addition Nelson et al.
[28] take into account the indirect effect due to piezoelectricity, the angle between
the Poynting vector and the wave vector, and the scattering volume. Therefore, the
cross-section of (5.103) is different from used in the original work of Nelson et al.
[28].
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Fig. 5.20 Wave vectors
involved in Brillouin
scattering for a isotropic
material and b anisotropic
material

(a) (b)

5.3.1 Scattering Angle

First, we consider the scattering angle in a cubic or isotropic crystal. Let us define
the wave vectors of the incident and scattered light inside the crystal as ki and kd,
respectively, and the respective angular frequencies as ωi and ωd. The scattering is
assumed to be induced by elastic waves with wave vector q and angular frequency
ωμ = 2π f . The momentum and energy conservation rules are therefore written as

ki ± q = kd, (5.105a)

�ωi ± �ωμ = �ωd . (5.105b)

Using the light velocity c (≈ 3 × 108m/s) and the sound velocity vμ(≈ 3 × 103m/s),
we obtain following relations: ωi = cki, ωd = ckd, ωμ = vμq. Since the sound veloc-
ity vμ is much smaller than the light velocity c (vμ 	 c), we have vμq 	 cki for the
elastic waves of which wave vector is comparable to the incident light wave vector,
and thus ωμ 	 ωi, giving rise to

ωi
∼= ωd, ki ∼= kd.

Therefore, three vectors ki, kd and q form an isosceles triangle, and the relation is
expressed by using a circle as shown in Fig. 5.20a. In this case we find a relation
(θ̂s/2 = θ̂i = θ̂d), where θ̂s is the angle (scattered angle) between the incident and
scattered light, and thus we obtain

q = 2ki sin

(
θ̂s

2

)
(5.106)

or the frequency of the elastic waves (phonons) f is given by

f = 2nvμ

λ0
sin

(
θ̂s

2

)
, (5.107)

where λ0 is the wavelength of the light in the air, n is the refractive index, and
the relation ki = 2πn/λ0 is used. In the case of right-angle (90◦) scattering or back
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scattering shown in Fig. 5.10b or c, the scattering angle inside the crystal is the same
as the outside scattering angle, and the above relation is valid. In the case where the
incident or scattered light is not perpendicular to the incident plane, however, the
angles θi and θd outside the sample should be calculated by using Snell law, Snell
law leads to the relations sin θi = n sin θ̂i, θi = θd = θs/2 and thus we obtain

f = 2vμ

λ0
sin

θs

2
. (5.108)

The angle θs is called the scattering angle outside the crystal.
In a Brillouin scattering event, the scattered light polarization rotates by 90◦ with

respect to the incident light polarization under some scattering configurations. When
this rotation occurs in an anisotropic crystal, the anisotropy of the refractive indices
induces a pronounced effect on the scattering angles. As an example we consider
the case of CdS, and choose the c plane (plane perpendicular to the c axis) as the
scattering plane (plane containing the incident and scattered light). Elastic waves
are assumed to be transverse and the displacement vector is parallel to the c axis.
Since the strain of the transverse elastic waves is ezy , the corresponding photoelastic
constant is p44 = pzyzy , and thus we find that the scattered light polarization is
parallel to the c axis for the incident light polarization perpendicular to the c axis.
The refractive indices are different for the two different polarizations, which is called
birefringence. We often use a He–Ne laser for Brillouin scattering and here we
discuss the birefringence inCdS at the lightwavelengthλ0 = 6328nm.The refractive
indices are no = 2.460 and ne = 2.477 for the polarization perpendicular and parallel
to the c axis, respectively. Although the difference in the refractive indices is quite
small, (ne − no)/[2(ne + no)] = 0.7%, the birefringence leads to a big effect on the
scattering angle.

When we define ni and nd for the refractive indices of the incident and diffracted
(scattered) light, we find the following relation.

ki = ωi

c
ni = 2πni

λ0
, (5.109a)

kd = ωd

c
nd ∼= ωi

c
nd = 2πnd

λ0
. (5.109b)

The momentum conservation rule in the presence of birefringence is shown in
Fig. 5.20b, where we find an inequality θ̂i �= θ̂d. From this figure we obtain

ni
λ0

sin θ̂i + nd
λ0

sin θ̂d = f

vμ
, (5.110a)

ni
λ0

cos θ̂i = nd
λ0

cos θ̂d . (5.110b)

This will lead to the following relations [29].
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Fig. 5.21 Incident angle θ̂i
and diffracted (scattered)
angle θ̂d inside an
anisotropic crystal (CdS)
plotted as a function of
elastic wave frequency. The
incident and diffracted
angles in an isotropic crystal
are given by the straight line

sin θ̂i = λ0

2nivμ

[
f + v2

μ

f λ2
0

(
n2i − n2d

)]
, (5.111a)

cos θ̂d = λ0

2ndvμ

[
f − v2

μ

f λ2
0

(
n2i − n2d

)]
. (5.111b)

Therefore, the scattering angle inside the crystal θ̂s = θ̂i + θ̂d is given by

sin
θ̂s

2
= f

2
√
nind

[(
f

vμ

)2

− (ni − nd)
2

λ2
0

]1/2

. (5.112)

The incident angle θ̂i and diffracted (scattered) angle θ̂d are calculated by
(5.111a) and (5.111b) in CdS and plotted as a function of the elastic wave fre-
quency in Fig. 5.21, where the refractive indices used are ni = no = 2.460 and
nd = ne = 2.477. In the figure the straight line is the curve calculated for the inci-
dent and diffracted angles θ̂i = θ̂d = θ̂s/2 for an isotropic crystal assuming that the
refractive index ni = nd = (no + ne)/2. The angles outside the crystal are calculated
with the help of Fig. 5.22 and of Snell’s law:

sin θi = ni sin

{
sin−1

(
λ0

2nivμ

[
f + v2

μ

f λ2
0

(
n2i − n2d

)])}
, (5.113)

cos θd = nd sin

{
sin−1

(
λ0

2ndvμ

[
f − v2

μ

f λ2
0

(
n2i − n2d

)])}
. (5.114)

Note that the angles outside an isotropic crystal are obtained by putting ni = nd. The
incident angles θi and diffracted angle θd outside a CdS crystal are calculated and
plotted as a function of elastic wave frequency, which are shown in Fig. 5.23.

The following result is obtained from (5.112). When the frequency of the elastic
waves is
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Fig. 5.22 Incident angle θi,
diffracted angle θd, and
scattering angle θs = θi + θd
outside a crystal and their
relations to the angles inside
the crystal θ̂i, θ̂d

Fig. 5.23 Incident angle θi
and diffracted (scattered)
angle θd outside an
anisotropic crystal (CdS) as a
function of elastic wave
frequency, where the
refractive indices are
ni = no = 2.460 and
nd = ne = 2.477

f0 = vμ

λ0

√
n2i − n2d = vμ

λ0

√
n2e − n2o , (5.115)

the incident angle becomes θ̂i = 0. In addition, the minimum observable frequency
fmin is obtained by putting θ̂s = 0 in (5.112),

fmin = vμ

λ0
|ni − nd| = vμ

λ0
(ne − no) . (5.116)

On the other hand, themaximum observable frequency is obtained by putting θ̂s = π:

fmax = vμ

λ0
(ni + nd) = vμ

λ0
(ne − no) . (5.117)

As typical examples, we present f0, fmin, and fmax for CdS and ZnO in Table5.3.
From the table we find that f0 ≈ 1GHz, fmin ≈ 0.5GHz, and fmax ≈ 15GHz.
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Table 5.3 Observable frequencies and other properties of elastic waves from Brillouin scattering
experiments in the anisotropic crystals CdS and ZnO

CdS ZnO

fmin [GHz] 0.473 0.736

f0 [GHz] 0.806 1.130

fmax [GHz] 13.7 17.3

ni = no 2.460 1.994

nd = ne 2.477 2.011

vμ [m/s] 1.76 × 103 2.74 × 103

Fig. 5.24 Experimental
setup to observe Brillouin
scattering. PPFP is a parallel
plane Fabry–Perot
interferometer. Triple path of
the light in the PPFP
discriminates undesired
components of Rayleigh
scattering and improves S/N

5.3.2 Brillouin Scattering Experiments

The phonons (elastic waves) involved in Brillouin scattering are for the acoustic
modes and their energies are very small compared with the optical phonon energy
involved in Raman scattering. Therefore, the frequency shift due to Brillouin scat-
tering is quite small and its detection using a normal monochromator is extremely
difficult. Brillouin scattering induced by thermal lattice vibrations (thermal phonons)
is usually investigated by using the Fabry–Perot interferometer. The parallel plane
Fabry–Perot (PPFP) interferometer is sometimes called theFabry-Perot etalon,which
consists of two parallel plates coated with a high dielectric constant material. When
a multiple of the light wavelength is equal to the distance between the plates, inter-
ference occurs and the light is transmitted. In order to observe a small change in
the wavelength, the thickness of the PPFP is controlled by a piezoelectric element
or the PPFP container is evacuated to change the refractive index of the gas (air)
inside. Figure5.24 shows an example of an experimental Fabry-Perot interferome-
ter setup for observing Brillouin scattering. In order to improve the signal-to-noise
ration another PPFP is connected in series (tandem type PPFP interferometer) or
the light beam is formed into multiple paths by using a prism (multiple path Fabry-
Perot interferometer) [30]. Since the scattered signal is extremely weak, the signals
are detected by a photon counting system or a multi-channel analyzer (MCA). We
present an example of a Brillouin scattering experiment on the Si (100) surface in
Fig. 5.25, where the laser line with λ = 488nm is used. R and L in Fig. 5.25 are
the Rayleigh scattering (no frequency shift) and Brillouin scattering signals due to
longitudinal acoustic phonons [30].
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Fig. 5.25 Brillouin
scattering spectra of Si (100)
surface, where R is Rayleigh
scattering and L is Brillouin
scattering due to longitudinal
acoustic phonons

-1

The study of the elastic properties of solids has a long history and measurements
of the velocity of have played a very important role in this aspect. The measurements
of the velocity of sound have been performed by using a transducer consisting of a
thin piezoelectric plate, which produces a resonant vibration with a frequency deter-
mined by the thickness when a.c. field is applied to the transducer. The transducer
(glued onto a sample) excites elastic waves by applying an a.c. electric field and
the reflected waves are detected by the transducer. The sound velocity is estimated
from the delay time of the round trip of the elastic waves and the thickness of the
sample. Longitudinal and transverse elastic waves are excited by choosing the crys-
tallographic direction of the transducer, and the anisotropy of the sound velocities
are easily measured by choosing the crystal axis of the samples. From these mea-
surements the elastic constants ci jkl are determined. We have to note here that the
frequency range produced by a transducer is limited to a low-frequency region from
around 1MHz to several 10 s of MHz. We know that the sound velocity exhibits
dispersion and that the sound velocity at high frequency becomes smaller at lower
frequencies. Brillouin scattering has been used to investigate the dispersion of the
lattice vibrations. Brillouin scattering provides information on the wave vector and
the frequency of the lattice vibration and the frequencies are in the region of sev-
eral GHz. In addition, Brillouin scattering is a kind of non-destructive measurement.
From these reasons Brillouin scattering has played an important role in solid state
physics.

Another successful application of Brillouin scattering is the investigation of cur-
rent instabilities caused by acoustoelectric effect,whichwas one of the exciting topics
in physics in 1960–1970. Phonons or acoustic waves (thermal noise) in a crystal are
amplified through the acoustoelectric effect and traveling potential waves are excited
when the drift velocity of the electron exceeds the sound velocity. Semiconductors
such as CdS, ZnO, GaAs and GaSb have no inversion symmetry and thus exhibit
piezoelectricity. When an electric field E is applied to such a crystal, electrons move
toward the anode (in the anti-parallel direction to the electric field) with drift velocity
vd = μE (μ: drift mobility). When the electron drift velocity vd exceeds the sound
velocity vμ, vd > vμ, the electrons move by pushing the potential walls which are
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produced by the piezoelectric effect and move with the velocity of sound, resulting
in an energy flow from electrons to acoustic waves and in the amplification of the
acoustic waves. The amplification coefficient is proportional to γ = vd/vμ − 1 and
is given by [31]

αe(ωμ, γ) = K 2

2
ωσ

[
γ

γ2 + (ωσ/ωμ + ωμ/ωD)2

]
, (5.118)

where K is the electromechanical coupling coefficient,ωσ = σ/κε0,ωD = ev2
μ/μkBT ,

and σ = neμ is the conductivity of the semiconductor. The frequency to give the
maximum amplification coefficient is given by fm = √

ωσωD/2π, ranging over sev-
eral GHz. It is well known that the amplification of the acoustic waves excited by
a transducer agrees quite well with (5.118). When an electric field is applied to a
piezoelectric crystal and the condition γ > 1 is satisfied, acoustic waves with fre-
quencies around fm are amplified. Since a crystal that is not uniform gives rise to a
higher electric field in a region with higher resistivity, the amplification coefficient
becomes higher, resulting inmore strongly amplified acoustic waves, in this region of
higher electric field. The higher electric field region, high-field domain, moves with
the velocity of sound. The phonon intensity in this domain is very high, by factors
of 105–106 higher than the thermal phonon intensity (which exists as thermal noise),
and parametric amplification produces phonons with a frequency of half of fm of
intensity about 108–109 higher than the thermal noise. The parametric mechanism is
expressed as the amplification of frequency f/2 through the frequency conversion
f = f/2 + f/2. Such high-intensity phonons are observed with a photomultiplier
by adjusting the incident and scattered angles appropriately and a Fabry–Perot inter-
ferometer is not required. In addition, the domain passes by in several μs and thus
the pulse signal is detected with a high signal-to-noise ratio. An example of exper-
imental data is shown in Fig. 5.26, where we find that phonons of fm  1.4GHz
are amplified near the cathode and that lower-frequency phonons are more strongly
amplified by the parametric mechanism [32]. The loss mechanisms of the amplified
phonons were investigated in detail by using this method in addition to spatial and
frequency distributions in GaAs [33–35] and in CdS [36].

5.3.3 Resonant Brillouin Scattering

We have discussed Raman scattering and Brillouin Scattering in semiconductors,
where all the experiments were carried out by using a laser for the incident light
source. On the other hand, Garrod and Bray [37] have shown that Brillouin scatter-
ing is possible by using monochromatic light dispersed with a monochromator, if the
phonons amplified via the acoustoelectric effect have sufficient intensity. They suc-
ceeded in observing the Brillouin scattering intensity by changing the incident light
wavelength near the fundamental absorption edge and discovered a very interesting
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Fig. 5.26 Phonon spectra in acoustoelectric domain in CdS with resistivity 70Ω cm. Transverse
acoustic waves (phonons) with displacement vector parallel to the c axis and wave vector perpen-
dicular to the c axis are amplified by applying a high electric field and travel from the cathode
to the anode with the velocity of sound. The phonon spectra are obtained at different positions
from the cathode, where domains are formed at d0 = 0.1cm, and d1 = 0.132cm, d2 = 0.20cm,
d3 = 0.26cm, d4 = 0.322cm, and d5 = 0.386cm (from [32])

Fig. 5.27 Square of photoelastic constant p44 obtained from Brillouin scattering in GaAs as a
function of photon energy, where the photoelastic constant is estimated from the Brillouin scattering
intensity by assuming that the Brillouin scattering intensity is proportional to p244. Phonons, fast
transverse phonons of 0.35GHz, are amplified through the acoustoelectric effect and the Brillouin
scattering cross-section is corrected by taking the absorption of the light into account. The dashed
curve is obtained from piezobirefringence data [37]

feature of the scattering efficiency. Figure5.27 shows the squared photoelastic con-
stant |p44|2 in GaAs deduced from the Brillouin scattering as a function of incident
photon energy, where |p44|2 is proportional to the Brillouin scattering cross-section.
A high electric field is applied in the [110] direction to produce an electron drift veloc-
ity faster than the sound velocity and the high-intensity phonon domain produced by
the acoustoelectric effect provides strong Brillouin scattering signals, enabling us to
observe Brillouin scattering near the fundamental absorption edge by using mono-
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chromatic light dispersed with a monochromator. The scattering geometry (incident
and scattering angles, and polarization) is chosen to observeTAphonons of frequency
0.35GHz and the incident light pulse is obtained from amercury lamp dispersed with
a monochromator. Since the Brillouin scattering signals are transmitted through the
GaAs sample, the absorption has to be corrected near the fundamental absorption
edge. The ω4

i dependence of the Brillouin scattering cross-section is also taken into
account. The squared photoelastic constant |p44|2 is thus obtained as a function of
the incident photon energy, which is plotted in Fig. 5.27. The dashed curve in the
figure is the photoelastic constant |p44|2 obtained from the piezobirefringence data.
We find in Fig. 5.27 that |p44|2 becomes at minimum at around �ωi = 1.38eV, which
produces a sign reversal of p44 at the photon energy. Nowwewill discuss the relation
between the photoelastic constant and piezobirefringence.

We have discussed piezobirefringence in Sect. 4.7 and shown that application of
stress to a crystal results in a difference in the refractive indices for the directions
parallel and perpendicular to the stress. The induced difference of the refractive
indices is proportional to the stress when the stress is weak, and the change in the
dielectric constant Δκ̃ corresponding to the stress tensor T̃ is written as

Δκ̃ = Q̃ · T̃ , (5.119)

where Q̃ is called the piezobirefringence tensor and is related to α̃ defined in Sect. 4.7.
When we use the strain tensor defined in Appendix C and use the relation ẽ = s̃ T̃
(s̃: elastic compliance constant), (5.102) reduces to

Δκ̃ = −κ̃κ̃ p̃s̃ T̃ = α̃T̃ , (5.120)

and therefore we obtain

Q̃ = −κ̃κ̃ p̃s̃ = α̃ . (5.121)

Next we consider two cases: stress applied to the [100] and [111] directions. For
the [100] stress we obtain

α(100) = Δκ‖ − Δκ⊥
X

= Q11 − Q12 = −κ2(p11 − p12)(s11 − s12) , (5.122)

and for the [111] stress we obtain

α(111) = Δκ‖ − Δκ⊥
X

= Q44 = −κ2 p44s44 . (5.123)

Now it is apparent from the above results that piezobirefringence experiments will
provide the photoelastic constant p̃, which determines the Brillouin scattering-cross
section. In Fig. 5.27 the photoelastic constants determined from the piezobirefrin-

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 5.28 Brillouin scattering cross-sections obtained from Brillouin scattering by acoustoelectric
domains in CdS plotted as a function of incident photon energy. Brillouin scattering is observed
by using transverse acoustic phonons (elastic waves) of 1 and 0.5GHz propagating in the c plane
of CdS and the cross-sections are estimated by correcting the absorption near the fundamental
absorption edge. The dash-dotted curve is calculated from (5.91) with �ωgi = 2.40(2.494)eV and
�ωgs = 2.38(2.480)eV. The solid curve is calculated by taking the exciton effect in to account and
by putting �ωgi = 2.494eV and �ωgs = 2.480eV. Both theoretical curves take into account the
resonant cancellation term. (After [39])

gence experiment by Feldman and Horowitz [38] are plotted by the dashed curve,
which agrees quite well with the Brillouin scattering data.

In Fig. 5.28wepresent experimental result on resonantBrillouin scattering inCdS,
where acoustoelectric domains are also used to observe Brillouin scattering cross
sections as a function of the incident photon energy. We see very clearly resonant
cancellation and resonant enhancement near the fundamental absorption edge in
Fig. 5.28 [39]. The theoretical curves in Fig. 5.28 are calculated by taking account of
the non-resonant term R0 in (5.91):

σB ∝ |Ris − R0|2 , (5.124)

where R0 is a dispersionless term arising from higher-lying critical points, and res-
onant cancellation occurs when Ris − R0 = 0. The dash-dotted curve in Fig. 5.28
is calculated by putting �ωgi = 2.40eV and �ωgs = 2.38eV, and the solid curve is
calculated by taking account of the exciton effect and putting �ωgi = 2.494eV and
�ωgs = 2.480eV. The comparison reveals that neglect of the exciton effect requires
energy band gaps lower than the experimentally determined values (�ωgi = 2.40eV,
�ωgs = 2.38eV) and that the theoretical curve with the exciton effect agrees quite
well with the experimental data, where the binding energy of exciton Eex = 28meV
is used. These results indicate the importance of the exciton effect in CdS. In addition
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to Brillouin scattering by acoustoelectrically amplified phonons, different modes of
phonons are excited by bonding a crystal with a different crystallographic axis to the
CdS sample and injecting the acoustoelectric domains into the crystal. This phonon
injection method provides resonant Brillouin scattering by different phonon modes.
The experimental data are interpreted in terms of Loudon’s theory and analysis based
on the dielectric function [21, 22, 40, 41].

5.4 Polaritons

5.4.1 Phonon Polaritons

As discussed in Sect. 6.1.1 of Chap.6, a crystal with two or more atoms (α atoms)
in a unit cell has lattice vibration modes of 3α: 3α − 3 modes of optical phonons in
addition to one longitudinal and two transverse acoustic modes. Here we consider
a simple case where a crystal has two atoms in a unit cell with the masses M1 and
M2. Such semiconductors as Ge and Si with Oh crystal symmetry have the same
masses and same electronic charges, and thus the relative displacement of the atoms
will not induce electric polarization. Therefore, longitudinal and transverse optical
phonons at wave vector q = 0 are degenerate and their angular frequency is given
by ω0 = √

2k0/Mr (1/Mr = 1/M1 + 1/M2, k0: force constant). In the region q �= 0,
the degeneracy of the longitudinal and transverse modes are removed due to elastic
anisotropy. On the other hand, GaAs has no inversion symmetry (Td group), and
electronic polarization is induced due to the difference in ionicity of the atoms,
resulting in removable of the degeneracy of the longitudinal and transverse optical
phonons at q = 0.

Let us assume that the lattice consists of atoms with their masses M+ and M−
and with electronic charge +e∗ and −e∗. In order to take into account the electric
field induced by polarization, we use the local electric field Eloc. The equations of
motion for the displacement u+ and u− are then written as

M+
d2u+
dt2

= −2k0(u+ − u−) + e∗ Eloc (5.125a)

M−
d2u−
dt2

= −2k0(u− − u+) − e∗ Eloc , (5.125b)

where the local field is defined by Eloc = E + P/3ε0 by using the applied external
electric field E. From these equations we obtain

Mr
d2

dt2
(u+ − u−) = −2k0(u+ − u−) + e∗ Eloc . (5.126)

Now we assume that the external field is an electromagnetic field with angular fre-
quencyω and that the local field is givenby Eloc exp(−iωt). The relative displacement
is therefore given by

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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u+ − u− = (e∗/Mr)Eloc exp(−iωt)

ω2
0 − ω2

. (5.127)

Since the dipole moment is given byμ = e∗(u+ − u−), the polarization P of a solid
with density of unit cells N is

P = Ne∗(u+ − u−) . (5.128)

The contribution from the electronic polarization is included by taking account of
the Clausius–Mossotti equation. The dielectric constant2 is then given by

κ(ω) = κ∞ + κ0 − κ∞
1 − (ω/ωTO)2

, (5.129)

where κ0 is the static dielectric constant and κ∞ is the high-frequency dielectric
constant. The angular frequency of the transverse optical (TO) phonons ωTO is given
by

ω2
TO = κ∞ + 2

κ0 + 2
ω2
0 , (5.130)

where we have κ0 = κ∞ without the contribution of ionic polarization and thus
ωTO = ωLO = ω0.

Next, we discuss the contribution of ionic polarization to the longitudinal optical
phonon frequency ωLO. The longitudinal optical phonon frequency is defined by the
frequency required to satisfy the condition κ(ω) = 0 in (5.129). Using the angular
frequency of the longitudinal optical phonons we find

ω2
LO

ω2
TO

= κ0

κ∞
. (5.131)

This relation is called the Lyddane–Sachs–Teller equation. With this relation the
dielectric function is rewritten as

κ(ω) = κ∞
(
1 + ω2

LO − ω2
TO

ω2
TO − ω2

)
= κ∞

ω2
LO − ω2

ω2
TO − ω2

. (5.132)

The dielectric constant becomes negative for ωTO ≤ ω ≤ ωLO, and total reflection
occurs in this frequency region.

Now, we consider the interaction between the lattice vibrations and an external
electric field

E(r, t) = E0 exp(i[k · r − ωt]) . (5.133)

2See also Sect. 6.3.6 for the derivation of the following relations.

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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In the absence of residual charges, the electric displacement D is

divD = 0 , (5.134)

and thus we obtain

κ(ω)(k · E0) = 0 . (5.135)

Therefore, one of the two conditions κ(ω) = 0 or (k · E0) = 0 should be satisfied.
We will discuss these two cases in the following.

5.4.1.1 (1) Transverse Waves: (k · E0) = 0

Since the wave vector k and electric field vector E0 are perpendicular, the waves are
transverse and the external electric field interacts with the transverse waves excited
in the crystal. The dielectric function is given by (5.132). The dielectric constant
κ(ω) diverges at ω = ωTO, and the imaginary part of the dielectric constant behaves
like a delta function, giving rise to resonance. The resonance frequency is associated
with transverse lattice vibrations and thus called transverse resonance frequency.

5.4.1.2 (2) Longitudinal Waves: k ‖ E0 and κ = 0

When the electric field of the excited waves is longitudinal, we have k · E0 �= 0 and
κ = 0 is required. The angular frequency ωLO satisfies this condition and is given
by (5.131), which tells us that ωLO > ωTO. Since the excited waves are longitudinal,
there exists no interaction between the excited waves and the external field. In order
to understand these features in more detail we use a simplified model. We define
the polarization due to the lattice vibrations by P latt and the other polarizations
by Pele = κ∞ε0, which show dispersion in a frequency region higher than the lat-
tice vibrations, where κ∞ is called the high-frequency dielectric constant or optical
dielectric constant. The polarizations Pele arise from electronic contributions such as
the electronic polarization, optical transition, plasma oscillations, and so on. Using
these relations we may express the electric displacement by

D = ε0E + P = ε0E + P latt + Pele

= κ∞ε0E + P latt ≡ κ(ω)ε0E . (5.136)

For ω = ωLO, we have κ(ωLO) = 0 and thus D = 0. Even if the condition for electric
displacement D = 0 holds, the lattice vibrations are excited and we have E �= 0.
When we define the longitudinal electric field by Elatt , we obtain

Elatt = − 1

κ∞ε0
P . (5.137)
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For simplicity we neglect the contribution of the polarizations to the local electric
field in (5.126) and put E = Eloc and we obtain ωTO = √

2k0/Mr. Defining the new
variable ũ = u+ − u− we get

d2

dt2
ũ = −ω2

TOũ + e∗ Elatt . (5.138)

Since the polarization of a semiconductor with density of unit cells N is given by
P = Ne∗ũ, we put Elatt = 1/(κ∞ε0)Ne∗ũ into (5.138) and obtain for ω = ωLO

ω2
LO = ω2

TO + N (e∗)2

Mrκ∞ε0
. (5.139)

This result means that the longitudinal optical phonon frequency ωLO is higher than
the transverse optical phonon frequency ωTO. This result may be interpreted as show-
ing that the electric field Elatt induced by the polarization P latt is in the reverse
direction to the polarization vector and that the restoring forces of the lattice and
the electric field add together, resulting in a LO phonon frequency higher than the
TO phonon frequency. Using the relation P = (κε0 − 1)E and the static dielectric
constant κ0, we find

κ0 − κ∞ = N (e∗)2

Mrε0ω
2
TO

(5.140)

and inserting this into (5.139) the Lyddane–Sachs–Teller equation (5.131) is derived.
As stated in Sect. 4.1, electromagnetic waves in a semiconductor are described by

Maxwell’s equations and for a plane wave we obtain

c2k2 = ω2κ(ω) . (5.141)

Inserting (5.131) into the above equation, the following relation is obtained:

c2k2 = ω2

[
κ∞ + κ0 − κ∞

1 − (ω2/ω2
TO)

]
. (5.142)

This relation represents a coupled mode of transverse electromagnetic waves and
lattice vibrations and a wave given by this relation is called a phonon polariton. To
illustrate the dispersion relations of phonon polaritons we plot (5.142) in Fig. 5.29.
Figure5.29 represents the dispersions of phonons, electromagneticwaves andphonon
polaritons. The dashed lines (inclined) are the transverse electromagnetic waves not
coupled to TO phonons in vacuum and in a medium of dielectric constant κ∞,
respectively, and they are given by ω = kc and ω = kc/

√
κ∞, respectively. The

horizontal solid line is the uncoupled LO phonon branch and the horizontal dashed
line is the uncoupled TOphonon branch. The solid curvesUPL and LPL are the upper
and lower polariton branches, respectively, which are both coupled to TO phonons.

http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 5.29 Dispersion curves of phonon polaritons. The dashed lines (inclined) are ω = kc for
photons (electromagnetic waves) in vacuum and ω = kc/

√
κ∞ for photons in a medium with

dielectric constant κ∞, and they are not coupled with phonons (lattice vibrations). The horizontal
solid line is for uncoupled LO phonons and the horizontal dashed line is for uncoupled TO phonons.
The solid curvesUPL and LPL are upper and lower polariton branches, respectively, which are both
coupled modes of photons and phonons. LO phonon branch is drawn with a solid line because it is
not coupled with photons. The parameters used for the calculation are κ0 = 15 and κ∞ = 10

Since theLOphonons are not coupled to photons (electromagneticwaves), it is shown
by the solid line. The parameters used in the calculation are κ0 = 15 and κ∞ = 10.
It is clear from Fig. 5.29 that solutions for the coupled mode of photons and phonons
do not exist in the region ωTO ≤ ω ≤ ωLO. In other words, total reflection will occur
in this region. In a real material, however, coupled waves are subject to damping and
this effect is incorporated by the replacement of ω2 in the denominator of (5.142)
by ω2 → ω2 + iωγ (γ is the damping parameter), giving rise to the penetration of
electromagnetic waves into a medium and to reflectivity of less than 100% in this
region. Measurements of Raman scattering by phonon polaritons have been done in
GaP by Henry and Hopfield [42].

5.4.2 Exciton Polaritons

Let us begin with the simple case where we can neglect the kinetic energy of an
exciton, �

2K 2/2M , which is called the approximation without spatial dispersion.
The dielectric function of the exciton is given by (4.110) of Sect. 4.5

κ(ω) = κ1(ω) + iκ2(ω) = C/π

EG − Eex/n2 − (�ω + iΓ )
. (5.143)

Here we will be concerned with the ground state of the exciton and put n = 1. We
defineEG − Eex = �ω0 and the contributions to the dielectric constant except excitons
by κ∞. Therefore, we have

http://dx.doi.org/10.1007/978-3-319-66860-4_4
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κ(ω) = κ∞
(
1 + Δex

ω0 − (ω + iγ)

)
, (5.144)

where we put �γ = Γ . As in the case of phonon polaritons, the electromagnetic wave
in a medium in which excitons are excited may be obtained by solving Maxwell’s
equations. Therefore, we have two solutions, which are the transverse waves of
k · E = 0 and κ(ω) �= 0, and the longitudinal waves of k ‖ E and κ(ω) = 0. For the
transverse waves we have

c2k2 = ω2κ(ω) , (5.145)

and thus we find the dispersion of exciton polaritons, which are coupled waves of
excitons and photons. For the longitudinal waves we have a solution similar to the
case of LO phonons:

κ(ω) = 0 . (5.146)

Therefore, the angular frequency of a longitudinal exciton ωl is given by

ωl = ω0 + Δex . (5.147)

The angular frequency of the transverse exciton is given by ωt = ω0 and Δex is
called the longitudinal–transverse (LT) splitting of the exciton. Assuming that the
wave vector k of (5.144) is complex, we put

k = k1 + ik2 , (5.148)

and then we obtain for the real and imaginary parts of (5.144)

ω2κ∞
c2

(
1 + Δex

ω0 − ω

)
= k21 − k22 , (5.149a)

πδ(ω − ω0)
ω2
0κ∞
c2

= 2k1k2 , (5.149b)

where the Dirac delta function in Appendix A is used and κ∞ is the background
dielectric constant (related to electronic transition, other than the exciton). The
imaginary part is proportional to δ(ω − ω0) and exhibits resonance at �ω = �ω0

(= EG − Eex). We may neglect the term k2 in the region outside the resonance, and
so obtain

ω

√
ω − ω0 − Δex

ω − ω0
= ck1√

κ∞
. (5.150)

This equation gives the dispersion of exciton polaritons, which is shown in Fig. 5.30.
Figure5.30 is the dispersion curve of exciton polaritons, where the kinetic energy
of the exciton, �

2K 2/2M , is neglected (or the momentum of the exciton for center-



256 5 Optical Properties 2

Fig. 5.30 Dispersion curves
of exciton polaritons, where
spatial dispersion is
neglected (momentum for
center-of-mass motion is
neglected: �K = 0). The
difference, LT splitting Δex,
between the angular
frequencies of longitudinal
excitons ωl and transverse
excitons ωt is assumed to be
Δex/ω0 = 0.2, where
�ω0 = EG − Eex. The dashed
line shows the photon
dispersion in the medium

of-mass motion �K is regarded to be 0). The dispersion curves are calculated by
assuming LT splitting to be Δex/ω0 = 0.2, where Δex is the LT splitting between the
angular frequencies of the longitudinal exciton ωl and the transverse exciton ωt , and
Δex/ω0 = 0.2. In the region ω 	 ω0 we find that

ω  ck1√
κ∞(1 + Δex/ω0)

(5.151)

and that the waves behave like electromagnetic waves (photons) in a material with
effective dielectric constant, not equal to κ∞(1 + Δex/ω0), resulting in a slightly
slower phase velocity compared to that of light, c/

√
κ∞. In the region ω0 < ω <

ω0 + Δex, we have κ(ω) ≤ 0 and thus no solution, resulting in total reflection, just
as in the case of phonon polaritons. In the region ω � ω0 the waves behave like
photons (electromagnetic waves) and the phase velocity is c/

√
κ∞.

Next,we take into account the kinetic energy of the exciton. The dielectric constant
is given by

κ(ω) = κ∞
[
1 + Δex

ω0 + �K 2/2M − ω − iγ

]
, (5.152)

and insertion of this equation into (5.145) leads to

c2k2

κ∞ω2
= 1 + Δex

ω0 + �K 2/2M − ω − iγ
. (5.153)

It is difficult to obtain an exact solution for this equation, and we approximate such
as ω2

l − ω2
t  2ωtΔex by taking account of Δex 	 ω0. Therefore, we obtain the

following quadratic equation with respect to ω2:
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Fig. 5.31 Dispersion curves of exciton polaritons in GaAs, where spatial dispersion is taken
into account (momentum for center-of-motion is non-zero: �K �= 0). The LT splitting, the dif-
ference between the angular frequencies of longitudinal excitons �ωl and transverse excitons
�ωt = 1.515eV, is assumed to be �Δ = 0.08meV and the exciton mass to be M = 0.6. The upper
polariton (UPL) and lower polariton (LPL) branches are indicated by 1 and 2, respectively, and the
Stokes transitions of Brillouin scattering are indicated by arrows. The back-scattering geometry is
used and thus the wave vector of scattered polaritons is reversed after scattering

c2k2

κ∞ω2
= 1 + ω2

l − ω2
t

ω2
t + ωt(�K 2/M) − ω2

. (5.154)

The polariton dispersion calculated from (5.154) is shown in Fig. 5.31, where LT
splitting between longitudinal excitons �ωl and transverse excitons �ωt = 1.515eV
is assumed to be �Δ = 0.08meV and the exciton mass to be M = 0.6. In Fig. 5.31
the upper polariton (UPL) and lower polariton (LPL) branches are indicated by 1
and 2, respectively, and the Stokes transition of the Brillouin scattering is indicated
by arrows, where a back-scattering geometry is assumed and thus the wave vector
of scattered polaritons is reversed after scattering. The parameters used here are for
GaAs, which are determined from Brillouin scattering by polaritons in GaAs [43].

5.5 Free–Carrier Absorption and Plasmon

Consider a system with electrons of density n, effective mass m∗ and electronic
charge −e. When an electric field E = E0 exp(−iωt) is applied to the system, the
equation of motion is written as

m∗ d2

dt2
x + m∗

τ

d

dt
x = −eE0e

−iωt , (5.155)
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where τ is the relaxation time of the electron. The displacement vector of the electron
is then given by

x = −eE
m∗(−ω2 − iω/τ )

. (5.156)

The polarization P associated with this displacement is defined by

P = n(−e)x . (5.157)

In addition to the electronic polarization we have to take account of other contri-
butions to the polarization or dielectric constant. This is done by introducing the
background polarization P∞ and background dielectric constant κ∞, and their rela-
tions ε0E + P∞ = κ∞ε0E and ε0E + P∞ + P = κε0E. Using this definition the
dielectric constant reduces to

κ(ω) = κ∞ − ne2

ε0m∗ω(ω + i/τ )
. (5.158)

When we define the plasma frequency by

ωp =
√

ne2

κ∞ε0m∗ , (5.159)

the dielectric constant is rewritten as

κ(ω) = κ∞

[
1 − ω2

p

ω(ω + i/τ )

]
. (5.160)

Let us examine the plasma frequency in semiconductors with electron density n 
1 × 1018 cm−3, m∗ = m0, κ∞ = 12. The plasma frequency is estimated to be ωp 
1.6 × 1013 rad/s and the relaxation time in semiconductors is about τ  10−12 s,
leading to the conditionωpτ � 1 in the regionof frequencynear the plasma frequency
(in metals, this condition is satisfied for the frequency of visible light). Therefore,
we may safely approximate as

κ(ω) = κ∞

[
1 − ω2

p

ω2

]
, (5.161)

and the condition κ(ωp) = 0 is fulfilled at ω = ωp. This result tells us that longitudi-
nal plasma oscillations and thus plasmons are excited in a free electron system as in
the cases of phonon polaritons and exciton polaritons. Next we will discuss this lon-
gitudinal plasma oscillation in detail. Let us consider the system shown in Fig. 5.32.
In the case of a metal, the conduction (free) electrons uniformly occupy the space
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Fig. 5.32 Illustration of plasma oscillations in a metal or in a semiconductor. Metal ions or donor
ions in a semiconductor are indicated by the + symbol and the conduction electrons are shown
by shading. When electrons in the equilibrium state are displaced together by x, a polarization
P = n(−e)x results, and a surface charge density ±ne|x | appears. The electric field induced by
the displacement acts so that the displaced electrons are restored, resulting in a collective motion
of the electrons (plasma oscillations) with plasma frequency ωp

surrounding the positivemetal ions. In the case of a semiconductor, the positive donor
ions are surrounded uniformly by the conduction electrons. In Fig. 5.32 the positive
ions are indicated by the+ symbol and the electrons are shown by the shading. There
are no excess charges and thus the medium is neutral. Since the positive ions are not
able to move, the displacement of the electrons is taken into account. We assume
that an external field is not present and that the electron displacement x occurs in
the x direction. This displacement will induce a polarization P = n(−e)x. Since
the electric displacement is given by D = κ∞ε0E + P = κ(ωp)ε0E = 0, an elec-
tric field El = −P/κ∞ε0 = nex/κ∞ε0 is induced, and the direction is anti-parallel
to the polarization P . This electric field acts as a restoring force for electrons, and
so the electrons are forced to move toward the equilibrium position. This collective
motion of electrons results in a resonant oscillation with plasma frequency ωp. This
kind of collective motion in a system with equal positive and negative charges is
called a plasma oscillation. Plasma oscillations are known to be excited in gases,
where the oscillations are associated with the relative displacement between positive
and negative charges.

Next, we will discuss free-carrier absorption.We substitute the complex dielectric
constant κ = κ1 + iκ2 in (5.158) and obtain for the real and imaginary parts

κ1(ω) = κ∞ − ne2τ 2

ε0m∗(ω2τ 2 + 1)
, (5.162)

κ2(ω) = ne2τ

ε0m∗ω(ω2τ 2 + 1)
. (5.163)

As stated in Sect. 4.1, the absorption of electromagnetic waves is determined by the
imaginary part of the dielectric constantκ2 of amediumand the absorption coefficient
is given by (4.21)

α = ωκ2

n0c
= ne2τ

ε0m∗n0c(ω2τ 2 + 1)
. (5.164)

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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When an electromagnetic wave of angular frequency ω is applied to a semiconduc-
tor with free carriers (electrons or holes), the electromagnetic wave is absorbed by
the free carriers. This phenomenon is called the free-carrier absorption, and the
absorption coefficient is given by (5.164). Free-carrier absorption is caused by elec-
tron transitions within a conduction band induced by absorbing photons. Using the
initial state E(ki) and final state E(kf) of an electron, the energy conservation rule
�ω = E(kf) − E(ki) and momentum conservation rule �k = �kf − �ki hold. How-
ever, we know that a photon, even with a small wave vector k, has a large energy
and thus the transition is a direct transition. This means that the energy and momen-
tum conservation rules are not satisfied at the same time. Therefore, free-carrier
absorption occurs when impurity scattering or phonon scattering is involved as an
intermediate state. Free carrier absorption is very similar to indirect transitions and
involves a higher-order perturbation. The treatment of free-carrier absorption has
been reported in detail by Fan et al. [44]. When we assume ωτ � 1 in (5.163), κ2

becomes proportional to ω−3 and thus the absorption coefficient is proportional to
ω−2. We have to note that the result is obtained by assuming that the relaxation time
τ is independent of the angular frequency ω. In experiments the observed absorption
coefficient has the form α(ω) ∝ ω−1.5∼−3.5, and this behavior is believed to be due
to the difference of the scattering mechanisms.

Here we will discuss the mobility of electrons or holes in connection with free-
carrier absorption. Let us consider the motion of an electron with effective mass m∗
in the presence of an electric field E0e−iωt . The equation of motion is

m∗ dv
dt

+ m∗v
τ

= −eE0e
−iωt (5.165)

and the electron drift velocity under the a.c. field is

v = − eE
m∗(−iω + 1/τ )

. (5.166)

The mobility μ defined by v = −μE is given by

μ = eτ

m∗(1 − iωτ )
. (5.167)

If the electron density is n, the current density is given by J = n(−e)v = neμE =
σE, where the conductivity σ is given by

σ = neμ = ne2

m∗
τ

1 − iωτ
. (5.168)

Using the relations (4.24), (4.25a) and (4.25b) described in Sect. 4.1, and taking the
background dielectric constant κ∞ into consideration, (5.168) leads to (5.162) and
(5.163).

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 5.33 Reflection
coefficients of n-InSb with
different electron densities
near the plasma edge plotted
as a function of wavelength.
The electron densities are
n = 3.5 × 1017cm−3,
6.2 × 1017cm−3,
1.2 × 1018cm−3,
2.8 × 1018cm−3, and
4.0 × 1018cm−3. (After
Spitzer and Fan [45])

Since the dielectric constant becomes zero at the plasma frequency, electromag-
netic waves are subject to total reflection. Here we assume that τ is large and the
absorption is weak. Then the reflection coefficient given by (4.18) is approximated
as

R = (n0 − 1)2 + k20
(n0 + 1)2 + k20

≈ (n0 − 1)2

(n0 + 1)2
, (5.169)

where we find that the reflection coefficient becomes R = 1 at the plasma frequency
ω = ωp. On the other hand, the reflection coefficient becomes zero at a frequency

ω(R = 0) =
√

ne2

m∗(κ∞ − 1)ε0
. (5.170)

From these results we may conclude that a reflection edge exists between ω(R = 0)
and ωp. This feature has been observed in experiments by Spitzer and Fan and their
results are shown in Fig. 5.33 [45].

The contribution to the dielectric function from the plasma oscillations is obtained
by assuming that there is no dispersion of LO phonons near the region ω = ωp,
approximating the background dielectric constant by κ∞. However, the frequency of
plasma oscillations is proportional to the square of the carrier density and it is possible
to achieve the condition that the plasma frequency is very close to the LO phonon
frequency. Under these circumstances transverse optical (TO) phonons are expected
not to couple with plasma oscillations. However, longitudinal optical (LO) phonons
are expected to couple with plasma oscillations because both are longitudinal. The
coupled mode is obtained as follows. The dielectric function without a damping term
is obtained from (5.132) and (5.161) as

http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 5.34 Raman shift of
GaAs as a function of the
electron density at room
temperature. L+ and L− are
the solutions of plasmons
coupled to LO phonons and
calculated from (5.172). ◦
and • are experimental data
by Mooradian and the solid
curve is calculated using the
parameters ωLO = 292cm−1

and ωTO = 269cm−1 in
(5.172). (After [46])

κ(ω) = κ∞

[
1 − ω2

p

ω2
+ (κ0 − κ∞)ωTO

ω2
TO − ω2

]

= κ∞

[
−ω2

p

ω2
+ ω2

LO − ω2

ω2
TO − ω2

]
. (5.171)

The coupledmode is longitudinal and the conditionκ(ω) = 0 holds, and sowe obtain
the solution

ω2
± = 1

2

(
ω2
LO + ω2

p

)
± 1

2

[
(ω2

LO + ω2
p) − 4ω2

pω
2
TO

]1/2
, (5.172)

where ω+ and ω− are the resonance frequencies of the plasmon–LO phonon cou-
pled mode, above and below the LO phonon frequency ωLO. Such a coupled mode
of plasma oscillations and LO phonons, the plasmon–LO phonon coupled mode, has
been predicted by Gurevich et al. [47] and their existence has been proved exper-
imentally by Mooradian and Wright [46, 48]. Figure5.34 shows the experimental
results in GaAs at room temperature by Mooradian [46], where the TO phonons
do not couple with the plasmons and the Raman shift is ωTO = 269cm−1, and is
almost constant, whereas the LOphonons couplewith the plasmons and split into two
branches. The upper branchL+ extrapolates toωLO = 292cm−1 and the lower branch
L− approaches zero at lower electron densities. The upper branch L+ approaches the
plasma frequency ωp and the lower branch L− approaches the TO phonon frequency
ωTO at higher electron densities. The solid curves for the upper L+ and lower L−
branches are calculated from (5.172) with ωLO = 292cm−1 and ωTO = 269cm−1,
and show good agreement with the experimental data. For a more detailed treatment
of plasmon–LO phonon interactions see the paper by Klein [49].
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5.6 Problems

(5.1) Derive the Joint density of Two-dimensional band J 2D
cv (�ω − EG − Ex ) given

by (5.15).
(5.2) Calculate Reflectivity near E0 critical point using (5.27), using the parameters

defined for Problems 4.6 of Chap.4.
(5.3) Compare the calculated curve of Fig. 10.4 of the previous problem with the

experimental results shown in Fig. 5.7. Experimental data show a weak peak
near the critical point E0. Explain the difference between Figs. 10.4 and 5.7.

(5.4) Calculate Seraphin coefficientsα(ω) andβ(ω) using themodel dielectric func-
tions κ1(ω) and κ2(ω) for E0 transition.

(5.5) Electroreflectance experiments provide the critical point energies such as E0,
E0 + Δ0, E1, and E1 + Δ1. These critical point energies are determine from
the analysis based on the spectraΔR/R. Calculate the electroreflectance spec-
tra using (5.48) for the cases given below.
(1) Three dimensional case: m3 = 5/2, C3 = 0.005, θ3 = 3.0, EG = 3.0 eV,
and Γ3 = 0.050.
(2) Two dimensional case: m2 = 3, C2 = 0.0015, θ2 = 3.0, EG = 3.0 eV, and
Γ2 = 0.050.

(5.6) Calculate reflectivity due to free carrier plasma using following parameters.
κ∞ = 10, ωpτ = 10. Plot reflectivity as a function of ωp/ω = λ/λp, where λp

is the plasma wavelength.
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Chapter 6
Electron–Phonon Interaction and Electron
Transport

Abstract Semiconductor device operation depends on the drift velocity of carriers,
electrons and holes, which is determined by themobility. Themobilityμ is expressed
by e〈τ 〉/m∗, where e, 〈τ 〉, andm∗ are the electronic charge, average of the relaxation
time, and the effective mass. The relaxation time or scattering time is limited by
various scatterings of carriers. Among them the phonon scattering plays the most
important role. In this chapter we begin with the analysis of the lattice vibrations
and the derivation of Boltzmann transport equation. Then collision time, relaxation
time and mobility are defined. The transition probabilities and transition matrix
elements for the scattering due to various modes of phonons, impurity, electron–
electron interaction and so on are evaluated using quantum mechanical approach.
These results are used to evaluate scattering rates and relaxation times, and finally
respective carrier mobility is obtained. In order to get an better insight into the
electron transport, scattering rates and mobilities due to the various processes are
evaluated numerically and plotted as functions of electron energy, temperature and
carrier densities. In addition, electron mobility is evaluated by taking all the relevant
scattering processes. Also a theoretical method to evaluate deformation potentials for
phonon scattering is given, where the calculated lattice vibrations and the full band
structures in the Brillouin zone are properly employed. Many figures obtained by
numerical calculations are very informative for an understanding of semiconductor
transport.

6.1 Lattice Vibrations

6.1.1 Acoustic Mode and Optical Mode

A crystal consists of a periodic arrangement of atoms and molecules. However, the
atoms or molecules of a crystal vibrate around the equilibrium positions at finite
temperatures because of their thermal motion. When a atom is displaced from its
equilibrium position, the atom is subject to a restoring force depending on the dis-
placement. The restoring force follows Hooke’s law and is proportional to the dis-
placement.When each atom vibrates randomly, each atom suffers random forces and
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Fig. 6.1 Displacement of
atoms from their equilibrium
positions (lattice vibration)

n n +1 n + 2n −1n − 2

unun−1un−2 un+1 un+2

its vibration is immediately damped. On the other hand, if each atom vibrates with a
small relative displacement from the neighboring atoms, then the vibration will con-
tinue with its small vibration energy. For simplicity we consider the one-dimensional
lattice shown in Fig. 6.1, where the mass of the atoms is M and the distance between
the nearest neighbor atoms (lattice constant) at equilibrium is a. We assume that the
inter–atomic forces act on neighboring atoms only and that the atoms are connected
to each other by a spring constant (force constant) k0. Defining the displacement
of the atoms from their equilibrium positions by u0, u1, u2, . . ., un , un+1, . . ., the
equation of motion of n-th atom

M
d2

dt2
un = −k0(un − un−1) − k0(un − un+1)

= k0(nn−1 + un+1 − 2un) . (6.1)

As stated above, when the displacement of each atom is independent, an atom will
be subject to a strong force from the neighboring atoms and the displacement is
damped. Therefore the lowest excitation energy of the lattice vibration corresponds
to a wavelike displacement, keeping the displacement of neighboring atoms almost
in phase, when we see neighboring atoms. In such a case we may write the solution
of (6.1) as

un = A exp[i(qna − ωt)], (6.2)

where q = ω/vs = 2π/λ is the wave vector, ω is the angular frequency, vs is the
velocity of sound, and λ is wavelength. Inserting (6.2) into (6.1), we obtain

Mω2 = −k0
(
eiqa + e−iqa − 2

) = 4k0 sin
2
(qa
2

)
. (6.3)

From this we have following relation:

ω = 2

√
k0
M

∣∣∣sin
(qa
2

)∣∣∣ . (6.4)

When the wavelength is much longer than the lattice constant (qa � 1), the phase
velocity vs is given by
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Fig. 6.2 Dispersion curve of
one-dimensional lattice
vibration

ω ω/ max

π / a− 2π / a − π / a 2π / a0

1st zone2nd zone 2nd zone

q

ω =V qs

vs = ω

q
=

√
k0
M

a
sin(qa/2)

(qa/2)
∼=

√
k0
M

a (qa � 1) . (6.5)

This result indicates that a lattice vibrationwith longwavelength has a constant phase
velocity vs = √

k0/Ma, which corresponds to the sound velocity. Figure6.2 shows
the calculated curve from (6.4),wherewe see that theω−q curve is a periodic function
with a period of 2π/a. The whole dispersion curve is the repetition or displacement
of the curve in the period −π/a ≤ q ≤ π/a, and thus this feature enables us to
discuss lattice vibrations in that period. The region of the period is called the first
Brillouin zone, and the second Brillouin zone is shown in Fig. 6.2. The second, third
and other Brillouin zones are equivalent to the first Brillouin zone, which is shown
in Sect. 1.4 in detail in connection with the reduced zone scheme. Where there are N
atoms, N degrees of freedom of motion exist. Adopting cyclic boundary conditions
we can define wave vectors by q = 2πn/(Na), where n = (−N/2+ 1) ∼ (+N/2),
giving rise to N values of the wave vectors. The above defined wave vectors are
obtained from the cyclic boundary condition such that the displacement un of (6.2)
is equivalent for n = 0 and n = N .

Next, we consider a lattice consisting of two kinds of atoms with masses M1

and M2. The atomic distance of the atoms of mass M1 is a and the same is true for
the atoms M2. When the nearest-neighbor interaction is assumed, the equations of
motion are written as in the case of the one-dimensional lattice stated above as

M1
d2

dt2
u2n+1 = k0(u2n + u2n+2 − 2u2n+1) ,

M2
d2

dt2
u2n = k0(u2n−1 + u2n+1 − 2u2n)

⎫
⎪⎪⎬

⎪⎪⎭
(6.6)

for the atoms M1 and M2. We assume once again wave-type solutions of the same
type as before. In addition we may expect another type of solution where atoms of

http://dx.doi.org/10.1007/978-3-319-66860-4_1
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even order and odd order are displaced in the reverse direction to each other, and
thus atoms of even order form a wave and odd order atoms form another wave. To
satisfy these vibration types we express the displacement as

u2n+1 = A1e
i{(2n+1)(qa/2)−ωt} , u2n = A2e

i{(2n)(qa/2)−ωt} . (6.7)

Inserting these equations into (6.6), we obtain following relations:

(M1ω
2 − 2k0)A1 + {2k0 cos(qa/2)}A2 = 0 ,

(M2ω
2 − 2k0)A2 + {2k0 cos(qa/2)}A1 = 0 .

}
(6.8)

We easily find that the condition A1 = A2 = 0 correspond to all atoms at a standstill,
and therefore we have to find solutions such that both A1 and A2 are not zero simulta-
neously. This condition is satisfied by requiring the determinant of the simultaneous
equations with respect to A1 and A2 in (6.8) to be zero, giving rise to

∣∣
∣∣
(M1ω

2 − 2k0) 2k0 cos(qa/2)
2k0 cos(qa/2) (M2ω

2 − 2k0)

∣∣
∣∣ = 0 . (6.9)

This equation is regarded as a quadratic equation with respect toω2, and the solutions
ω2− and ω2+ are given by

ω2
− = k0

M1 + M2

M1M2

[
1 −

√

1 − 4M1M2

(M1 + M2)2
sin2

(qa
2

)]
, (6.10a)

ω2
+ = k0

M1 + M2

M1M2

[
1 +

√

1 − 4M1M2

(M1 + M2)
sin2

(qa
2

)]
. (6.10b)

It is evident from (6.10a) and (6.10b) that ω− approaches zero, while ω+ gives a
constant value ( 	= 0) as q → 0. Taking account of the fact that the angular frequency
is positive,ω− andω+ are plotted as a function of the wave vector q for several values
of α = M1/M2 as a parameter in Fig. 6.3, where we define 1/Mr = 1/M1 + 1/M2.
Let us consider the two branches ω− and ω+ in the long wavelength limit. For q = 0,
(6.8), (6.10a) and (6.10b) lead us to the following results:

ω− = 0
A1

A2
= 1

⎫
⎬

⎭
, (6.11)

ω+ =
√

2k0

(
1

M1
+ 1

M2

)
≡

√
2k0
Mr

A1

A2
= −M2

M1

⎫
⎪⎪⎬

⎪⎪⎭
. (6.12)

When we put M1 = M2, the ω− branch gives the same result as a lattice consisting
of one kind of atom, corresponding to a sound wave, and thus called the acoustic
branch, the acoustic mode of vibrations or the acoustic phonon. Since the acoustic
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Fig. 6.3 Angular frequency
versus wave vector relations
for the two vibration modes
of a lattice consisting of two
kinds of atoms
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−ω

q

)(

branch satisfies the condition (A1 = A2), the neighboring atoms move in the same
direction and thus the relative displacement is zero in the long wavelength limit. On
the other hand, the ω+ branch satisfies A1/A2 = −M2/M1 and thus different atoms
are displaced in the opposite directions to each other, resulting in zero of the center of
mass motion. The ω+ branch exhibits a relative displacement between the different
atoms and induces an electric field when the atoms are ionic. The induced electric
field interacts stronglywith the external electromagneticfield and absorbs the external
waves. This often occurs in the infrared region, leading to it to be called the optical
branch, optical mode of lattice vibrations or the optical phonon. Fig. 6.4 shows a
schematic illustration of the atomic displacement for (a) the acoustic mode (acoustic
phonon) and (b) the optical mode (optical phonon), where we see the difference in
the displacement between the two modes of lattice vibrations. The acoustic mode in
the limit of qa � 1 gives the following relation:

ω− ∼=
√

2k0
(M1 + M2)

aq (qa � 1) , (6.13)

and thus the sound velocity (phase velocity) is given by

vs = ω−
q

=
√

2k0
(M1 + M2)

a , (6.14)

which corresponds to (6.5).
In ionic crystals unusual reflectivity has been observed in the infrared wave-

length region of 20–100µm. For example, the reflectivity of NaCl exhibits max-
ima around 40 and 60µm, where the angular frequencies of light for the corre-
sponding wavelengths are ω = 2πc/λ ∼ 4 × 1013 s−1 and their wave vectors are
q = 2π/λ ∼ 103 cm−1, which are much smaller than the wave vector at the Bril-
louin zone edge π/a � 108 cm−1. From the energy and momentum conservation
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Fig. 6.4 Schematic
illustration of two types of
lattice vibrations: a acoustic
mode (acoustic phonon) and
b optical mode (optical
phonon)

u n2
u n2 1+

u n2
u n2 1+ u n2 u n2 1+

(a) Acoustic mode

(b) Optical mode

rules, such high energy excitation in the small wave vector region is easily found to
correspond to the optical phonon branch ω+.

In general, as stated previously, the optical mode of lattice vibration appears in
a crystal with two or more atoms in a unit cell. Since there exist one longitudinal
and two transverse acoustic modes, a crystal with s atoms in a unit cell gives rise to
3(s − 1) optical modes of lattice vibration.

6.1.2 Harmonic Approximation

We consider the motion of the l-th lattice atom of a crystal with mass Ml . The
potential energy V of the crystal is a function of the coordinates of the lattice atom
xl and the kinetic energy of the crystal is the sum of the kinetic energy of each atom
p2l /2Ml . Therefore, the total energy of the crystal is given by

H =
∑

l

p2l
2Ml

+ V (x1, x2, . . . , xl, . . .) . (6.15)

For simplicity, we consider a crystal consisting of N atoms which are bound together
by the nearest-neighbor force only. In equilibrium the position of an atom is expressed
in terms of the lattice vector a as

Rl = la . (6.16)

For another simplicity we assume a one-dimensional lattice and express the potential
energy by

V (x1, x2, . . . , xl , . . .) =
∑

l

f (xl+1 − xl) , (6.17)
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where f (xl+1−xl) is a function of the relative distance between the l-th and (l+1)-th
atoms. We define the displacement ul of the l-th atom by

ul = xl − la . (6.18)

Since we assume the equilibrium condition such that the l-th atom occupies its lattice
point la, the following relation holds for every l:

∂V

∂ul
= 0; u1 = u2 = u3 = · · · = uN = 0 . (6.19)

In the case of a small displacement ul , the potential energy is expanded by the Taylor
series

V (u1, u2, u3, . . . , uN ) = V0 + 1

2

∑

l,l ′
ulul ′

∂2V

∂ul∂ul ′
+ · · · , (6.20)

where the first derivative term ∂V/∂ul is dropped because of the condition given by
(6.19). In addition we may put V0 = 0 by choosing V0 as the origin of the potential
energy. Since the relation

V =
∑

l

f (xl+1 − xl) =
∑

l

f (ul+1 − ul + a) (6.21)

holds, we have ∂ f/∂ul+1 = −∂ f/∂ul ≡ ∂ f/∂u, and the summation is rewritten as

∑

l,l ′
ulul ′

∂2 f

∂ul∂ul ′

=
∑

l

(

u2l+1
∂2 f

∂u2l+1

+ u2l
∂2 f

∂u2l
+ ul+1ul

∂2 f

∂ul+1∂ul
+ ulul+1

∂2 f

∂ul∂ul+1

)

=
∑

l

(
u2l+1 + u2l − ul+1ul − ulul+1

) ∂2 f

∂u2

≡ g
∑

l

(ul+1 − ul)
2 , (6.22)

where g = ∂2 f/∂u2. Inserting this relation into (6.20) we obtain

V (u1, u2, u3, . . . , uN ) = V0 + 1

2
g
∑

l

(ul+1 − ul)
2 . (6.23)

From these considerations we find that the Hamiltonian for a crystal of a mono-
atonic chain can be expressed by the displacement ul and momentum pl . These two
parameters are independent and satisfy the following commutation relation:



272 6 Electron–Phonon Interaction and Electron Transport

[ul, pl ′ ] = ul pl ′ − pl ′ul = i�δl,l ′ , (6.24)

where the crystal consists of atoms with the same mass and the momentum operator
is defined by pl ′ = −i�∂/∂ul ′ . The Hamiltonian H for a crystal of a mono-atonic
chain is given by

H = 1

2M

∑

l

pl pl + 1

2
g
∑

l

(2ulul − ulul+1 − ulul−1) . (6.25)

The Hamiltonian derived above is for a one-dimensional lattice connected by a
spring force (or force constant) g, and corresponds to the equation of motion given
by (6.1). Therefore, the displacement is given by

ul = Aei(qla−ωt) . (6.26)

Here we introduce the cyclic boundary condition:

ul+N = ul , (6.27)

and the wave vector q has to satisfy

exp(iqaN ) = 1 or q = 2π

aN
l , (6.28)

where l is an integer. The same relation is obtained by introducing the cyclic boundary
condition to (6.25).

Here we show that the Hamiltonian for lattice vibrations given by (6.25) is easily
solved by using the Fourier transform. To do this we define

Qq = 1√
N

∑

l

ule
−iqal (6.29)

and then the displacement ul is obtained by the inverse transform

1√
N

∑

q

Qqe
iqal =

∑

q,l ′

1

N
ul ′e

iqa(l−l ′) = 1

N

∑

l ′
ul ′ Nδll ′ = ul . (6.30)

As shown in Appendix A.2, we have the following relation:

∑

q

eiqa(l−l ′) = Nδll ′ . (6.31)

Since this relation is often used in this textbook and is very important for solid state
physics, a proof is given here, although a general formula including 3-dimensional
case is proved in Appendix A.2. The wave vector is written as



6.1 Lattice Vibrations 273

q = 2π

aN
n = 2π

L
n,

where L = Na is the length of a one-dimensional crystal of N atoms. The wave
vector q has N degrees of freedom, which is exactly the same as the number of
atoms N . This requires the condition for n such that n ranges from 1 to N , from 0
to N − 1, or from −N/2 + 1 to N/2, resulting in N values for n. This is equivalent
to the reduced Brillouin zone scheme and the wave vector q in the first Brillouin
zone describes all the features required for lattice vibrations. When we see the wave
vectors q corresponding to n in Fig. 6.2, all the features of the relation between ω
and q are the repetition of the first Brillouin zone. From this reason the first Brillouin
zone is taken in general as

−π

a
< q ≤ π

a
,

(
−N

2
< n ≤ N

2

)
. (6.32)

The sign of inequality < (not ≤) on the left of the above equation arises from the
fact that the difference between −π/a and π/a is just the reciprocal lattice vector
2π/a, resulting in the equivalent state. If the sign of inequality < is replaced with
≤, the number of degrees of freedom is not N but N + 1, which is in disagreement
with the lattice degrees of freedom.

For the purpose of calculations we put m = l − l ′ (m is integer), and we consider
the case of m = 0 first. Taking account of the result that q has N values, we find

∑

q

eiqam =
N∑

n=1

1 = N . (m = 0) . (6.33)

Next, we consider the case of m 	= 0. Since exp(iqam) = exp(i2πnm/N ) = 1 for
n = 0 and n = N , we obtain

∑

q

eiqam =
N−1∑

n=0

ei2πnm/N = 1 − ei2πm

1 − ei2πm/N
= 0 . (6.34)

Therefore (6.31) is proved.
Let us consider the summation of n for q in the first Brillouin zone −π/a < q ≤

π/a (N/2 < n ≤ N/2) and carry out the summation in the range n = (−N/2+1) ∼
N/2. This is done easily by multiplying by exp[i2π(N/2−1)m/N ] and by changing
the summation range of n to n = 0 ∼ N − 1, dividing by the same factor after the
summation:
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∑

q

eiqam =
N/2∑

n=−N/2+1

ei2πnm/N

= e−i2π(N/2−1)m/N
N/2∑

n=−N/2+1

ei2π(n+N/2−1)m/N

= e−i2π(N/2−1)m/N
N−1∑

n′=0

ei2πn
′m/N

= e−i2π(N/2−1)m/N 1 − ei2πm

1 − ei2πm/N
= 0 , (m 	= 0) . (6.35)

From these considerations we find that the following relation holds in general:

∑

q

eiqa(l−l ′) = Nδll ′ , (6.36)

and thus (6.31) is proved. Using this relation we obtain

ul = 1√
N

∑

q

Qqe
iqal , (6.37a)

Qq = 1√
N

∑

l

ule
−iqal . (6.37b)

Another important method to describe lattice vibrations is the continuum model:

u(x) =
∑

q

Qqe
iqx , (6.38a)

Qq = 1

L

∫ L/2

−L/2
u(x)e−iqxdx , (6.38b)

where L is the length of the one-dimensional lattice. These relations for the continuum
model are easily proved by referring to the relations given in Appendix A.2 and A.3.

In a similar fashion the momentum operators are defined by

pl = 1√
N

∑

q

Pqe
−iqal , (6.39a)

Pq = 1√
N

∑

l

ple
iqal , (6.39b)

and these relations for the continuum model are

p(x) =
∑

q

Pqe
−iqx , (6.40a)

Pq = 1

L

∫ L/2

−L/2
p(x)eiqxdx . (6.40b)
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These Fourier transform relations are extended to the case of 3-dimensional lattice
or d-dimensional lattice in general, where 3-dimensional results are given by (A.41)
and (A.42) in Appendix A.3. In the case of d-dimensional lattice we have the Fourier
transform

f (r) =
∑

q

F(q)eiq·r , (6.41a)

F(q) = 1

Ld

∫
f (r)e−iq·rdd r . (6.41b)

and the Dirac–δ function and Kronecker δ-function (see also Appendix A.2)
∑

q

eiq·(r−r ′) = Ldδ(r − r ′) , (6.42a)

1

Ld

∫
ei(q−q ′)·rdd r = δq,q ′ . (6.42b)

Since the displacement ul is a Hermite operator, ul is required to be equivalent to
its Hermite conjugate and we have

ul = u†l = 1√
N

∑

q

Qqe
iqal = 1√

N

∑

q

Q†
qe

−iqal . (6.43)

From this relation we obtain

Qq = Q†
−q or Q†

q = Q−q , (6.44)

where Q† is the Hermite conjugate operator of Q. Noting that the summation of q
ranges from negative to positive values with the same magnitude, we use the relation∑

Qq exp(iqal) = ∑
Q−q exp(−iqal) and obtain

ul = 1

2
√
N

∑

q

(Qqe
iqal + Q†

qe
−iqal) . (6.45)

Using these results we find the following commutation relation:

[Qq , Pq ′ ] = i�δq,q ′ . (6.46)

This is easily proved as follows:

[Qq , Pq ′ ] = 1

N

[
∑

l

ule
−iqal ,

∑

l ′
pl ′e

iq ′al ′
]

= 1

N

∑

l,l ′
[ul , pl ′ ]e−ia(ql−q ′l ′)
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= 1

N

∑

l,l ′
i�δll ′e

−ia(ql−q ′l ′)

= 1

N

∑

l

i�e−ial(q−q ′) = i�δq,q ′ . (6.47)

In the case of the continuum model we find

[Qq , Pq ′ ] = 1

L

∫ ∫
[u(x), p(x ′)]ei(q ′x ′−qx)dxdx ′

= i�
1

L

∫ ∫
δ(x − x ′)ei(q

′x ′−qx)dxdx ′

= i�
1

L

∫
ei(q

′−q)xdx = i�δq,q ′ . (6.48)

These analyses tell us very important results. In addition to the commutation relation
of (6.24) between ul and pl ′ , the commutation relation of (6.48) holds between Qq

and Pq ′ , which are the Fourier transforms of ul and pl ′ . The Hamiltonian of (6.25)
is rewritten as follows by using the operators Qq and Pq :

H = 1

2M

∑

lqq ′

1

N
Pq Pq ′e−i(q+q ′)al

+1

2
g
∑

lqq ′

1

N
QqQq ′

{
2ei(q+q ′)al − ei(ql+q ′l+q ′)a − ei(ql+q ′l−q ′)a

}

= 1

2M

∑

q

Pq P−q + g
∑

q

QqQ−q

(
1 − e−iqa + eiqa

2

)

=
∑

q

{
1

2M
Pq P−q + gQqQ−q [1 − cos(qa)]

}
. (6.49)

When we define

ωq =
√
2g

M

[
1 − cos(qa)

] = 2

√
g

M

∣∣∣sin
(qa
2

)∣∣∣ , (6.50)

The Hamiltonian is written as

H =
∑

q

(
1

2M
Pq P−q + 1

2
Mω2

q QqQ−q

)

≡
∑

q

(
1

2M
P2
q + 1

2
Mω2

q Q
2
q

)
. (6.51)

This results tell us that the Hamiltonian (6.25) for a crystal of N atoms is expressed
in terms of the angular frequency ωq , momentum Pq and displacement Qq identified
by mode q, where Pq and Qq are the Fourier transforms of pl and ql , respectively.

Next, we define the creation operator a†q and annihilation operator aq by
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a†q = 1
√
2M�ωq

(Mωq Q−q − iPq), (6.52a)

aq = 1
√
2M�ωq

(Mωq Qq + iP−q) . (6.52b)

Then the commutation relation between the operators aq and a†q is given by

[aq , a†q ′ ] = 1
√
2M�ωq

1
√
2M�ωq ′

{−iMωq [Qq , Pq ′ ] + iMωq ′ [P−q , Q−q ′ ]}
= δqq ′ . (6.53)

Therefore, we obtain

[aq , a†q ] = aqa
†
q − a†qaq = 1 . (6.54)

Using (6.52a) and (6.52b), the operators Pq and Qq are expressed by the following
relations:

Pq = i

√
M�ωq

2
(a†q − a−q), (6.55a)

Qq =
√

�

2Mωq
(a†−q + aq) . (6.55b)

Inserting these relations into (6.51), the Hamiltonian is expressed as

H = 1

2

∑

q

�ωq(a
†
qaq + aqa

†
q) =

∑

q

�ωq

(
a†qaq + 1

2

)
≡

∑

q

Hq . (6.56)

We call

n̂q = a†qaq (6.57)

the number operator for a boson of mode q. The Hamiltonian Hq for a mode q is
written as

Hq = 1

2M
P2
q + 1

2
Mω2

q Q
2
q = − �

2

2M

∂2

∂Q2
q

+ 1

2
Mω2

q Q
2
q , (6.58)

where we have used

Pq = −i�
∂

∂Qq
. (6.59)

Equation (6.58) represents the Hamiltonian of a simple harmonic oscillator with
momentum Pq and displacement Qq . When we define the eigenstate of the Hamil-
tonian Hq of mode q by |nq〉, we obtain
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Hq |nq〉 =
(
nq + 1

2

)
�ωq |nq〉 (6.60)

by analogy to the simple harmonic oscillator solution. The wave function for total
Hamiltonian is then given by the product of each eigenfunction such as

|n1, n2, . . . , nq , . . .〉 = Π |nq〉 , (6.61)

and the total energy is given by

E =
∑

q

(
nq + 1

2

)
�ωq . (nq = 0, 1, 2, . . .) . (6.62)

We know that the average value of the boson excitation number is given by the
Bose–Einstein distribution

nq = 1

e�ωq/kBT − 1
. (6.63)

Here we list some important relations for boson operators, which are easily proved
(see Appendix D):

a†q |nq〉 = √
nq + 1|nq + 1〉 , (6.64a)

aq |nq〉 = √
nq |nq − 1〉 , (6.64b)

a†qaq |nq〉 = nq |nq〉 , (6.64c)

aqa
†
q |nq〉 = (nq + 1)|nq〉 . (6.64d)

Using these boson operators, the displacement of the lattice atoms is written as

ul =
∑

q

√
�

2MNωq

(
aqe

iqal + a†qe
−iqal

)
(6.65)

and for the 3-dimensional case we obtain

ul =
∑

q

eq

√
�

2MNωq

(
aqe

iq·Rl + a†qe
−iq·Rl

)
, (6.66)

where Rl is the position vector.Whenwe use the continuummodel, the displacement
is expressed as

u(x) =
∑

q

√
�

2MNωq

(
aqe

iqx + a†qe
−iqx

)
(6.67)

and for the 3-dimensional case we obtain
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u(r) =
∑

q

eq

√
�

2MNωq

(
aqe

iq·r + a†qe
−iq·r) , (6.68)

where eq is the unit vector along the displacement direction.
The above results are for mono-atomic crystals and we have to derive similar

relations for a crystal with two atoms of mass M1 and M2 in each unit cell. The
displacement operator for the acoustic mode is written as

u(r) =
∑

q

eq

√
�

2(M1 + M2)Nωq

(
aqe

iq·r + a†qe
iq·r) . (6.69)

In a similar fashion we may deduce the displacement operator for the optical phonon
mode. As stated earlier, optical phonon modes appear in a crystal with two or more
atoms in a unit cell. Let us consider the simple case where two atoms exist in a
unit cell and define M = M1 + M2, Ma = (M1 + M2)/2, or reduced mass Mr

(1/Mr = 1/M1 + 1/M2). Several papers have been reported to describe the optical
phonon modes, but it is not yet clear which mass is correct to express the optical
phonon modes: M , Ma or Mr. When the reduced mass is used for this, the relative
displacement ur(r) for optical phonons is written as

ur(r) =
∑

q

eq

√
�

2NMrωq

(
aqe

iq·r + a†qe
−iq·r) , (6.70)

where eq = ur/ur .

6.2 Boltzmann Transport Equation

Let us define the wave vector of an electron by k and discuss the change in its
electronic state in an external field. The electron wave vector will be changed under
an external force F as

�
dk
dt

= F . (6.71)

We define the probability function f (k, r, t) of a particle (electron) which has posi-
tion vector r and wave vector k at time t , and call it the distribution function of the
particle (electron). First, we assume that the electron is not subject to scattering and
that the state is changed by an external force (electric field, magnetic field and so on).
Then, after a time interval dt , the electron is changed into a new state with position
r + ṙdt and wave vector k + k̇dt . With the help of Fig. 6.5 we calculate the change
in the distribution function (r, k, t) in a time interval dt . A particle that occupied a
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f (k k r r- dt, - dt, t - dt)

f (k r, , t)

Fig. 6.5 Electron trajectory and change in the distribution function. The distribution function
f (k − k̇dt, r − ṙdt, t − dt) at a time t − dt will become f (k, r, t) at time t . The distribution
function f (k, r, t) at time t will be changed into another state after a time interval dt . The net
change of the distribution function gives rise to drift term (see text for details)

state r − ṙdt and k − k̇dt at a time t − dt will move into a state f (k, r, t) after a
time interval dt (at time t). Therefore, the rate of change of the distribution function
is given by

(
d f

dt

)

drift

= [ f (k − k̇dt, r − ṙdt, t − dt) − f (k, r, t)]/dt . (6.72)

The right-hand side of above equation is interpreted as follows. The first term of
the right-hand side will change into f (k, r, t) after a time interval dt (increase in
f (k, r, t)) and the second term f (k, r, t) will change into another state after a time
interval dt (decrease in f (k, r, t)). Since the scattering of a particle is not included
in the present analysis, the above rate represents the continuous flow of a particle
and thus the term is called a drift term.

Now, the Taylor expansion of the first term on the right-hand side in (6.72) gives

f (k − k̇dt, r − ṙdt, t − dt)

= f (k, r, t) −
[
k̇ · ∂ f

∂k
+ ṙ · ∂ f

∂r
+ ∂ f

∂t

]
dt + . . .

≡ f (k, r, t) −
[
(k̇ · ∇k f ) + (ṙ · ∇r f ) + ∂ f

∂t

]
dt + . . . , (6.73)

where

k̇ · ∇k f = k̇ · gradk f = k̇x
∂ f

∂kx
+ k̇y

∂ f

∂ky
+ k̇z

∂ f

∂kz
, (6.74)

ṙ · ∇r f = v̇ · gradr f = v̇x
∂ f

∂x
+ v̇y

∂ f

∂y
+ v̇z

∂ f

∂z
, (6.75)

where we have used the definition of k̇ as the time derivative of k and where v = ṙ
is the velocity of the particle. Keeping terms up to the second term in (6.73) and
inserting it into (6.72), the drift term is rewritten as
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(
d f

dt

)

drift

= −
[
k̇ · ∇k f + v · ∇r f + ∂ f

∂t

]
. (6.76)

Since the time variation of the wave vector k under an external force F is given by
(6.71), the drift term is given by

(
d f

dt

)

drift

= −
[
1

�
(F · ∇k f ) + v · ∇r f + ∂ f

∂t

]
. (6.77)

On the other hand, a particle changes its state by scattering (collision) and we
define the rate of change in the distribution function due to a collision by (d f/dt)coll.
Since the distribution function has to satisfy the equilibrium condition (steady state
condition) or condition of balance, we have

(
d f

dt

)

drift

+
(
d f

dt

)

coll

= 0 . (6.78)

Inserting (6.77) into this we obtain

∂ f

∂t
+ 1

�
F · ∇k f + v · ∇r f =

(
d f

dt

)

coll

. (6.79)

This equation is called the Boltzmann transport equation.

6.2.1 Collision Term and Relaxation Time

Let us consider a uniform crystal and assume the distribution function to be inde-
pendent of position r . Then the distribution function is written as f (k). The rate of
change in the distribution function f (k) includes two terms. The rate of increase in
f (k) due to transitions from all possible k′ states (excluding k) to the k state and the
rate of decrease in f (k) due to transitions from the k state to other possible k′ states.
Defining the respective transition rates per unit time by P(k′, k) and P(k, k′), the
collision term is written as.

(
d f

dt

)

coll

=
∑

k′

{
P(k′, k) f (k′)[1 − f (k)] − P(k, k′) f (k)[1 − f (k′)]} ,

(6.80)

where the prefactor f (k′)[1− f (k)] of P(k′, k) represents the probability of electron
occupation in the initial state k′ and of electron vacancy in the final state k.

For simplicity we consider the case where the Fermi level lies below the bottom of
the conduction band in the band gap; then, the conditions f (k) � 1 and f (k′) � 1
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hold. Defining the distribution function for thermal equilibrium by f0(k), we have
(d f/dt)coll = 0 in (6.80), and thus we obtain the following relation:

P(k′, k) f0(k′) = P(k, k′) f0(k) . (6.81)

This relation is called the principle of detailed balance. Using this relation (6.80)
is written as

(
d f

dt

)

coll

= −
∑

k′
P(k, k′)

[
f (k) − f (k′)

f0(k)
f0(k

′)

]
. (6.82)

When we replace the summation of k′ by an integral, we have

(
d f

dt

)

coll

= − V

(2π)3

∫
d3k′P(k, k′)

[
f (k) − f (k′)

f0(k)
f0(k

′)

]
, (6.83)

where V = L3 is the crystal volume.1 When the external force is very weak and
the displacement of the distribution function from the thermal equilibrium value is
small, we may write (or expand in Taylor series)

f (k) = f0(k) + f1(k), ( f1(k) � f0(k)) . (6.84)

Assuming that the energy change due to scattering is small and that the energy E(k)
of the initial state k is very close to the energy E(k′) of the final state k′ (this condition
is called an elastic collision), we may put f0(k) ∼= f0(k

′). In this case we obtain the
following relation from (6.83):

(
d f

dt

)

coll

= − f1(k)
V

(2π)3

∫
d3k′P(k, k′)

[
1 − f1(k

′)
f1(k)

]
,

≡ − f1(k)
τ (k)

≡ − f (k) − f0(k)
τ (k)

, (6.85)

where τ (k) is called the relaxation time of the collision and is given by

1

τ (k)
= V

(2π)3

∫
d3k′P(k, k′)

[
1 − f1(k

′)
f1(k)

]
, (6.86)

which is a function of the electron wave vector k and thus of the energy. This approx-
imation is called the relaxation approximation.

After the electron system reaches the steady state under an external field, the
external field is removed at time t = 0 and we have ∂ f/∂t = (∂ f/∂t)coll from the
Boltzmann equation (6.79). When we assume the relaxation approximation and we
use (6.85), it may be expressed as

1We use same notation for the potential and the crystal volume in this book, but it will not introduce
any confusion.
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∂ f

∂t
=

(
d f

dt

)

coll

= − f − f0
τ

. (6.87)

For simplicity we assume that the relaxation time τ is constant, and then we obtain

f − f0 = ( f − f0)t=0 exp
(
− t

τ

)
, (6.88)

where ( f − f0)t=0 is the shift of the distribution function from thermal equilibrium
at time t = 0. The above result indicates that the distribution function recovers expo-
nentially with time constant τ toward the thermal equilibrium value after removal of
the external field at t = 0.

When the relaxation time approximation is valid, the Boltzmann transport equa-
tion is written as

∂ f

∂t
+ 1

�
F · ∇k f + v · ∇r f = − f − f0

τ
. (6.89)

Spatial uniformity results in ∇r f = 0 and the steady state gives rise to ∂ f/∂t = 0.
Therefore, we obtain

1

�
F · ∇k f = − f1

τ
(6.90)

and when the external field is applied in the x direction it reduces to

f1 = −τ

�
Fx

∂ f

∂kx
. (6.91)

The energy of the electron is a function of the wave vector and is written as E =
�
2k2/2m∗ for an electronwith isotropic effectivemassm∗, which leads to the relation

�kx = m∗vx . Therefore, we obtain

f1 = −τ

�
Fx

∂ f

∂E
∂E
∂kx

= −τvx Fx
∂ f

∂E . (6.92)

When we use the relations f = f0 + f1 and f0 � f1 in the above equation we may
approximate it as

f1 = −τvx Fx
∂ f0
∂E . (6.93)

When we assume elastic scattering and that the relaxation time τ is a function of the
energy E , the magnitude of the relaxation time τ is not changed after the scattering
event and the relaxation time τ (k) is expressed as follows by inserting (6.93) into
(6.86):
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1

τ (k)
= V

(2π)3

∫
d3k′P(k, k′)

(
1 − k ′

x

kx

)

= V

(2π)3

∫
d3k′P(k, k′)(1 − cos θ) , (6.94)

where kx and k ′
x are the components of the electron wave vectors k and k′ along the

direction of the external force (x component) before and after scattering, respectively,
and θ is the angle between k and k′.

In the case of a degenerate semiconductor, the principle of detailed balance is
obtained from (6.80) as

P(k′, k) f0(k′)[1 − f0(k)] = P(k, k′) f0(k)[1 − f0(k
′)] . (6.95)

Using this relation, the relaxation time of a degenerate semiconductor is given by

1

τ (k)
= 1

1 − f0(k)

∑

k′
P(k, k′)[1 − f0(k

′)]
(
1 − k ′

x

kx

)

= 1

1 − f0(k)
V

(2π)3

∫
dk′P(k, k′)[1 − f0(k

′)]
(
1 − k ′

x

kx

)
. (6.96)

The above equation reduces to (6.94) for the non-degenerate case when we let
f0(k) � 1 and f0(k

′) � 1. It may be pointed out that when the final state is occupied
by an electron, 1 − f0(k

′) = 0 and the transition (scattering) is not allowed.

6.2.2 Mobility and Electrical Conductivity

When the relaxation time is given by a function of the electron energy or electron
wave vector, the electron mobility and electrical conductivity (referred to as mobility
and conductivity hereafter, respectively, unless otherwise specified) are calculated as
follows. In the presence of an electric field applied in the x direction, we may write
Fx = −eEx ; (6.84) and (6.93) then give the following relation:

f (k) = f0(k) + eExτvx
∂ f0
∂E . (6.97)

Therefore the current density in the x direction is given by

Jx = 2

(2π)3

∫
(−e)vx f (k)d3k

= − e

4π3

∫
vx f0(k)d3k − e2Ex

4π3

∫
τv2

x

∂ f0
∂E d3k , (6.98)

where the factor 2 arises from the spin degeneracy and vx = �kx/m∗. The function
f0(k) is given by the Fermi (or Fermi–Dirac) distribution function or the Boltzmann
distribution function, which is a function of the electron energy E(k). Since E is an
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Fig. 6.6 Change in the
distribution function under
an applied electric field. The
distribution function in k
space is slightly displaced
along the field direction

kx

ky

even function of k, vx f0(k) is an odd function of vx . Since integration with respect
to dkx ranges from −∞ to +∞, the first term on the right hand side becomes zero,
and only the second term remains, resulting in

Jx = −e2Ex

4π3

∫
τv2

x

∂ f

∂E d3k . (6.99)

This result is interpreted with the help of Fig. 6.6. In the absence of an electric
field, the distribution function of the thermal equilibrium state is isotropic in k space
and thus the current in any direction has the same magnitude, resulting in mutual
cancellation and hence in zero current. In the presence of an applied electric field,
the distribution function is given by f = f0 + f1 and is displaced by f1 in the
electric field direction, resulting in a current proportional to the displacement along
the electric field direction. Using the electron density n given by

n = 2

(2π)3

∫
f0d

3k , (6.100)

Equation (6.99) is rewritten as

Jx = −e2nEx

∫
τv2

x

d f0
dE d3k

∫
f0d

3k
= e2nEx

kBT

∫
τv2

x f0(1 − f0)d
3k

∫
f0d

3k
, (6.101)

where the final result is obtained by using the following relations:

f0(E) = 1

e(E−EF )/kBT + 1
(6.102)

∂ f0
∂E = − 1

kBT
f0(1 − f0) . (6.103)

Since the term τ f0(1 − f0) in the integral of (6.101) is a function of the energy
E , we express it as φ(E). Noting d3k = dkxdkydkz , we have
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∫
v2
xφ(E)d3k =

∫
v2
yφ(E)d3k =

∫
v2
zφ(E)d3k = 1

3

∫
v2φ(E)d3k . (6.104)

The integral with respect to d3k is changed into an integral with respect to E by using
the relation E = �

2k2/2m∗. We then obtain

d3k = 4πk2dk = 8πm∗3/2
√
2�3

E1/2dE ≡ AE1/2dE . (6.105)

In the above equation the effective mass m∗ is the density-of-states mass for the
isotropic (scalar) effective mass and is often notified by m∗

d. In semiconductors such
as Ge and Si, we know that the conduction bands consist of a many–valley structure
and their constant energy surface is expressed by an ellipsoidwith transverse effective
massm t and longitudinal effective massm l. In such a case the density-of-states mass
m∗

d is given by (m2
tm l)

1/3 ≡ m∗
d. Inserting this relation, (6.104) and (6.105) into

(6.101), we obtain

Jx = 2e2nEx

3kBTm∗

∫ ∞

0
τE3/2 f0(1 − f0)dE
∫ ∞

0
E1/2 f0dE

. (6.106)

Although the upper limit of the integral should be the upper edge of the band, it
is replaced by infinity, taking account of the exponential decay of the distribution
function in the higher energy region. As stated above, the density-of-states mass
appears in the denominator and numerator and is cancelled, which is evident from
(6.101). The effective mass m∗ in (6.106) results from the term vx = �kx/m∗,
assuming an isotropic effective mass. The effective mass, usually defined by m∗

c ,
is called the conductivity effective mass because it comes from the term for the
velocity component. In the case of many–valley semiconductors such as Ge and Si,
however, the energy is expressed by an ellipsoid, and the conductivity effective mass
is given by 1/m∗

c ≡ (1/3)(2/m t + 1/m l). Next, we carry out the calculation of
(6.106) for the following two cases separately.

6.2.2.1 Metal and Degenerate Semiconductor

In this case the Fermi energy EF is located in the conduction band, and the term
−d f0/dE = f0(1− f0)/kBT has a large value near the Fermi energy only. Therefore,
the term −d f0/dE may be approximated by the Dirac δ-function. In addition, the
following relations,

f0 ∼= 1 (E ≤ EF) ,

f0 ∼= 0 (E > EF) ,

hold for the Fermi distribution function, and therefore we obtain
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1

kBT

∫ ∞

0
τ (E)E3/2 f0(1 − f0)dE

= −
∫ ∞

0
τ (E)E3/2 d f0

dE dE ∼= τ (EF )E3/2
F (6.107)

∫ ∞

0
E1/2 f0dE =

∫ EF

0
E1/2dE = 2

3
E3/2
F . (6.108)

Inserting these relations into (6.106), we obtain

Jx = ne2τ (EF)
m∗ Ex , (6.109)

where τ (EF) is the relaxation time of an electron at E = EF (or at the Fermi surface).
The relation between the Fermi energy EF and the electron density n is obtained from
(6.100) and (6.107), and is given by

EF = �
2

2m∗ (3π2n)2/3 . (6.110)

6.2.2.2 Non-degenerate Semiconductor

For non-degenerate semiconductors, we have f0 � 1 and 1 − f0 ∼= 1 and we may
approximate as

f0 = exp
( EF
kBT

)
exp

(
− E
kBT

)
≡ AF exp

(
− E
kBT

)
, (6.111)

and (6.106) reduces to

Jx = 2e2nEx

3kBTm∗

∫ ∞

0
τE3/2 f0dE

∫ ∞

0
E1/2 f0dE

. (6.112)

Integration by parts gives rise to

∫ ∞

0
E3/2 f0dE = 3

2
kBT

∫ ∞

0
E1/2 f0dE . (6.113)

Using this relation we obtain following relation:
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Jx = e2nEx

m∗

∫ ∞

0
τE3/2 f0dE

∫ ∞

0
E3/2 f0dE

. (6.114)

When we rewrite (6.114) as

Jx = ne2〈τ 〉
m∗ Ex , (6.115)

the relaxation time 〈τ 〉 is given by

〈τ 〉 =

∫ ∞

0
τE3/2 f0dE

∫ ∞

0
E3/2 f0dE

(6.116)

and 〈τ 〉 represents the average of τ (E).
When we define the average velocity of the electron by 〈vx 〉 in the presence of an

electric field in the x direction, it is also calculated from (6.116). The average velocity
is often referred to as the drift velocity. This is because the electron contributes to the
current via drift motion along the electric field direction, suffering from collisions.
The average time between the scattering events (collisions) or the scattering rate
(collision rate) is given by the average value of the relaxation time 〈τ 〉, where the
scattering rate is not equivalent to the relaxation time in the strict sense. The difference
will be discussed later. Using the electron density n, the current density is written as

Jx = n(−e)〈vx 〉 , (6.117)

where the drift velocity 〈vx 〉 is given by (6.115) as

〈vx 〉 = −e〈τ 〉
m∗ Ex ≡ −μEx . (6.118)

Here μ is the average electron velocity (drift velocity) under a unit electric field and
gives a measure of the mobility; it is called the electron mobility. This mobility is
often referred to as the drift mobility to distinguish it from the Hall mobility defined
in Chap.7. Using 〈τ 〉 the electron mobility is expressed as

μ = e〈τ 〉
m∗ , (6.119)

and when we define the conductivity (electrical conductivity) σ by

Jx = σEx , (6.120)

http://dx.doi.org/10.1007/978-3-319-66860-4_7
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the conductivity is given by

σ = ne2〈τ 〉
m∗ = neμ . (6.121)

These relations hold for degenerate semiconductors by replacing 〈τ (E)〉 with τ (EF).
As a simple example we consider the case of the relaxation time τ given by a

function of energy E such as

τ = aE−s . (6.122)

Then from (6.116) we obtain

〈τ 〉 =
a
∫ ∞

0
E3/2−s exp(−E/kBT )dE

∫ ∞

0
E3/2 exp(−E/kBT )dE

= a(kBT )−s Γ
(
5
2 − s

)

Γ
(
5
2

) , (6.123)

where Γ (s) is Γ function and has the following properties as shown in Appendix B

Γ (s) =
∫ ∞

0
xs−1e−xdx , (6.124)

Γ (s + 1) = sΓ (s) , (6.125)

Γ (1) = Γ (2) = 1; Γ (
1

2
) = √

π, Γ (
3

2
) =

√
π

2
, Γ (

5

2
) = 3

√
π

4
. (6.126)

6.3 Scattering Probability and Transition Matrix Element

6.3.1 Transition Matrix Element

The transition probability is calculated with the help of quantum mechanics as fol-
lows. Let us define the unperturbed Hamiltonian by H0, the time-dependent perturb-
ing Hamiltonian by H1 and the total Hamiltonian by H .

H = H0 + H1 . (6.127)

The eigenstates of the unperturbed Hamiltonian are assumed to be

H0|k〉 = E(k)|k〉 . (6.128)

The scattering rate for electron scattered from an initial state |k〉 to a final state |k′〉
is then given by the following relation according to quantum mechanics:
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P(k, k′) = 2π

�
|〈k′|H1|k〉|2δ [Ek′ − Ek] , (6.129)

where Ek and Ek′ are the energies of the initial and final states including the pertur-
bation state and ensures the δ-function indicate energy conservation. This relation
can also be written as follows. The scattering rate w is calculated by taking all the
possible final states into account and is written as

w = 2π

�

∑

k′
|〈k′|H1|k〉|2δ [Ek′ − Ek]

= 2π

�

L3

(2π)3

∫
d3k′|〈k′|H1|k〉|2δ [Ek′ − Ek] .7 (6.130)

Next we consider electron scattering by phonons. Using (6.58) we obtain

H = He + Hl + Hel , (6.131)

He|k〉 = E(k)|k〉 , (6.132)

Hl|nq〉 = �ωq
(
nq + 1

2

)|nq〉 , (6.133)

where Hel is the electron–phonon interaction Hamiltonian. Then the scattering prob-
ability for electrons from |k〉 to |k′〉 states is written as

P(k, k′) = 2π

�
|〈k′, q ′|Hel|k, q〉|2δ[E(k′) − E(k) ∓ �ωq] , (6.134)

where |nq〉 is written as |q〉 for simplicity. It should be noted that the phonon energy
�ωq involved with phonon emission or absorption is included in the δ-function.

From the Boltzmann transport equation and the principle of detailed balance, or
from (6.94), the relaxation time is given by

1

τ (k)
=

∑

k′
P(k, k′)

(
1 − k ′

x

kx

)
=

∑

k′
P(k, k′)(1 − cos θ)

= L3

(2π)3

∫
d3k′P(k, k′)(1 − cos θ) , (6.135)

where the volume V is replaced by L3 in the final relation. As defined previously,
P(k, k′) is the transition rate of electrons from state k to state k′, and θ is the angle
between k and k′. The transition rate P(k, k′) is

P(k, k′) = 2π

�
|〈k′, q ′|Vs |k, q〉|2δ[Ek′,q ′ − Ek,q] , (6.136)

where Vs is the scattering potential and is equivalent to the perturbation Hamiltonian
H1 defined above, and |k, q〉 is given by the product of the electron wave function
|k〉 with wave vector k and the wave function for the scattering center, which is a
phonon |q〉 with wave vector q. Therefore, the relaxation time is given by
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1

τ (k)
= 2π

�

∑

k′
|〈k′, q ′|V |k, q〉|2(1 − cos θ)δ[Ek′,q ′ − Ek,q] (6.137)

= L3

(2π)2�

∫
d3k′|〈k′, q ′|V |k, q〉|2(1 − cos θ)δ[Ek′,q ′ − Ek,q] .

In the following we use the relation

∑

k′
= Ld

(2π)d

∫
ddk′ . (6.138)

Here we will describe a very convenient method to derive the matrix element for
scattering, where we use the Fourier transform shown in Appendix A.3. This is done
by using cyclic boundary conditions as follows. Let us consider a semiconductor of
length L and dimension d. The Fourier transform is written as

Vs(q) = 1

Ld

∫
dd r Vs(r)e−iq·r , (6.139a)

Vs(r) =
∑

q

Vs(q)eiq·r . (6.139b)

Next we use the relation

1

Ld

∫
dd r exp[i(q − q ′) · r] = δq,q ′ , (6.140)

of which proof is given in A.2 of Appendix A. Then the matrix element is expressed
as

〈k′, q ′|Vs(r)|k, q〉 =
∑

q ′′
〈q ′|Vs(q ′′)|q〉〈k′|eiq ′′ ·r |k〉

=
∑

q ′′
〈q ′|Vs(q ′′)|q〉δk′−k,q ′′

= 〈q ′|Vs(k
′ − k)|q〉 . (6.141)

The above equation is derived by using the electron wave function

|k〉 =
√

1

L3
exp(ik · r) . (6.142)

If we use the Bloch function

|k〉 =
√

1

L3
uk(r) exp(ik · r) (6.143)

for the electron, then we obtain following result. When we use the cyclic boundary
conditions for the Bloch function, the integral is decomposed into the integral in a
unit cell and the summation over the unit cells.
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〈k′| exp(iq ′′ · r)|k〉
= 1

NΩ

∫
d3ru∗

k′(r)uk(r) exp
[
i(k − k′ + q ′′) · r]

= 1

N

∑

j

exp
[
i(k − k′ + q ′′) · R j

]

× 1

Ω

∫

Ω

u∗
k′(r)uk(r) exp

[
i(k − k′ + q ′′) · r] d3r

= δk′−k,q ′′
1

Ω

∫

Ω

u∗
k′(r)uk(r)d3r

= I (k, k′)δk′−k,q ′′ . (6.144)

In the above equations the summation with respect to j is non zero only when
k−k′ +q ′′ +G = 0 (G: reciprocal lattice vector), and thus the Kronecker δ-function
should bewritten as δk′−k,q ′′+G . Here, however, we assume that theUmklapp process
of G 	= 0 (Umklapp process) does not play in a part in the scattering process and
that the normal process of G = 0 takes part in the scattering process. In addition,
we have

I (k, k′) = 1

Ω

∫

Ω

u∗
k′(r)uk(r)d3r � 1 , (6.145)

where R j is a lattice vector, N is the number of unit cells and Ω is the volume of a
unit cell.

In the following, we will calculate the matrix elements for several scattering
processes which play an important role in transport in semiconductors. It should be
noted that notations such as |〈k′|H1|k〉|, |V (k′ − k)| and |M(k, k′)| are used in this
book and that all of them represent the matrix elements for the scattering centers.

6.3.2 Deformation Potential Scattering (Acoustic Phonon
Scattering)

The deformation potential theory has been proposed byBardeen and Shockley, which
is based on the energy change of an electron due to lattice deformation. The energy
change is related to the volume change of a crystal,Δ(r) = δV/V (V : volume), and
the electron–phonon interaction Hamiltonian Hel is defined by

Hel = Dac
δV

V
= Dac div u(r) , (6.146)

where Dac is called the deformation potential for electron scattering by acoustic
phonons. The displacement vector of an acoustic phonon u(r) has been derived in
Sect. 6.1 and is given by
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u(r) =
∑

q

√
�

2MNωq
eq

[
aqe

iq·r + a†qe
−iq·r] , (6.147)

where eq is the unit vector along the displacement direction. This result leads to the
following relation:

Hel = Dac

∑

q

√
�

2MNωq
(ieq · q)

[
aqe

iq·r − a†qe
−iq·r] . (6.148)

Next, we calculate the matrix element for this interaction Hamiltonian. Here we
replace |q〉 by |nq〉 and use the following relations:

aq |nq〉 = √
nq |nq − 1〉, (6.149a)

a†q |nq〉 = √
nq + 1|nq + 1〉 . (6.149b)

Then the matrix element is given by

〈k′, nq ′ |Hel|k, nq〉 = Dac

∑

q

√
�

2MNωq
(ieq · q)

√

nq + 1

2
∓ 1

2

× 1

L3

∫
d3r u∗

k′(r)uk(r)ei(k−k′±q)·r . (6.150)

Now, we replace the integral over the whole of space with a summation of unit cell
integrations, and we obtain

〈k′, nq ′ |Hel|k, nq〉

= Dac

∑

q

√
�

2MNωq
(ieq · q)

√

nq + 1

2
± 1

2
I (k, k′)δk′,k±q, (6.151)

I (k, k′) = 1

Ω

∫

Ω

d3r u∗
k′(r)uk(r), (6.152)

where the summation with respect to q is simplified by using the relation δk′,k±q ,
where we take into account the normal process only.

Here we will show a more convenient method to derive the above result by using
the Fourier transform. When we insert the Fourier transform of Hel into (6.141) we
obtain the following result directly. Defining

Hel(r) =
∑

q

[
C(q)aqe

iq·r + C†(q)a†qe
−iq·r] , (6.153)

C(q) = Dac

√
�

2MNωq
(ieq · q) , (6.154)

we obtain the following relation easily:
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Hel(q) = 1

L3

∫
d3r Hel(r)e−iq·r

=
∑

q ′

[
C(q ′)aq ′

1

L3

∫
d3r ei(q

′−q)·r + C†(q ′)a†q ′
1

L3

∫
d3r e−i(q ′+q)·r

]

=
∑

q ′

[
C(q ′)aq ′δq ′,q + C†(q ′)a†q ′δq ′,−q

]

= C(q)aq + C†(−q)a†−q . (6.155)

Inserting this relation into (6.141) we obtain

〈nq ′ |Hel(k
′ − k)|nq〉

= 〈nq ′ |C(k′ − k)ak′−k + C†(k − k′)a†k−k′ |nq〉

=
{
C(q)

√
nq (k′ = k + q; absorption),

C†(q)
√
nq + 1 (k′ = k − q; emission) .

(6.156)

6.3.3 Ionized Impurity Scattering

6.3.3.1 Brooks–Herring Formula

The Coulomb potential due to an i-th point charge ze is expressed in real space as

Vi (r) = ze2

4πεr
, (6.157)

where the dielectric constant ε is used to take account of the electronic polarization
and ionic polarization due to lattice vibrations. The contribution of valence electrons
to the dielectric constantwill be discussed later. The Fourier transformof the potential
gives Vi (q) and the calculation of scattering rate (relaxation time) is straightforward:

Vi (q) = ze2

L3ε

1

q2
. (6.158)

Although the derivation of the above equation is simple, we consider the screened
Coulomb potential for the purpose of calculation and generality, and assume a dis-
tribution of ionic charge NI given by

ρI(r) = ze
NI∑

i=1

δ(r − r i ) , (6.159)

where r i is the position vector of an ionized impurity. The Coulomb potential of the
ionized impurities is expressed as
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V (r) =
NI∑

i=1

Vi (r − r i ) . (6.160)

We will discuss in Sect. 6.3.10 how to take account of the screening, and here we use
the result. The screened Coulomb potential V (r − r i ) is given by

V (r − r i ) = ze2

4πε

e−qs|r−r i |

|r − r i | , (6.161)

where qs is the inverse of the Debye screening length λs and is given by

qs = 1

λs
=

(
nze2

εkBT

)1/2

. (6.162)

In the above equation n is the density of electrons in the conduction band. The Fourier
transform of the Coulomb potential is calculated as follows. For simplicity a single
point charge is assumed and we define the potential as

V (r) = C
e−qsr

r
. (6.163)

The Fourier transform is therefore given by

V (q) = 1

L3

∫
V (r)e−iq·rd3r

= 1

L3

4πC

q2 + q2
s

. (6.164)

From this relation we have

V (q) = V (q) = ze2

εL3

1

q2 + q2
s

. (6.165)

When we put qs = 0 in the above equation, (6.158) is obtained.
From these results the Coulomb potential of ionized impurities NI is Fourier

transformed to give

V (q) =
NI∑

i=1

ze2

εL3

1

q2 + q2
s

e−iq·r i . (6.166)

Relaxation time is calculated by inserting (6.166) into (6.138) or (6.141) and the
squared matrix element of ionized impurity scattering is given by
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|V (k′ − k)|2 =
(
ze2

εL3

)2 1

(|k′ − k|2 + q2
s )

2

NI∑

i=1

NI∑

j=1

δi j

= NI

(
ze2

εL3

)2 1

(|k′ − k|2 + q2
s )

2
. (6.167)

Therefore, we obtain the relaxation time by inserting this into (6.138), resulting in

1

τI (k)
= L3

(2π)2�

∫
d3k′NI

(
ze2

εL3

)2 1

(|k′ − k|2 + q2
s )

2
(1 − cos θ)

×δ [Ek′ − Ek] . (6.168)

When we define the impurity density by nI = NI/L3, the relaxation time reduces to

1

τI(k)
= nI

(2π)2�

∫
d3k′

(
ze2

ε

)2 1

(|k′ − k|2 + q2
s )

2
(1 − cos θ)δ [Ek′ − Ek] .

(6.169)

The electron energy is defined by

Ek ≡ E(k) = �
2k2

2m∗ (6.170)

and the integral is carried out in spherical k space:

d3k′ = 2πk ′2dk ′ sin θdθ , (6.171)

where θ is the angle between k and k′, and |k′ − k| = 2k sin(θ/2). Using the δ-
function we find

∫
k ′2dk ′δ

[
�
2k ′2

2m∗ − �
2k2

2m∗

]
= 2m∗

�2

∫
k ′2dk ′δ[(|k′| − |k|)(|k′| + |k|)]

= 2m∗

�2

∫
k ′2

2|k|dk
′δ[(|k′| − |k|)

= m∗

�2
|k| , (6.172)

and (6.169) reduces to

1

τI(k)
= nIm∗k

2π�3

( ze2

ε

)2
I (k) , (6.173)

where

I (k) =
∫ π

0

[
1

{2k sin2(θ/2)}2 + q2
s

]2
(1 − cos θ) sin θdθ

= 1

4k4

{
log[1 + (2kλs)

2] − (2kλs)
2

1 + (2kλs)2

}
. (6.174)
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Therefore, the relaxation time for ionized impurity scattering is givenby the following
equation:

1

τI(E)
= z2e4nI

16πε2
√
2m∗ E

−3/2

[
log

(
1 + 8m∗λ2

sE
�2

)
− 8m∗λ2

sE/�
2

1 + (8m∗λ2
sE/�2)

]
.

(6.175)

The above equation is called the Brooks–Herring formula.
Here we will show that the Fourier transform of a 2-dimensional Coulomb poten-

tial is given by

V (q) = e2

2εL2

1

q
. (6.176)

The Fourier transform of a 2-dimensional potential V (r) is defined by

V (q) = 1

L2

∫
V (r)eiq·rd2r . (6.177)

When we express the 2-dimensional potential as

V (r) = e2

4πεr
, (6.178)

then we have

V (q) = e2

4πεL2

∫ ∞

0
dr

∫ 2π

0
dφ eiqr cosφ = e2

2εL2q

∫ ∞

0
d(qr)J0(qr) , (6.179)

where J0(x) is the Bessel function of order zero and

∫ ∞

0
J0(x)dx = 1 . (6.180)

Therefore, the Fourier transform of the 2-dimensional Coulomb potential is given by

V (q) = e2

2εL2

1

q
. (6.181)

6.3.3.2 Conwell–Weisskopf Formula

Conwell andWeisskopf [1] have derived the relaxation time for ionized impurity scat-
tering by adopting Rutherford scattering. Let us define the scattering cross-section
of a single impurity by A. In a semiconductor with impurity density nI and with
electron velocity v = (∂E/∂k)/�, the relaxation time (collision time) of an electron
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τI is given by 1/τI = nIvA. The differential cross-section σ(θ,φ) is defined by the
probability of scattering into a small solid angle dΩ = sin θdθdφ, and in the case of
isotropic scattering the cross-section is given by A = ∫

σ(θ,φ) sin θdθdφ. Assum-
ing elastic scattering and defining the angle θ between the electron wave vectors k
and k′, we obtain

1

τCW
= nIv

∫ 2π

φ=0

∫ π

θ=0
σ(θ,φ)(1 − cos θ) sin θdθdφ

= 2πnIv
∫ π

0
σ(θ)(1 − cos θ) sin θdθ . (6.182)

Neglecting the screening effect due to conduction electrons, the potential induced
by an ionized impurity is given by the Rutherford scattering cross-section:

σ(θ) = 1

4
R2cosec4

(θ

2

)
, R = ze2

4πεm∗v2
. (6.183)

In a semiconductor with many ionized impurities, the effect of an impurity on a
scattering event seems to disappear between the neighboring two impurities. This
assumption enables us to cut off the effect of a scattering potential at rm, where rm
is given by the relation (2rm)−3 = nI. In other words, an electron affected by an
impurity will not be scattered by the impurity when the electron is separated from
the impurity by a distance rm. Under this assumption the cut-off angle θm, shown in
Fig. 6.7, is given by

tan(θm/2) = R

rm
(6.184)

and the integral with respect to θ is cut off at the angle θm, (θm < θ < π), giving
rise to the final result:

Fig. 6.7 Scattering of
electron and hole by an
ionized impurity and the
cut-off angle θm
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1

τCW
= −4πnIvR

2 ln

(
sin

θm

2

)
= 2πnIvR

2 ln
(
1 + rm

R2

)

= z2e4nI

16πε2
√
2m∗ E

−3/2 ln

[

1 +
(
2E
Em

)2
]

(6.185)

2E
Em = rm

R
, Em = ze2

4πεrm
. (6.186)

This equation is referred to as the Conwell–Weisskopf formula for ionized impurity
scattering [1].

6.3.4 Piezoelectric Potential Scattering

When a strain Skl is applied to a crystal without inversion symmetry (except the
cubic crystal O , class 432), a polarization P is induced. This phenomena is called
piezoelectricity. In such a crystal, a potential associated with lattice vibrations is
induced and thus the electrons are scattered by this piezoelectric potential. Thematrix
element for piezoelectric potential scattering is obtained as follows.

The i components of polarization P and electric displacement D in a piezoelectric
crystal are written as

Pi = eikl Skl ≡ eiαSα, (6.187)

Di = εsi j E j + Pi = εsi j E j + ei jk Skl
= εsi j E j + eiαSα , (6.188)

where εsi j is the dielectric constant under a constant strain. eikl = eiα is the piezoelec-
tric constant tensor and it is rewritten as follows by using contraction of subscripts
for the coordinate components i , j , k, l:

kl = 11 22 33 23, 32 13, 31 12, 21
α = 1 2 3 4 5 6

On the other hand, the stress tensor Ti j = Tα and the strain tensor are related by
Hooke’s law, and in the absence of piezoelectricity the relation is given by Tα =
cEαβSβ , where cαβ is elastic constant tensor. In the presence of piezoelectricity, strain
and stress are induced by piezoelectricity and thus we obtain

Tα = cαβSβ − eiαEi . (6.189)

Equations (6.188) and (6.189) are referred to as the fundamental equations of
piezoelectricity. Let us define the displacement vector of an elastic wave by u, the
unit vector of the polarization direction byπ = u/|u| and the unit vector of the wave
vector q by a = q/|q|. The elastic wave is then expressed as

u = πuei(qa·r−ωq t) (6.190)
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and therefore we obtain following relations:

Skl = 1

2

(
∂uk
∂rl

+ ∂ul
∂rk

)

= 1

2
(iq)(πi a j + π j ai )u = iqπkalu , (6.191)

where the right-hand side is written by omitting the notation of summation for the
components. This kind of simplification is often used in tensor equations.

Now we define the piezoelectric potential induced by lattice vibrations as φpz.
Then the corresponding electric field E is given by E = −grad φpz or by El =
−ia jqφpz. From the relation div D = 0 we have

divD = ∂Di/∂ri = (εsi j aia jq
2φpz − q2eiklaiπkalu) = 0 (6.192)

and thus

φpz = eiklaiπkal
aiεsi j a j

· u ≡ e∗
pz

ε∗ u , (6.193)

where e∗
pz = eiklaiπkal and ε∗ = aiε∗

i j a j are the effective piezoelectric constant and
effective dielectric constant, respectively. The potential energy associated with the
induced piezoelectric potential is given by Vpz = −eφpz, which reduces to (dropping
the sign for simplicity)

Vpz = ee∗
pz

ε∗ u . (6.194)

Here we use the quantized displacement vector given by (6.68) and then the
potential energy is rewritten as

Vpz(r) =
∑

q

ee∗
pz

ε∗

√
�

2NMωq

(
aqe

iq·r + a†qe
−iq·r) . (6.195)

The calculation of the matrix element and relaxation time is straightforward, as in
the case of deformation potential scattering. When we rewrite the potential energy
as

Vpz(r) =
∑

q

[
Cpz(q)aqe

iq·r + C†
pz(q)e−iq·r

]
, (6.196)

Cpz(q) = ee∗
pz

ε∗

√
�

2MNωq
, (6.197)

the Fourier transform gives rise to
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Vpz(q) = 1

L3

∫
d3rVpz(r)e−iq·r

=
∑

q ′

[
Cpz(q ′)aq ′

1

L3

∫
d3rei(q

′−q)·r

+C†
pz(q

′)a†q ′
1

L3

∫
d3re−i(q ′+q)·r

]

=
∑

q ′
Cpz(q ′)aq ′δq ′,q + C†

pz(q
′)a†q ′δq ′,−q

= Cpz(q)aq + C†
pz(−q)a†−q . (6.198)

Inserting this equation into (6.141), the matrix element for piezoelectric potential
scattering is given by

〈nq ′ |Vpz(k
′ − k)|nq〉

= 〈nq ′ |Cpz(k
′ − k)ak′−k + C†

pz(k − k′)a†k−k′ |nq〉

=
{
Cpz(q)

√
nq (k′ = k + q; absorption) ,

C†
pz(q)

√
nq + 1 (k′ = k − q; emission) .

(6.199)

As shown in Sect. 6.4.4 the scattering rates diverge when the electron energy
approaches 0. Detailed treatment of the anisotropy of the piezoelectric potential
are reported by Zook [2], Hutson [3], and Hutson et al.[4]. Since the scattering rate
due to piezoelectric potential is quite small as shown later and its contribution to the
electron mobility is negligible, we use the above approximation in this text book.

Screening effect is taken in account by using the similar approach to obtain
Brooks–Herring formula for ionized impurity scattering as described in Sect. 6.3.3
[5]. Let’s consider the case of a zinc blende crystal, where then non-zero piezoelec-
tric constant is e14, and all other components are zero. Then the two shear acoustic
waves give rise piezoelectric potential perpendicular to the propagation direction.We
redefine C sc

pz(q) for the electron–piezoelectric potential interaction by the following
relation

C sc
pz(q) = e · e14

ε

√
�

2MNωq

q2

q2 + q2
s

[
2i(axβγ + ayγα + αβ)

]

≡
√

�

2MNωq

〈e · e∗
pz

ε∗
〉 2q2

q2 + q2
s

, (6.200)

where factor 2 arises from two shear acoustic modes, andα, β, and γ are the direction
cosines with respect to the crystal axis and of the direction of propagation of the
acoustic wave. Therefore we obtain the total scattering rate due to the piezoelectric
potential wpz
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wpz = 2e2
√
m∗kBT

4
√
2�2

〈 e∗2
pz

c∗ε∗2
〉 1√E

∫ ∞

0

q3

(q2 + q2
s )

2
dq

= e2
√
m∗kBT

4
√
2�2

〈 e2pz
c∗ε∗2

〉 1√E
×

[
log

(
1 + 8m∗E

�2q2
s

)
− 1

1 + �2q2
s /8m

∗E
]

, (6.201)

where factor 2 is multiplied by taking account of absorption and emission and qs is
the screening wave vector given by (6.162)

qs =
(
nze2

εkBT

)1/2

. (6.202)

6.3.5 Non-polar Optical Phonon Scattering

As described in Sect. 6.1, in a crystal with two or more atoms in a unit cell lattice
vibrations (optical phonon modes) occurs due to the relative displacement between
the atoms in the unit cell and the potential induced by the relative displacement
results in electron or hole scattering. The interaction potential is proportional to the
relative displacement u, where the relative displacement vector of optical phonon
modes is derived in Sect. 6.1.2. Also as described in Sect. 5.2, the displacement tensor
in diamond type (such as Ge and Si) and zinc blende type crystals (such as GaAs)
belongs to the irreducible representation Γ25′ (Γ4). In the case of interaction of order
0, therefore, the matrix element disappears for electrons in the s-like conduction
bands Γ1 and Γ2′ at the Γ point. In other words, interaction between electrons and
non-polar optical phonons does not exist in the non-degenerate bands with extrema
at the Γ point in the Brillouin zone. It is also known that interaction of order zero
disappears in the conduction band minima (many–valley structure such as in Si)
in the 〈100〉 direction of the Brillouin zone and that the interaction is higher order,
resulting in quite a small contribution to electron scattering. However, the interaction
is known to be very strong in conduction band minima in the direction 〈111〉 such
as in Ge and in the valence bands of Si and Ge. The interaction Hamiltonian for
non-polar optical phonon scattering is defined as

Hop = Dop · u = D̃op · G · u , (6.203)

where G is the magnitude of the reciprocal lattice vector and Dop is the deformation
potential for non-polar optical phonon scattering. Since the optical phonon displace-
ment vector u has the dimensions of length, Dop is multiplied by G to give the
dimensions of energy for D̃op. Here we have to note that the Hamiltonian is also
defined in some textbooks by D̃op ·u/a0 with lattice constant a0. The matrix element

http://dx.doi.org/10.1007/978-3-319-66860-4_5
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for non-polar optical phonon scattering is easily calculated by using the relative dis-
placement vector u of (6.70) derived in Sect. 6.1.2 as the following, where we put
ωq → ω0:

∣∣M(k, k′) | =
(

�

2NMrω0

)1/2

Dop ×
{√

n0(ω0) ,√
n0(ω0) + 1 ,

(6.204)

where n0(ω0) is the Bose–Einstein distribution function for optical phonons and
n0(ω0) = 1/[exp(�ω0/kBT ) − 1]. In order to correlate the optical phonon deforma-
tion potential with acoustic deformation potential we introduce the new deformation
potential constant

E2
lop ≡ D2

opv
2
s

ω2
0

≡ D̃2
opG

2v2
s

ω2
0

, (6.205)

where vs is the velocity of sound. In the above expression Elop has the units of energy
similar to the acoustic phonon deformation potential and is referred to as the optical
phonon deformation potential. The definition of the new deformation potential has
been proposed by Conwell [6] and is very useful to take account of non-polar optical
phonon scattering.

6.3.6 Polar Optical Phonon Scattering

As stated in the previous section the lattice vibrations of a crystal with two or more
atoms in a unit cell exhibit optical phonon modes due to the relative displacement
of the atoms in the unit cell. For simplicity we consider a crystal with two atoms A
and B in a unit cell and define the relative displacement vector by u = uA − uB with
respective displacement vectors uA and uB. From (5.126), the equation of motion is
written as

Mr
d2

dt2
u(r, t) = −Mrω

2
0u(r, t) + e∗Eloc(r, t) (6.206)

for the relative motion of the atoms, where 1/Mr = 1/MA + 1/MB is the reduced
mass and e∗ is the effective charge of the pair of atoms and Eloc(r, t) is the local
electric field at position r . The polarization associated with the lattice vibrations is
given by

P(r, t) = Ne∗u(r, t) + NαEloc(r, t) , (6.207)

where the second term on the right-hand side is the contribution from the electronic
polarization, N is the number of atomic pairs per unit volume, and α is the electronic
polarization constant. In the following analysis we use the Fourier transform method

http://dx.doi.org/10.1007/978-3-319-66860-4_5
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described in Appendix A.3. From the Fourier transform of the electric field E(r, t)
and polarization P(r, t) we obtain the following results:

P(r, t) = P(r)e−iωt , (6.208a)

P(r) = L3

(2π)3

∫
P(q)eiq·rd3q . (6.208b)

Using the local electric field, Eloc(r, t) = E(r, t)+ (1/3ε0)P(r, t) is Fourier trans-
formed as

Eloc(q) = E(q) + 1

3ε0
P(q) . (6.209)

Eliminating Eloc and u from (6.209), (6.206) and (6.207), we may obtain the fol-
lowing relation for κ(ω), which has been already shown by (5.131):

P(q) = ε0χ(ω)E(q) = ε0(κ(ω) − 1)E(q) , (6.210)

κ(ω) = κ∞
ω2 − ω2

LO

ω2 − ω2
TO

. (6.211)

Next we calculate the interaction Hamiltonian for the electron–optical phonon
interaction. Defining the potential at r due to the optical phonon by φ(r), the inter-
action energy is given by −eφ(r) and thus the interaction Hamiltonian for electron–
polar optical phonons is written as

Hpop = −eφ(r) = −e
∑

q

φ(q)eiq·r , (6.212)

where the final relation is obtained by a Fourier transform. Using the relation
−∇φ(r) = E, we find iq · φ(q) = E(q). The scalar product of this relation with
respect to q gives iq2φ(q) = (q · E(q)) and the Hamiltonian for the electron–polar
optical phonon interaction is given by

Hpop = −e
∑

q

[
q · E(q)

−iq2

]
eiq·r = e

iq2
[q · E(r)] . (6.213)

The electric field E is accompanied by lattice vibrations and only longitudinal optical
(LO) phonons with wave vector parallel to the electric field give rise to an electron–
polar optical phonon interaction.

In order to estimate the effective charge e∗ and to calculate Hpop, we use the
method of Born and Huang [7]. First we rewrite (6.206) and (6.207) as follows:

ẅ = b11w + b12E , (6.214)

P = b21w + b22E . (6.215)

Here we have introduced new variables defined by

http://dx.doi.org/10.1007/978-3-319-66860-4_5
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w = √
NMru , (6.216a)

b11 = −ω2
0 + Ne∗2/3ε0Mr

1 − Nα/3ε0
, (6.216b)

b12 = b21 =
√
Ne∗2/Mr

1 − Nα/3ε0
, (6.216c)

b22 = Nα

1 − Nα/3ε0
. (6.216d)

The coefficients bi j defined here may be correlated with observable quantities as
shown below. Since ẅ = 0 for a d.c. field (ω = 0), we obtain w = −(b12/b11)E
from (6.214). Inserting this relation into (6.215), the polarization P0 for a d.c. field
(due to ionic and electronic polarization) is given by

P0 =
(

−b212
b11

+ b22

)
E . (6.217)

Therefore, the static dielectric constant κ0 is written as

κ0 = 1 + χ0 = 1 + 1

ε0

(
b22 − b212

b11

)
. (6.218)

Next, we consider such a high frequency that the atomic displacements cannot follow
the electric field. In this case we have w = 0, and the corresponding polarization
P∞ is given by

P∞ = b22E . (6.219)

The corresponding dielectric constant κ∞ is then written as

κ∞ = 1 + b22
ε0

. (6.220)

The dielectric constant κ∞ is called the high-frequency dielectric constant, and
usually corresponds to the dielectric constant in the range of visible light, where
only the electronic polarization contributes to the dielectric constant. Using this rela-
tion, (6.218) and (6.220) are rewritten as

b22 = (κ∞ − 1)ε0 , (6.221a)

b212
b11

= −(κ0 − κ∞)ε0 . (6.221b)

On the other hand, the polarization for an electric field with angular frequency ω is
obtained by putting ẅ = −ω2w in (6.214):

−ω2w = b11w + b12E . (6.222)
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Evaluating w from the above equation and inserting it into (6.215), we find

P =
{
− b12b21
b11 + ω2

+ b22

}
E . (6.223)

From these results the dielectric constant κ(ω) at angular frequency ω is given by

κ(ω) = 1 + b22
ε0

− b12b21/ε0
b11 + ω2

= κ∞ + κ0 − κ∞
1 + ω2/b11

. (6.224)

Comparing this result with (5.129) of Sect. 5.4 we find the relation

b11 = −ω2
TO , (6.225)

and (5.130) is also derived.
Sinceκ(ωLO) = 0 for longitudinal optical phonons as stated in Sect. 5.4, we obtain

Ppop = −ε0E . (6.226)

Inserting this into (6.215) and eliminating the electric field E, we obtain

Ppop = b21w − b22
ε0

Ppop . (6.227)

From (6.221b) and (6.225), the following relation is derived:

b12b21 = (κ0 − κ∞)ε0ω
2
TO . (6.228)

With this relation and (6.221a), (6.227) reduces to

Ppop = ε
1/2
0 (κ0 − κ∞)1/2ωTOw − (κ∞ − 1)Ppop . (6.229)

This relation may be rewritten as follows by using the Lyddane–Sachs–Teller equa-
tion (5.131):

Ppop = ε
1/2
0

(
1

κ∞
− 1

κ0

)1/2

ωLO · w . (6.230)

When w is replaced by the relative displacement u, we obtain

Ppop = (ε0NMr)
1/2

(
1

κ∞
− 1

κ0

)1/2

ωLO · u ≡ Ne∗
c · u . (6.231)

The final result of the above equation is equivalent to the ionic polarization induced
by charge e∗

c and thus the charge is called the effective charge, which is given by

http://dx.doi.org/10.1007/978-3-319-66860-4_5
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e∗
c =

(
ε0Mr

N

)1/2 ( 1

κ∞
− 1

κ0

)1/2

ωLO . (6.232)

Also, we find the relation

ω2
LO − ω2

TO = κ∞N

ε0Mr
e∗2
c . (6.233)

The electric field induced by these longitudinal optical phonons may be written as

E = − 1

ε0
Ppop = −Ne∗

c

ε0
u . (6.234)

Using the relative displacement of (6.70) we obtain

E = −Ne∗
c

ε0

∑

q

(
�

2L3NMrωLO

)1/2

eq
(
aqe

iq·r + a†qe
−iq·r)

= − 1

ε0

(
ε0�

2L3ωLO

)1/2( 1

κ∞
− 1

κ0

)1/2

ωLO

∑

q

eq
{
aqe

iq·r + a†qe
−iq·r}

= − 1

ε0

(
�

2L3γωLO

)1/2 ∑

q

eq
(
aqe

iq·r + a†qe
−iq·r) . (6.235)

Here we have to note that the value of N used to expand the displacement vector
in normal modes is the number of atom pairs in the volume V = L3 and that N in
this section is the number of atom pairs in a unit volume (N in the normal mode
expansion should be read as L3N with N as defined in this section). The coefficient
γ is defined by

1

γ
= ε0

(
1

κ∞
− 1

κ0

)
ω2
LO . (6.236)

The coefficient γ is often referred to as the Fröhlich coupling constant. With this
expression the Hamiltonian for the electron–LO–phonon interaction is given by

Hpop = i
1

ε0

(
e2�

2L3γωLO

)1/2 ∑

q

1

q

(
aqe

iq·r + a†qe
−iq·r)

≡
∑

q

Cpop(q)
(
aqe

iq·r + a†qe
−iq·r) , (6.237)

where

Cpop(q) = i
1

ε0

(
e2�

2L3γωLO

)1/2 1

q
. (6.238)

Also the strength of the electron–LO–phonon interaction is often expressed by
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|Cpop(q)|2 = α(�ωLO)3/2
1

L3

(
�
2

2m∗

)1/2 1

q2
, (6.239)

where the dimensionless constant α is given by

α = e2

�

1

ε0

(
1

κ∞
− 1

κ0

)(
m∗

2�ωLO

)1/2

. (6.240)

The divergence of Hpop at q = 0 may be removed by taking account of the
screening due to the carriers (electrons or holes) as described in Sect. 6.3.3, where
ionized impurity scattering is dealt with. The screening effect (static screening) is
taken into account by multiplying by q2/(q2 + q2

s ) and thus the coefficient Cpop is
rewritten as

Cpop(q) = i
1

ε0

(
e2�

2L3γωLO

)1/2
q

q2 + q2
s

. (6.241)

The calculation of the matrix elements for polar LO phonon scattering is straightfor-
ward and we have

∣
∣M(k, k′)

∣
∣ = ∣

∣Cpop

∣
∣ q

q2 + q2
s

×
{√

nq√
nq + 1

=
[
e2�ωLO

2L3ε0

(
1

κ∞
− 1

κ0

)]1/2
q

q2 + q2
s

×
{√

nq ,√
nq + 1 ,

(6.242)

where nq is the Bose–Einstein distribution function for LO phonons and is given by

nq = 1

exp(�ωLO/kBT ) − 1
.

6.3.7 Inter–Valley Phonon Scattering

We have shown that the wave vectors involved in deformation potential scatter-
ing (acoustic phonon), piezoelectric potential scattering, non-polar optical phonon
scattering and longitudinal polar optical phonon scattering are small and that the
scattering is referred to as long-wavelength phonon scattering. On the other hand,
phonons of large wave vector are involved in the scattering in the conduction bands
of the many–valley structure such as in Ge and Si, where electrons are scattered
between different valleys. The scattering is called inter-valley phonon scattering.

As stated previously, electron scattering within a valley by optical phonons is not
allowed due to the symmetry properties of the conduction bands and of the optical
phonons. The constant energy surfaces of the conduction bands in Si consist of six
equivalent ellipsoids with their longitudinal axes along the 〈100〉 direction as shown
in Fig. 2.9. Referring to Fig. 6.8, we consider the valley located along the kx and ky

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. 6.8 f process and g
process of inter-valley
phonon scattering in Si

axes and we find that electron scattering between the two different valleys requires
a large wave vector change kf or kg. The scattering processes are referred to as the
f–process and the g–process.2 In the scattering event of an initial electron from a
conduction band valley minimum to the other valley minimum, the electron absorbs
or emits a phonon with the wave vector very close to the distance between the two
conduction band valley minima. The corresponding phonon energy is given by �ωf

or �ωg. This scattering is very similar to the non-polar optical phonon scattering and
we use the results. Defining the deformation potential for scattering between the i
and j valleys by Di j , the matrix element is written as below following the result of
(6.204):

∣∣M(k, k′) | =
(

�

2NMrωi j

)1/2

Di j ×
{√

n(ωi j ),√
n(ωi j ) + 1 .

(6.243)

6.3.8 Deformation Potential in Degenerate Bands

As stated in Sects. 2.2 and 2.3, the valence bands in diamond and zinc blende crystals
are degenerate at the Γ point (k = 0), where the valence bands consist of degenerate
heavy and light hole bands and the spin–orbit split-off band due to spin–orbit interac-
tion. In addition we have shown in Sect. 4.7 on piezobirefringence that application of
stress results in a change in the valence bands and that the change is well calculated
by the effective strain Hamiltonian, (4.171), defined by Picus and Bir. The effective
strain Hamiltonian contains three deformation potential constants a, b and d. Under
application of uniaxial stress along the directions [100] and [111], the degenerate
valence bands J = 3/2 are resolved into separate valence bands due to the deforma-
tion potential components b and d. On the other hand, the deformation potential a
is related to the strain component exx + eyy + ezz = divu and the divergence of dis-

2The names of the f– and g–processes are from the configurations of the valleys for inter-valley
scattering, which look like the roman characters f and g, respectively. The reason why the symbol
not g but g is used is evident from Fig. 6.8, where we find g is more intuitive.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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placement u (divu) is equivalent to the volume change δV/V of a crystal, where V
is the volume. As stated in Sect. 6.3 (Sect. 6.3.2), this term gives rise to an interaction
with the longitudinal acoustic phonons and thus the hole mobility depends strongly
on the deformation potential a.

We have already shown in Sects. 2.1 and 6.3.7 that the conduction bandminima of
Ge and Si are not located at Γ (k = 0) but lie at the K L point of the [111] direction
and at the Δ axes of the [100] direction, respectively, resulting in four equivalent
valleys in Ge and six equivalent valleys in Si. Such degenerate conduction bands are
called the many–valley structure. The stress effect on such a many–valley structure
is analyzed as follows. As an example, we consider the case of Si. When a uniaxial
stress is applied in the [100] direction, the conduction band valleys in the directions
[100] and [1̄00] differ in their energy state compared to the other four valleys, and thus
the degeneracy is partially removed. On the other hand, the effect of uniaxial stress
along [111] on the valleys is equivalent and thus the degeneracy will not be removed.
Such behavior of the stress effect in many–valley semiconductors is analyzed by the
theory of Herring andVogt [8]. The stress Hamiltonian of Herring andVogt is written
as

HHV = Ξd · Trace(ẽ) + Ξu · [m̃(i) · ẽ · m̃(i)
]

, (6.244)

where ẽ is the strain tensor given by 3 × 3 matrix, Trace(ẽ) = exx + eyy + ezz ,

and ˜m(i) is the unit vector of the principal axis of valley (i). Note that the strain
tensor Si j is used for the analysis of piezoelectric potential scattering instead of ei j .
Here, Ξd is the hydrostatic deformation potential and Ξu is the shear deformation
potential. Deformation potentials of many valley semiconductors Si and Ge are listed
in Table6.1.

Let us consider a valley in Si whose principal axis is in the (i) direction as shown
in Fig. 6.9. For simplicity we consider a valley along the [100] direction, and then
(6.244) reduces to

HHV = Ξd(exx + eyy + ezz) + Ξuexx . (6.245)

This relation is often referred to as the Herring–Vogt relation. In the case of the
configuration shown in Fig. 6.9, the deformation potential Dac for the longitudinal
acoustic phonon defined in Sect. 6.3.2 is given by

Table 6.1 Deformation potentials Ξu and Ξd in [eV] of many valley conduction bands for Si
(Δ-valley) and Ge (L–valley) (after Data Book of Landolt–Börnstein [9] and Fischetti [10])

Si Ge

Ξu 9.0 ± 2 16.3 (80K), 19.3 (4K)

Ξd �5, 1.1 [10] −12.3 (4K), −4.4 [10]

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. 6.9 Intra–valley scattering due to the deformation potential. k and k′ are the electron wave
vectors before and after scattering, respectively, q is thewave vector of the phonon (lattice vibration),
and θ is the angle between the phonon wave vector and the principal axis of a valley

Dac → DLA = Ξd + Ξu cos
2 θ . (6.246)

We have to note here that scattering by transverse acoustic phonons is allowed.
For transverse acoustic phonons with displacement vector u perpendicular to q and
parallel to the textbook, we find exx = ∂ux/∂x 	= 0. Noting that ux = u sin θ exp(iq ·
r), qx = q cos θ, we obtain the following relation:

Dac → DTA = Ξu sin θ cos θ . (6.247)

The above treatment is also valid for the conduction band valleys in Ge, which
consist of four equivalent valleys located at the L point in the [111] direction of the
Brillouin zone, and we may use the relation given by (6.244). Under the application
of a [111] uniaxial stress, the valley of [111] has a different energy state compared
to the other three valleys for the [1̄11], [11̄1] and [111̄] directions.

6.3.9 Theoretical Calculation of Deformation Potentials

The theoretical calculation of the interaction between electrons and phonons (lattice
vibrations) is realized by obtaining the effect of the potential energy on an electron
induced by the lattice vibrations. The deformation potential due to optical phonons
were calculated first by Pötz and Vogl [11], and later the deformation potentials for
various phonon modes in III-V semiconductors were calculated by Zollner et al. [12]
and the deformation potentials for intra-valley phonons and inter-valley phonons in
Si have been reported by Fischetti and Laux [13] and Mizuno et al. [14]. Although
various methods to calculate the deformation potentials have been reported, here
we will review the rigid-ionmodel, where a change in the potential energy due to
lattice displacements is the potential energy acting on an electron. It should be noted
here that the potential energy acting on an electron is calculated by summing up the
contributions from all atoms. Let us define the equilibrium position of an α atom in
the l-th unit cell by Rl,α and the displacement vector of the atom by ul,α. Then the
potential energy change due to lattice displacements is given by
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Hel-ph =
∑

l,α

[
Vα(r − Rl,α + ul,α) − Vα(r − Rl,α)

]

=
∑

l,α

ul,α · grad Vα(r − Rl,α) . (6.248)

The lattice displacement vector ul,α is given by (6.66)3

u( j)
l,α =

∑

q

√
�

2MαNω
( j)
q

(
aq + a†−q

)
e( j)
α (q)eiq·Rl,α , (6.249)

where e(q) is the unit vector of the lattice displacement vector and the superscript
( j) represents the mode of lattice vibration. When we put the atomic position vector
as Rl,α = Rl + τα, the Bloch theorem will give rise to the following relation:

〈k + q|grad Vα(r − Rl,α)|k〉
= e−iq·Rl 〈k + q|grad Vα(r − τα)|k〉 . (6.250)

Using the Fermi golden rule, the non-zero matrix elements for this potential energy
is given by

〈k ± q, nq ∓ 1|Hel-ph|k, nq〉

=
∑

α

√
�

2NMαω
( j)
q

Aα(k,±q) · e( j)
α (±q)

√

nq + 1

2
∓ 1

2
, (6.251)

where Aα(k,±q) is defined by

Aα(k,±q) = −〈k ± q|grad Vα(r − τ α)|k〉eiq·τα . (6.252)

In order to evaluate the above equations we use the electron wave function |k〉 calcu-
lated by the pseudopotential method discussed in Sect. 1.6 and the atomic potential
Vα(r) is obtained by using the Fourier transform. These are given below following
the definition of Cohen and Bergstresser [15]:

|k〉 = 1√
Ω

∑

G

Ck(G)ei(k+G)·r , (6.253)

Vα(r) = 1

2

∑

G

Vα(G)eiG·r , (6.254)

where Ω is the unit cell volume and the Fourier coefficient Vα(G) is given by

Vα(G) = 2

Ω

∫

Ω

d3rVα(r)e−iG·r . (6.255)

In the above definition, the potential energy is assumed to be periodic with respect
to atomic position and thus is expanded in reciprocal lattice vectors. However, it

3We have used here the relation:
∑

q a
†
−q exp(iq · Rl,α) = ∑

q a
†
q exp(−iq · Rl,α).

http://dx.doi.org/10.1007/978-3-319-66860-4_1
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should be pointed out that the potential energy Vα(r) includes contributions from the
displacement of atomic position due to lattice vibrations, resulting in non-periodic
function and that the potential energy Vα(r) cannot be expanded in reciprocal lattice
vectors. In the following analysis, the Fourier coefficient Vα(G) is assumed to be a
function of the quasi-continuous vector G such that Vα(G + q) is estimated from
the curve of Vα(G) versus G. Then the coefficient Aα(k, q) of (6.251) in given by

Aα(k, q) = − i

2

∑

G,G′
C∗

k+q(G
′)Ck(G)(G′ − G + q)Vα(G′ − G + q)

×e−i(G′−G)·τα , (6.256)

where it should be noted that Aα(k, q) is a vector.
Now, we define the deformation potential D( j)(q) by the following equation
∣∣〈k ± q, nq ∓ 1|Hel-ph|k, nq〉

∣∣

=
√

�

2NMω
( j)
q

D( j)(k,±q)

√

nq + 1

2
∓ 1

2
, (6.257)

and then we obtain

D( j)(k,±q) = √
M

∣∣∣∣
∑

α

1√
Mα

A(k,±q) · e( j)
α (±q)

∣∣∣∣ , (6.258)

where we have used the atomic mass defined by Conwell [6], M = ∑
α Mα. Since

there exist two atoms in a unit cell of Si, the above equation is written as

D( j)(k,±q) = √
2

∣
∣∣∣
∑

α

Aα(k,±q) · e( j)
α (±q)

∣
∣∣∣

= 1√
2

∣∣
∣∣
∑

α

∑

G,G′
C∗

k±q(G
′)Ck(G)e−i(G′−G)·τα

×
∑

G,G′
e−i(G′−G)Vα(G′ − G ± q)(G′ − G ± q) · e( j)

α (±q)

∣∣∣∣ . (6.259)

We find in (6.259) that the deformation potential has the dimensions of energy
/length (units of eV/cm) and from comparison with the deformation potential defini-
tion stated in Sects. 6.3.2, 6.3.5 and 6.3.7 it corresponds to the deformation potential
for optical phonon scattering or inter-valley phonon scattering. On the other hand, it
is evident that the deformation potential for acoustic phonon scattering is defined by

Ξ = lim
q→0

∣∣∣∣
D( j)(q)

q

∣∣∣∣ . (6.260)

The procedures for calculating the deformation potential form (6.259) is as fol-
lows.
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1. First, calculate the lattice vibrations and determine the angular frequency ω
( j)
q of

mode (i) and the eigenvector of the lattice displacement e( j)
α .

2. The energy band structure is calculated by using the pseudopotential method, for
example, to obtain Ck(G).

3. The quasi-continuous function Vα(q) in the region of q = 0 to the maximum
value of G is estimated from the values of the pseudopotentials Vα(G) used for
the energy band calculation.

4. Then, inserting these values in (6.259), the deformation potential D( j)(q) is cal-
culated as a function of the electron wave vector k and phonon wave vector.

Analysis of the lattice vibrations has been made by the shell model, the bond charge
model and so on [16–20]. The results shown in this section have been calculated by the
bond charge model of Weber et al. [19, 20]. Here we show two different approaches
for obtaining the quasi-continuous function Vα(q) from the pseudopotentials Vα(G).
These two approaches arise from the ambiguity of the value at q ∼ 0. One is to
approximateVα(0) by−(2/3)EF and extrapolateVα(q) by using the pseudopotentials
of Cohen and Bergstresser [15], where EF is the Fermi energy of the valence electrons
[21]. The othermethod is reported by Bednarek and Rössler [22], where Vα(0) = 0 is
assumed at q = 0. Quasi-continuous functions of V (q) obtained by the two methods
are compared in Fig. 6.10. In this book the pseudopotential curve of Bednarek and
Rössler [22] is used [23].

Now we will show the results of calculation of the deformation potentials for
inter-valley scattering and for acoustic phonon scattering in Si. In general, the
deformation potentials depend on the initial and final states of the electron and
also on the phonon mode and its wave vector, as seen in the theoretical analy-
sis. In Fig. 6.11a the deformation potentials for inter-valley scattering of f -type
phonons are plotted as a function of the angle θ between the principal axis and
the electron wave vector of the final state. A similar plot for g–type phonons
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Fig. 6.10 Pseudopotential curve of Si V (q) estimated from pseudopotentials of V (G) of Cohen
and Bergstresser [15]. Two approximation methods are compared: the method of Bednarek and
Rössler [22] and the method of Glembocki and Pollak [21]
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Fig. 6.11 Deformation potentials of Si for a f -type and b g–type inter-valley phonon scattering as
a function of the angle between the principal axis of the valley and the wave vector of the electron.
The inset shows the constant energy surface of the conduction band valleys in the (100) surface of
the Brillouin zone; the electron transition is indicated by an arrow

is shown in Fig. 6.11b. The inset of Fig. 6.11 represents the scattering direction
of the electron. In the calculations, the initial state of the electron is fixed at
ki = (0.85 − 0.098, 0, 0) and the final states are taken to be on the constant energy
curve of E = 50meV given by (a) kf = (0.043 sin θ, 0.85− 0.098 cos θ, 0), and (b)
kf = (−0.85 + 0.098 cos θ, 0.043 sin θ, 0).

From the calculations we find that f -type deformation potentials for longitudinal
optical (LO) phonons and longitudinal acoustic (LA) phonons play a role in the inter-
valley phonon scattering and that the other deformation potentials such as transverse
optical (TO) and transverse acoustic (TA) phonons are very weak, enabling us to
neglect their contribution to electron scattering. In the case of g–type inter-valley
phonon scattering, the deformation potential of LO phonons has a large value and
the others are very small. The g–type deformation potentials for TO and TA phonons
at the symmetry points at θ = 0 and 180◦ are zero, but they have finite values at
other angles, resulting in a weak contribution to the electron scattering.

Next, we will show the calculated results on deformation potentials for intra-
valley phonon scattering by the solid curves in Fig. 6.12. As expected and stated
before, the valley minima do not exist at the Γ point but along the Δ axis near the
X point, and therefore not only LA phonons but also TA phonons take part in the
intra-valley scattering. The dotted curve is calculated from the Herring–Vogt relation
stated in Sect. 6.3.8, where we put Ξu = 10.0eV and Ξd = −11.5eV in (6.246) and
(6.247), and the dotted curve shows good agreement with the deformation potential
calculation.
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Fig. 6.12 Deformation potentials of Si for intra-valley phonon scattering calculated as a function
of the angle θ between the phonon wave vector and the principal axis of the valley. The dotted
curve is obtained from the theoretical relation of Herring and Vogt [8] by putting Ξu = 10.0 eV
and Ξd = −11.5 eV in (6.246) and (6.247)

6.3.10 Electron–Electron Interaction and Plasmon
Scattering

In this section we will deal with electron–electron interactions such as screening by
electrons, electron–electron scattering and plasmon scattering. In the calculations the
theory of field quantization is required and the treatment is beyond the purpose of this
book. In the following we will show how to derive the dielectric function for many
electrons but the details will not be given. However, the outline of the derivation is
given in Appendix E. Readers who are interested in a more detailed treatment should
refer to the books of Haug and Koch [24], Maham [25], and Ferry and Grondin [26].

In semiconductors with a high electron density, screening by the electron plasma
plays an important role in the dielectric constant. The random phase approximation
(RPA) leads us to obtain the dielectric function given by the following relation as
shown in Appendix E (see also Haug and Koch [24]).

κ(q,ω) = 1 − V (q)
∑

k

f (k − q) − f (k)
�ω + iΓ + E(k − q) − E(k)

= 1 − e2

ε0q2L3

∑

k

f (k − q) − f (k)
�ω + iΓ + E(k − q) − E(k)

. (6.261)

This relation was first derived by Lindhard [27] and is called the Lindhard formula.
It can easily be shown that this equation in the limit of q → 0 reduces to the dielectric
function obtained from classical theory. Let us assume Γ = 0 for simplicity and
expand the second term on the right-hand side of (6.261) in q assuming the limit of
q → 0. In the following we assume that the electrons are described by a parabolic
band with an isotropic effective mass m. Then we obtain
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E(k − q) − E(k) = �
2

2m
(k2 − 2k · q + q2) − �

2k2

2m

� −�
2k · q
m

, (6.262)

f (k − q) − f (k) = f (k) − q · ∇k f (k) + · · · − f (k)

� −q · ∇k f (k) . (6.263)

Using these relations in (6.261) we obtain

κ(0,ω) = 1 − V (q)
∑

k,i

qi (∂ f/∂ki )

�ω − �2k · q/m

� 1 − V (q)

�ω

∑

k,i

qi
∂ f

∂ki

[
1 + �k · q

mω

]
, (6.264)

wherewe putω(q → 0) = ω0. The summation of the first term on the right-hand side
of the above equation

∑
∂ f/∂ki will disappear because of the distribution function

f in the limit of k → ∞, and finally we obtain

κ(0,ω) = 1 + V (q)

�ω

∑

k,i

qi
∂ f

∂ki

�k · q
mω

. (6.265)

We change the summation
∑

k of the above equation into the integral 2/(2π)3
∫
dkx

dkydkz and integrate by parts, and then rewrite it in the form of
∑

k, resulting in the
relation

κ(0,ω) = 1 − V (q)
q2

mω2

∑

k

f (k) = 1 − V (q)
q2Ne

mω2
= 1 − e2

ε0q2L3

q2Ne

mω2

= 1 − κ∞
ω2
p

ω2
, (6.266)

where we have applied (6.158) to the Coulomb potential of electrons and used the
relation V (q) = e2/ε0L3q2. We used the relation

∑
f (k) = Ne = L3n, where Ne

is the total number of electrons and n is the density of electrons. When we define the
plasma frequency ωp by

ω2
p ≡ e2n

κ∞ε0m
, (6.267)

the angular frequency ωp agrees with the plasma frequency defined by (5.159). Now,
we replace the 1 of the first term on the right-hand side of (6.261) or (6.266) with
the background dielectric constant κ∞, and finally we obtain

κ(0,ω) = κ∞

[

1 − ω2
p

ω2

]

, (6.268)

http://dx.doi.org/10.1007/978-3-319-66860-4_5
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where we find that the result is equivalent to (5.161).
The static dielectric constant including the screening effect is obtained by putting

�ω + iΓ → 0 as

κ(q, 0) = 1 − V (q)
∑

k

f (k − q) − f (k)
E(k − q) − E(k)

. (6.269)

This is easily estimated by using the Fermi–Dirac distribution function

f (k) = 1

e(E(k)−μ)/kBT + 1
, (6.270)

where μ is the chemical potential, and the chemical potential at T = 0 is equal to
the Fermi energy EF (μ(T = 0) = EF). When we use the relation

∑

i

qi
∂ f (k)
∂ki

= −
∑

i

qi
∂ f (k)

∂μ

∂E(k)
∂ki

= −
∑

i

qi ki
�
2

m

∂ f (k)
∂μ

, (6.271)

we obtain

κ(q, 0) = κ0 + e2

ε0q2

∂

∂μ

1

L3

∑

k

f (k)

= κ0 + e2

ε0q2

∂n

∂μ
≡ κ0

(
1 + q2

s

q2

)
, (6.272)

where qs is given by

qs ≡ 1

λs
=

√
e2

κ0ε0

∂n

∂μ
(6.273)

and is called the inverse of the screening lengthλs. The potential with static screening
is written as

Vs(q, 0) = V (q)

κ(q, 0)
= e2

κ0ε0L3

1

q2 + q2
s

(6.274)

and its Fourier transform gives the following relation:

Vs(r) =
∑

q

e2

κ0ε0L3

1

q2 + q2
s

eiq·r = e2

4πκ0ε0r
e−qs·r . (6.275)

This result coincides with the expressions (6.161) and (6.165) for electron scattering
by screened ionized impurities given in Sect. 6.3.3 except for the screening length.
Therefore, we will be concerned with the screening length in the following.

http://dx.doi.org/10.1007/978-3-319-66860-4_5


6.3 Scattering Probability and Transition Matrix Element 319

The Fermi energy in a degenerate material is given by (6.110). Putting EF = μ,
we obtain

∂n

∂μ
= 3

2

n

EF , (6.276)

and thus the inverse of the screening length is given by

qs =
√

3e2n

2κ0ε0EF ≡ qTF . (6.277)

The quantity qTF is called theThomas–Fermi screening wavenumber. On the other
hand, in a non-degenerate semiconductor, the Fermi-Dirac distribution function is
approximated by the Boltzmann distribution function, so that the electron density is
given by n = Nc exp[−(Ec − EF)/kBT ], where Nc is the effective density of states
of the conduction band. Therefore, we find

∂μ

∂n
= kBT

n
, (6.278)

and the screening wavenumber is given by

qs =
√

e2n

κ0ε0kBT
≡ qDH , (6.279)

where qDH is called the Debye–Hückel screening wavenumber or the inverse of the
Debye screening length, which corresponds to (6.162) and is used to take account
of the screening effect on ionized impurity scattering.

Next, we derive the scattering rate of an electron by other electrons or holes, where
the screening effect is properly taken into account. Let us define the position vectors
of the i-th electron and the j-th electron (or hole) by r i and r j , respectively. Then
the interaction energy of these particles Vee(r i − r j ) is Fourier transformed to give
the following result, where we use (6.166):

Vee(q) = e2

ε0L3

∑

i 	= j

∑

q

exp[−iq · (r i − r j )]
q2

. (6.280)

The electron–electron interaction is analyzed by classifying the interaction into two
cases by using a cut-off wavenumber qc. In the case of a short-range interaction,
q > qc, the interaction may be treated as two-particle scattering in a screened
Coulomb potential. On the other hand, in the case of long-range scattering, q < qc,
the interaction is regarded as electron scattering by the collective excitation of elec-
trons (or holes), the plasmon. In the latter case, the plasmon exhibits a coupling to
LO phonons and in this case we have to take into account the electron scattering
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by LO-phonon coupled plasmons. The cut-off wavenumber may be taken to be the
screening wavenumber qs derived above, the Thomas-Fermi screening wavenumber
qTF or the Debye Hückel screening wavenumber qDH.

First, we will consider the long-range interaction. Here we will drive the Hamil-
tonian for the interaction between the electron and the plasmon following the treat-
ment of Kittel [28]. In this analysis we use the approximation of a continuous model,
where there are n electrons in a unit volume and the positive charges of the immo-
bile ions are distributed uniformly in the background, preserving charge neutrality
(|e|ρ0 = n|e|). For simplicity we neglect the energy change of ions due to the dis-
placement of ions. The Hamiltonian density is therefore given by

H = �
2

2 nm
p j p j + 1

2
e(ρ − ρ0)V (r) , (6.281)

where nm is the mass density of the gas and the factor 1/2 in the second term on the
right-hand side is used to equate the static energy with the free energy of the electron
gas. The static potential is obtained from Poisson’s equation as

∇2V = − 1

ε∞
e(ρ − ρ0) , (6.282)

where the background dielectric constant κ∞ε0 = ε∞ is taken into account. The
change in the charge density δρ = (ρ − ρ0) due to the local volume change of
electrons is given by

δρ

ρ
= −Δ(r) , (6.283)

where Δ is the volume change. This leads to the following relation:

δρ = −ρΔ = −n
∂R j

∂r j
, (6.284)

where R j is the j-th component of the displacement. As shown in Sect. 5.5, the
plasma oscillation is a longitudinal oscillation, Qq ‖ k, and we obtain

R(r) =
∑

q

Qqe
iq·r , (6.285)

δρ = −in
∑

q

qQqe
iq·r . (6.286)

The Fourier transform of the potential V (r) is easily obtained and we may write

V (r) =
∑

q

Vqe
iq·r , (6.287)

http://dx.doi.org/10.1007/978-3-319-66860-4_5


6.3 Scattering Probability and Transition Matrix Element 321

and so we find that

∇2V (r) = −
∑

q

q2Vqe
iq·r . (6.288)

Therefore, Poisson’s equation may be rewritten as

Vq = i
ne

ε∞
1

q
Qq . (6.289)

Using these relations the static potential term of (6.281) is calculated to give the
following result:

1

L3

∫
d3r

1

2
e(ρ − ρ0)V (r) =

∑

q,q ′

∫
d3r

n2e2

2ε∞
QqQq ′ei(q−q ′)·r k

k ′

= n2e2

2ε∞

∑

q

QqQ−q . (6.290)

Therefore, the Hamiltonian for the plasmon is written as (in the following treatment
is exactly the same as in Sect. 6.1.2)

H =
∑

q

[
�
2

2 nm∗ PqP−q + n2e2

2ε∞
QqQ−q

]

=
∑

q

[
�
2

2 nm∗ PqP−q + nm∗

2
ω2

pQqQ−q

]
. (6.291)

Following the treatment of Sect. 6.1.2, (6.55a), (6.55b) and (6.56) are also derived
by putting M → nm∗ and ωq → ωp. For example, Qq is given by

Qq =
√

�

2L3 nm∗ωp
(aq + a†−q) . (6.292)

The Hamiltonian for the electron–plasmon interaction is written as

He-pl = −eV (r) = −e
∑

q

Vqe
iq·r = −i

∑

q

ne2

ε∞
1

q
Qqe

iq·r

= −i
∑

q

ne2

ε∞
1

q

√
�

2nL3m∗ωp

(
aqe

iq·r + a†−qe
−iq·r

)

= −i
∑

q

1√
L3

e√
2ε∞

√
�ωp

1

q

(
aqe

iq·r + a†−qe
−iq·r

)
, (6.293)

where the relation ne2/ε∞m∗ = ω2
p is used. Using this result, the matrix element for

electron scattering by plasmons is given by
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∣∣M(k, k′)
∣∣2 = e2

2ε∞L3
�ωp

1

q2

(
np + 1

2
∓ 1

2

)
δk′,k±q , (6.294)

where np is the excitation number of a plasmon with energy �ωp and is given by
Bose–Einstein statistics as

np = 1

exp(�ωp/kBT ) − 1
.

The scattering rate for the electron–plasmon interaction is

wpl = 2π

�

∑

k′

∣∣M(k, k′)
∣∣2 δ

(E(k′) − E(k) ∓ �ωp
)

. (6.295)

Using the relation δk′,k∓q and putting q2 = k ′2 + k2 − 2kk ′ cos θ (θ is the angle
between k′ and k), and replacing the summation with respect to k′ by the integral

∑

k′
= L3

(2π)3

∫
d3k′ = L3

(2π)3

∫
2πk ′2dk ′

∫
d(cos θ) , (6.296)

we obtain the following results for the upper limit of the integral qc. For cos(θ) = ∓1
we put

q2
max = k ′2 + k2 + 2k ′k = (k ′ + k)2 = q2

c , (6.297)

q2
min = k ′2 + k2 − 2k ′k = (k ′ − k)2 , (6.298)

which give the following result:
∫ +1

−1

1

q2
d(cos θ) =

∫ 1

−1

1

k ′2 + k2 − 2k ′k cos θ
d(cos θ)

= − 1

2k ′k
ln

(k ′ − k)2

(k ′ + k)2
= 1

k ′k
ln

qmax

qmin
. (6.299)

From these results we obtain the scattering rate for the electron–plasmon interaction
as

wpl = e2

4π�ε∞

√
2m∗

�2

�ωp√E(k)

(
np + 1

2
∓ 1

2

)
ln

(
qmax

qmin

)
, (6.300)

where a parabolic energy band structure, E(k) = �
2k2/2m∗, with scalar effective

mass m∗ is assumed. The upper limit of the integral qmax is taken to be qc, which
is given by the Thomas–Fermi screening wavenumber qTF or the Debye–Hückel
screening wavenumber qDH. Using
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qmin = k

∣∣∣
∣∣
1 −

√

1 ± �ωp

E(k)

∣∣∣
∣∣
≡ k

∣∣1 − √
η±

∣∣ , (6.301)

qmax ≡ qc = qTF (qDH) , (6.302)

Equation (6.300) is rewritten as

wpl = e2

4π�ε∞

√
2m∗

�2

�ωp√E(k)
×

[
np ln

(
qc

k
√

η+ − k

)

+(np + 1) ln

(
qc

k − k
√

η−

)
u(η−)

]
, (6.303)

where η± = 1 ± �ωp/E(k), u(η−) = 1 (η− ≥ 0), and u(η−) = 0 (η− < 0).
Next we deal with the short-range interaction q > qc. In this case the electron–

electron or electron–hole interaction is described by scattering due to a screened
Coulomb potential. We assume that the distance between an electron and its coun-
terpart particle, electron or hole, is given by r . As stated in Sect. 6.3.3, the screened
Coulomb potential is given by

φ(r) = e2

4πκ0ε0

exp(−qsr)

r
, (6.304)

where qs is the Thomas-Fermi screening wavenumber (inverse of the Thomas–Fermi
screening length). Defining thewave vectors of an electron by k and of its counterpart
electron or hole by k j , the transition matrix element of the collision is written as (see
(6.165) for derivation)

M(k, k′) = 〈k′, k′
j |φ(r)|k, k j 〉

= e2

κ0ε0L3

1

|k′ − k|2 + q2
s

δk′+k′
j ,k+k j

. (6.305)

Finally, we obtain the scattering rate for electron with wave vector k for electron–
electron or electron–hole scattering given by the following relation

we-j(k) =
∑

k j

∑

k′

∑

k′
j

2π

�
|M |2 f j (k j )

×δ(E(k′) + E(k′
j ) − E(k) − E(k j )) , (6.306)

where f j (k j ) is the distribution function of the counterpart carriers.

6.3.11 Alloy Scattering

In a compound semiconductor consisting of three or more elements, each of the
three elements is expected not to be periodic in the crystal. As an example let us
consider a three-element compound semiconductor such as AxB1−xC; the crystal is
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usually assumed to consist of (AC)x and (BC)1−x on average in the ratio x : (1− x).
Under this assumption the energy band structure of AxB1−xC is calculated with
the average lattice constant and average pseudopotentials estimated from the ratio
x : (1−x) and the result has been shown to agreewell with experimental observation.
This assumption is called the virtual-crystal approximation. This approximation
is based on the assumption that the atoms A and B are distributed uniformly in the
ratio x : (1 − x) around the cation C. In real alloy compounds it is expected that
the distribution is not uniform. This non-uniformity results in a local variation of the
periodic potential and thus in electron scattering due to the non-uniform potential.
This scattering is called alloy scattering. (Readers are recommended to refer to as
the book of Ridley on alloy scattering [5].)

The alloy potential is Fourier transformed as

Valloy(r) =
∑

q

Valloy(q) exp(iq · r) . (6.307)

The Fourier coefficient Valloy(q) is taken to be the root-mean square of the shift
from the average energy and assumed to be independent of q. Defining the Fourier
coefficients for the A and B atoms by Va and Vb, the average potential of the Fourier
coefficients is given by

V0 = Vax + Vb(1 − x) . (6.308)

When the occupation of atom A is changed from x to x ′, the change in the potential
is given by

V ′ − V0 = (Va − Vb)(x
′ − x) . (6.309)

Therefore, the root-mean square value of the potential difference is given by

|〈V ′ − V0〉| = |Va − Vb|
[
x(1 − x)

Nc

]1/2
, (6.310)

where Nc is the number of cations C and corresponds to the unit cell number. The
matrix element for the scattering is then written as

〈k′|H ′|k〉 = |Va − Vb|
[
x(1 − x)

Nc

]1/2
δk±q,k′ , (6.311)

where Ω = L3/Nc is the unit cell volume and the scattering rate is given by

walloy(k) = 2π

�
(Va − Vb)

2Ωx(1 − x)
∑

k

δ[E(k ± q) − E(k)] . (6.312)
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Since
∑

k δ[E(k ± q) − E(k)] is the density of states, we rewrite it as follows

walloy(k) = 2π

�
(Va − Vb)

2Ωx(1 − x) × 2π

(2π)3

(2m∗)3/2

�3

√
E(k) ,

= (Va − Vb)
2x(1 − x)Ω

(2m∗)2/3

2π�4

√
E(k) (6.313)

As shown above, alloy scattering depends on |Va−Vb|, but its value is not uniquely
determined. The value depends on many factors such as the non-uniformity of the
pseudopotentials, the symmetry of the conduction band, the electron affinity and so
on, leading us to a difficulty in its determination. Instead, the value |Va − Vb| is used
as a fitting parameter to get a good agreement of the calculated mobility with the
experimental mobility.

6.4 Scattering Rate and Relaxation Time

We have to note that the scattering time (the inverse of the scattering rate) differs
from the relaxation time for the reasons stated below. The scattering rate w(k) is
determined by summing all the possible finite states k′ of electron scattering from
an initial state k to a final state k′, and is defined by

w(k) =
∑

k′
P(k, k′) , (6.314)

where P(k, k′) is the transition rate of an electron from the initial state k to final
state k′ and is given by

P(k, k′) = 2π

�

∣
∣〈k′|H1|k〉

∣
∣2 δ(Ef − Ei)

= 2π

�
|M(k, k′)|2δ(E(k′) − E(k) ∓ �ωq) . (6.315)

The scattering rate and relaxation time are often expressed as a function of the
electron energy. When a parabolic band with isotropic effective mass or an ellipsoid
is assumed, the electron energy E is expressed as

E(k) = �
2k2

2m∗ , (6.316)

E(k) = �
2

2m t
(k2x + k2y) + �

2

2m l
k2z . (6.317)

The energy band structure exhibits a non-parabolic behavior in some cases and the
behavior is well expressed by (2.97):

�
2k2

2m∗
0

≡ γ(E) = E
(
1 + E

EG

)
. (6.318)

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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In any case, the electron energy E is expressed as a function of the wave vector k. In
the following, the scattering rates for various scattering mechanisms are calculated
by assuming a parabolic band with an isotropic effective mass.

On the other hand, the relaxation time is defined by (6.94) for the case of elas-
tic scattering and depends on the scattering angle θ, resulting in a difference by a
factor (1 − cos θ) from the scattering rate. In this section we deal with calculations
of the scattering rates and relaxation times for various types of scatterings. First,
we discuss the changes in the wave vector and the energy of an electron caused by
scattering, assuming the momentum and the energy conservation rules. The collision
term (d f/dt)coll, which is the change in the distribution function induced by scat-
tering, is given by (6.80) with electron scattering probability P(k, k′). By replacing
the sum over k by an integral, we obtain

(
d f

dt

)

coll

=
∑

k′

{
P(k′, k) f (k′)[1 − f (k)] − P(k, k′) f (k)[1 − f (k′)]}

= L3

(2π)3

∫
d3k′ {P(k′, k) f (k′)[1 − f (k)]

−P(k, k′) f (k)[1 − f (k′)]} . (6.319)

We have shown that the relaxation time τ is defined by (6.85) from the above relation.
The collision term (d f/dt)coll may be calculated using the result for matrix elements
calculated in the previous section, and thus the relaxation time τ (k) is evaluated. In
general, the matrix element for the electron–phonon interaction is written as

|M(k, k′)|2 = A(q) ×
{
nq (phonon absorption) ,
nq + 1 (phonon emission) .

(6.320)

It is evident that the matrix element for plasmon scattering is expressed in the same
way. In the case of ionized impurity scattering, however, there exists no term related
to nq but instead the elastic scattering condition gives rise to q = |k′ − k| and
E(k′) = E(k).

In the case of phonon scattering, there are four terms corresponding to transition:
(1) from initial state k + q to final state k by emitting a phonon, (2) from k state
to k + q state by absorbing a phonon, (3) from k state to k − q state by emitting
a phonon, and (4) from k − q state to k state by absorbing a phonon. Therefore,
(6.319) should be rewritten as

(
d f

dt

)

coll

= 2π

�

∑

q

A(q)

{
(nq + 1) f (k + q)[1 − f (k)]

−nq f (k)[1 − f (k + q)] − (nq + 1) f (k)[1 − f (k − q)]
+nq f (k − q)[1 − f (k)]

}
δ
{E(k′) − E(k) ∓ �ωq

}
, (6.321)

where the summation over k′ is replaced by a summation over q using the relation
k′ = k ± q. When the electron distribution function is approximated by Maxwell–
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Boltzmann statistics, we may put f (k ± q) � 1 and f (k) � 1, and then we have
(
d f

dt

)

coll

= 2π

�

∑

q

A(q)
{
(nq + 1)

[
f (k + q) − f (k)

]

+nq
[
f (k − q) − f (k)

]}
δ
{E(k ± q) − E(k) ∓ �ωq

}
. (6.322)

Calculation of the above equation is carried out by using the δ-function. The terms
δk′,k±q in thematrix element and δ[E(k±q)−E(k)∓�ωq ] in the transition probability
represent the momentum conservation and energy conservation rules, respectively.
These relations may be written in the form:

k′ = k ± q , (6.323)

E(k′) = E(k) ± �ωq . (6.324)

Here we assume a parabolic band with isotropic scalar effective mass m∗, and so
these relations lead to

�
2

2m∗ (k ± q)2 = �
2

2m∗ k
2 ± �ωq . (6.325)

When we define the angle between k and q by θ as shown in Fig. 6.13, we obtain

±2kq cosβ + q2 = ±2m∗ωq

�
. (6.326)

For acoustic phonons the relation ωq = vsq (vs is the velocity of sound) holds, and
we find

q = 2k

(
∓ cosβ ± m∗vs

�k

)
. (6.327)

Fig. 6.13 Electron wave
vectors before and after
scattering with phonon
absorption and emission.
The solid curves are
calculated assuming
m∗vs/�k = vs/vth = 0.1
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k
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Table 6.2 Allowed range of phonon wave vectors q for electron–phonon scattering

(a) Long wavelength phonon

Absorption Emission

qmax 2k

(
1 + m∗vs

�k

)
2k

(
1 − m∗vs

�k

)

qmin 0 0

(b) High energy phonon (optical phonon)

Absorption Emission

qmax k

[(
1 + �ω0

E

)1/2

+ 1

]

k

[

1 +
(
1 − �ω0

E

)1/2
]

qmin k

[(
1 + �ω0

E

)1/2

− 1

]

k

[

1 −
(
1 − �ω0

E

)1/2
]

Let us examine the magnitude of the second term in the brackets on the right-
hand side of (6.327). The thermal velocity of the electrons vth is estimated to be
vth � 2.5 × 107 cm/s at room temperature. When we assume �k ∼ m∗vth, we find
vs � 5 × 105 cm/s and thus m∗vs/�k ∼ 2 × 10−2, resulting in a small value at
room temperature. The allowed values of q range from 0 to 2k(1 ± m∗vs/�k) from
(6.327), which are summarized in Table6.2 for the long-wavelength phonon case
together with the results for optical phonon scattering (high-energy phonon case).

The solid inner and outer curves of Fig. 6.13 show the scattered electron wave
vector k′ in the x, y plane for phonon emission and phonon absorption, respectively,
where the curves are calculated assuming that m∗vs/�k = 0.1 and that the initial
electron wave vector is directed along the x axis. The dotted curve represents k′ for
the case of �ωq = 0, which corresponds to elastic scattering. It is seen in Fig. 6.13
that the wave vectors after scattering are distributed along almost circularly shaped
curve and when m∗vs/�k � 1 is fulfilled, the scattering may be treated as elastic
scattering.

On the other hand, in the case of optical phonon scattering or inter–valley phonon
scattering, �ωq cannot be neglected compared to E = �

2k2/2m∗. In the latter case
we obtain the following relation from (6.326) (where we put ωq = ω0):

(q − k cosβ)2 = k2
(
cos2 β ± �ω0

E
)

, (6.328)

which gives the results for the range of q, qmin and qmax, summarized in Table6.2.
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6.4.1 Acoustic Phonon Scattering

In the case of electron–acoustic phonon scattering, the associated acoustic phonon
energy is quite small.When the condition �ωq/kBT � 1 is fulfilled, wemay approx-
imate nq � nq + 1 � kBT/�ωq = kBT/�vsq, and then (6.154) and (6.156) lead to

A(q)

(
nq + 1

2
∓ 1

2

)
= D2

acq
2 �

2L3ρωq

kBT

�vsq
= D2

ackBT

2L3ρv2
s

, (6.329)

where we put NM = L3ρ for crystal density ρ. As shown in Fig. 6.14, we define the
angle between the electron wave vector k (k′) and the electric field E by θ (θ′). The
summation or integral with respect to k′ is replaced by an integral over q by using
the Kronecker δ-function in the matrix element, which may be expressed as

∑

k′
→

∑

q

→ L3

(2π)3

∫ 2π

0
dϕ

∫ π

0
sin βdβ

∫ qmax

qmin

q2dq . (6.330)

Therefore, the scattering rate wac(k) is given by the following relation:

wac(k) =
∑

k′
P(k, k′)

= L3

(2π)3

2π

�

∫
A(q)

(
nq + 1

2
∓ 1

2

)
q2 sin βdβdϕdq

×δ
[E(k′) − E(k) ∓ �ωq

]

= L3

(2π)3

(2π)2

�

∫ 2k

0

D2
ackBT

2L3ρv2
s

dq
∫

d(− cosβ)

×δ

[
�
2

2m∗ (2kq cosβ + q2) ± �ωq)

]
. (6.331)

We should note here that the ± sign in the δ-function represents phonon emission
and absorption. Here we use the property of the δ-function given by

δ(Ax) = 1

A
δ(x) (A > 0) .

The scattering rate for acoustic phonon scattering is then given by

wac = D2
ackBT

2π�ρv2
s

∫ 2k

0
q2 m∗

�2kq
dq = D2

ackBT

2π�ρv2
s

m∗

�2k

∫ 2k

0
qdq

= D2
acm

∗kBT
π�3ρv2

s

k = (2m∗)3/2D2
ackBT

2π�4ρv2
s

E1/2 . (6.332)

Next, following the process used to derive (6.94), we calculate the relaxation time
τac for acoustic phonon scattering from (6.322). Equation (6.322) is rewritten as
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Fig. 6.14 Relation of the
angles between initial
electron wave vector k,
phonon wave vector q, and
scattered electron wave
vector k′

z

x

y

E

k

k '
q

β
θk

θ ' θ

ϕ

1

τac
= L3

(2π)3

∫
P(k, k′)

(
1 − k ′ cos θ′

k cos θ

)
d3q

= L3

(2π)3
· 2π

�

∫
A(q)

{
(nq + 1)δ

[E(k′) − E(k) + �ωq
]

+nqδ
[E(k′) − E(k) − �ωq

]}

×
(
1 − k ′cosθ′

k cos θ

)
dϕ · sin βdβ · q2dq . (6.333)

Referring to the vectors shown in Fig. 6.14, we find the following relation:

k ′ cos θ′ = k cos θ − (q cosβ cos θ + q sin β sin θ cosϕ) . (6.334)

Inserting this into (6.333), integrating over ϕ, and using the relation∫ 2π
0 cosϕdϕ = 0, we obtain for the relaxation time

1

τac
= L3

(2π)3
· 2π

�
· 2π

∫ π

β=0

∫ qmax

qmin

q

k
A(q)q2 cosβ sin βdβdq

× {
(nq + 1)δ

[E(k′) − E(k) + �ωq
]

+ nqδ
[E(k′) − E(k) − �ωq

]}
. (6.335)

The integral in the above equation may be easily evaluated out by using the property
of δ-function as shown below. Here we define a new variable

y = Ef − Ei = �
2

2m∗ (2kq cosβ + q2) ± �ωq , (6.336)

which gives

dy = �
2

2m∗ 2kq sin βdβ = �
2

m∗ kq sin βdβ . (6.337)

Then the integral with respect to β is written as

∫ π

β=0
cosβ sin βdβ

{
(nq + 1)δ(ye) + nqδ(ya)

}
, (6.338)
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where ye corresponds to phonon emission (+ sign in (6.336)) and ya to phonon
absorption (− sign in (6.336)). From these relations we obtain

∫ π

β=0
cosβ sin βdβ · δ(y) = m∗

�2kq

∫
cosβdy · δ(y) = m∗

�2kq
cosβ . (6.339)

The value of cosβ is determined from (6.326) by putting y = 0 (arising from the
term dyδ(y)). The relaxation time then becomes

1

τac
= L3

2π�

∫ qmax

qmin

1

k
A(q)

{
(nq + 1)

(
q

2k
+ m∗vs

�k

)

+ nq

(
q

2k
− m∗vs

�k

)}
m∗q2

�2k
dq . (6.340)

Using (6.154) and (6.156), evaluating A(q) from (6.320), and putting q/2k �
m∗vs/�k, nq + 1 ≈ nq ≈ kBT/�ωq and ωq = vsq, the relaxation time for acoustic
phonon scattering is given by (integrate from qmin = 0 to qmax = 2k)

1

τac
= m∗D2

ac

4πρ�22k3
· 2kBT

�v2
s

· (2k)4

4
= D2

acm
∗kBT

π�3ρv2
s

k

= (2m∗)3/2D2
ackBT

2π�4ρv2
s

E1/2 , (6.341)

where ρ = NM/L3 is the crystal density, ρv2
s = c11 for pure longitudinal acoustic

waves and c11 is the elastic constant. The scalar effective massm∗ is to be understood
as the density of states mass m∗

d = (m lm2
t )

1/3 for ellipsoidal energy surface like in
Si and Ge. When we cannot approximate as nq ≈ kBT/�ωq (equipartition is not
valid), the calculation of the relaxation time is complicated but the result has been
obtained by Conwell and Brown [29]. Now, comparing the result of the inverse of the
relaxation time with the scattering rate of (6.332), we find that both are equivalent,
and thus in the case of acoustic phonon scattering (except in the low temperature
range) the following relation holds:

wac(E) = 1

τac(E)
. (6.342)

This conclusion may be understood from the fact that the scattering is elastic and
isotropic as shown in Fig. 6.13 in the case of m∗vs/�k � 1.

The mean-free path lac of electrons for acoustic phonon scattering is defined by

1

τac
= v

lac
, (6.343)

and it is evaluated as

lac = π�
4ρv2

s

m∗2D2
ackBT

. (6.344)
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The above result is obtained for an isotropic scalar effective mass. For an ellipsoidal
conduction band the result should be modified by replacing m∗ with the effective
density of mass m∗

d = (m2
tm l)

1/3. In many–valley semiconductors such as Ge and
Si, however, the deformation potentials are expressed by (6.246) and (6.247) of
Sect. 6.3.8 and the elastic constants (and thus the velocity of sound) are anisotropic,
and therefore the relaxation time becomes very complicated, as shown by Herring
andVogt [8]. In the followingwe calculate the scattering rates or inverse of relaxation
times at room temperature T = 300 K by using the following material parameters
given in Table6.3. It should be noted here that various values of material parameters
have been reported and thus the calculated results are subject to change with the
choice of the parameters (see also Table6.1). The sound velocity depends on the
propagation direction and quasi–longitudinal waves will take part in the electron–
acoustic wave interaction. The anisotropy of the quasi–longitudinal acoustic waves
is about 10%. Therefore for simplicity, the acoustic weaves are assumed to be pure
longitudinal (ρv2

s = c11) and the numerical evaluations of the scattering rate and
mobility are carried out by assuming the pure longitudinal acoustic waves.

Table 6.3 Material parameters used to calculate transport properties of Si, Ge, GaAs, and InAs

Si Ge GaAs InAs

Transverse effective mass: mt/m 0.19 0.082 – –

Longitudinal effective mass: ml/m 0.98 1.58 – –

Density of states mass: md 0.3283 0.2198 – –

Conductivity effective mass: mc 0.2598 0.1199 – –

Effective mass: m∗/m – – 0.067 0.022

Static dielectric constant: κ0 12.0 16.0 12.90 15.15

High frequency dielectric constant: κ∞ – – 10.92 12.25

Longitudinal optical phonon energy: �ωLO(Γ25′ ) [meV] 64.35 37.30 35.36 29.58

Transverse optical phonon energy: �ωTO(Γ25′ ) [meV] 64.35 37.30 33.17 26.94

Mass density: ρ [103 kg/m3] 2.332 5.323 5.36 5.71

Elastic constant: c11 [1010 N/m2] 16.58 12.853 11.76 8.329

Elastic constant: c12 [1010 N/m2] 6.39 4.826 5.27 4.526

Elastic constant: c44 [1010 N/m2] 7.96 6.680 5.96 3.959

Longitudinal sound velocity: vl (LA) [103 m/s] 8.432 4.914 4.684 3.819

Transverse sound velocity: vt (TA) [103 m/s] 5.842 3.543 3.335 2.509

Dilational deformation potential Ξd [eV] �5 −12.3 – –

Uniaxial deformation potential: Ξu [eV] 9.2 16.3 – –

Deformation potential (averaged): Ξl
† [eV] (14.5) (5.91)

Deformation potential used for mobility analysis:Ξ [eV] 9.0 11.5 14.0 4.9

Piezoelectric constant: e14 [C/m2] – – 0.160 0.045
†Ξl is the average value for longitudinal acoustic waves calculated by the relation of Herring and
Vogt.
(see C. Herring and E. Vogt, Phys. Rev. 101, (1956) 944)
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Scattering rates 1/τac for Si and Ge are shown in Figs. 6.15 and 6.16, respectively,
and the rates are 1 ∼ 2 × 1013 [1/s] for electron energy ∼0.5 [eV]. In Fig. 6.16
scattering rates for the deformation potential Ξ = 11.5 [eV] are also plotted. This
deformation potential is estimated to give the electron mobility in n–Ge μac+op =
3800 [cm2/Vs] at 300 [K] as shown in Fig. 6.27, in which acoustic phonon scattering
and optical phonon scattering are taken into account as described in Sect. 6.5.2 (see
Fig. 6.27) and similarly the deformation potential Ξ = 9.0 is determined from the
comparison of the calculated electron mobility due to acoustic deformation potential
and interband phonon scatterings with the experimental results μ = 1450 [cm2/Vs]
as discussed later.

Fig. 6.15 Scattering rates w = 1/τac for deformation potential-type acoustic phonon scattering in
Si are plotted as a function of electron energy at T = 300 K. The deformation potentials used in
the calculation are Ξd = 5 and Dac = 14.2 [eV]. Ξ = 9.0 eV is determined from the mobility
analysis described in Sect. 6.5

Fig. 6.16 Scattering rates w = 1/τac for deformation potential–type acoustic phonon scattering in
Ge are plotted as a function of electron energy at T = 300 K. The deformation potentials used are
Ξd = −12.3 andΞl = 5.91 [eV].Ξ = 11.5 eV is determined from the mobility analysis described
in Sect. 6.5



334 6 Electron–Phonon Interaction and Electron Transport

6.4.2 Non-polar Optical Phonon Scattering

In general the optical phonon energy is �ω0 ≈ 50meV and is higher than the average
energy (thermal energy) of an electron E = kBT ≈ 25meV, at room tempera-
ture. Therefore, the electron loses a large amount of energy in scattering by optical
phonons, resulting in the invalidity of elastic scattering. This means that the approxi-
mation used for evaluating the relaxation time for acoustic phonon scattering cannot
be adopted, giving rise to a very difficult task for evaluating the relaxation time.
Usually, the θ-dependence is ignored in (6.333), and we put

(
1 − k ′ cos θ′

k cos θ

)
= 1 . (6.345)

This approximation is often called the randomizing collision approximation. Under
this approximation, the inverse of relaxation time is equivalent to the scattering rate. In
many books and papers this approximation is adopted and the momentum relaxation
time is evaluated from the scattering rate. The scattering rate for non-polar optical
phonon scattering is given by

wop = L3

(2π)3

∫ qmax

qmin

A(q) sin βdβq2dq (6.346)

× {
(nq + 1)δ

[E(k′) − E(k) + �ωq
] + nqδ

[E(k′) − E(k) − �ωq
]}

.

Using the following relation

∫ π

β=0
sin βdβ · δ(y) = m∗

�2kq
, (6.347)

the scattering rate is evaluated as

wop = L3

2π�

m∗

�2k

{∫ qmax

qmin

A(q)(nq + 1)qdq +
∫ qmax

qmin

A(q)nq · qD
}

= (2m∗)3/2

4π�3ρ

D2
op

ω0

[
(nq + 1)

√
E − �ω0 + nq

√
E + �ω0

]
, (6.348)

where the range of the phonon wave vector q given in Table6.2 is used. From (6.204)
of the previous section the coefficient A(q) is given by A(q) = D2

op�/(2L3ρω0).
With the deformation potential Elop defined by (6.205), the scattering rate for the
electron–non-polar optical phonon interaction is given by

wop = E2
lop

D2
ac

· x0
2(ex0 − 1)

·
√
2/m∗

lac

[√
E + �ω0 + ex0

√
E − �ω0

]
, (6.349)

where x0 = �ω0/kBT . For an ellipsoidal conduction band it is evident that the
scattering rate is obtained by replacing m∗3/2 with (m2

tm l)
1/2.
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When the non-polar optical phonon scattering is assumed to be elastic like acoustic
phonon scattering and a relation similar to (6.333) is used for the non-polar optical
phonon scattering, the momentum relaxation time 1/τop is written as

1

τop
= L3

2π�

∫ qmax

qmin

1

k
A(q)

{
(nq + 1)

(
q

2k
+ m∗ω0

�kq

)

+nq

(
q

2k
− m∗ω0

�kq

)}
m∗q2

�2k
dq , (6.350)

which leads to the following final result for the momentum relaxation time for non-
polar optical phonon scattering:

1

τop
= (2m∗)3/2

4π�3ρ

D2
op

ω0

[
(nq + 1)

√
E − �ω0 + nq

√
E + �ω0

]
. (6.351)

Again, we find that the inverse of the relaxation time is equal to the scattering rate
of (6.351) (wop = 1/τop). From these results, (6.351) is used for both the scattering
time and relaxation time for non-polar optical phonon scattering.

Calculated scattering rates of non-polar optical phonon scattering given by (6.349)
are shown in Fig. 6.17, where scattering rates of absorption, emission, and total
processes are shown. The used parameters are E2

lop/D
2
ac = b = 0.4 and Dac = 8.55

[eV], and other parameters are given in Table6.3.

6.4.3 Polar Optical Phonon Scattering

Polar optical phonon scattering is also inelastic and thus we derive the scattering rate
wpop according to the procedure we have adopted to obtain the scattering rate for
non-polar optical phonon scattering. Equation (6.242) gives rise to the polar optical
phonon scattering rate given by

Fig. 6.17 Scattering rates
w = 1/τop for non-polar
optical phonon scattering in
Ge are plotted as a function
of electron energy at
T = 300 K, where
absorption, emission, and
total processes are separately
shown for comparison
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wpop(E)

= e2ωLO

4πε0

(
1

κ∞
− 1

κ0

)
m∗

�2k

[∫ qmax

qmin

(nq + 1)
dq

q
+

∫ qmax

qmin

nq
dq

q

]

= e2ωLO

4
√
2πε0�

(
1

κ∞
− 1

κ0

) √
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√E

[

(nq + 1) ln

∣∣∣
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+nq ln
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]
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√
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(
1
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[

(nq + 1) sinh−1

√
E − �ωLO

�ωLO

+nq sinh
−1

√
E

�ωLO

]

. (6.352)

When the relation 〈E〉 � �ωLO holds for the average electron energy 〈E〉 and the LO
phonon energy ωLO, the scattering is assumed to be elastic and the treatment used for
acoustic phonon scattering may be applied. Then the scattering rate for polar optical
phonon scattering is given by

wpop(E) = 1

τpop

= e2ωLO

4πε0

(
1

κ∞
− 1

κ0

)
m∗

�2k

[
nq + 1

2k

∫ 2k

0
dq + nq

2k

∫ 2k

0
dq

]

= e2ωLO

4
√
2πε0�

(
1

κ∞
− 1

κ0

) √
m∗

√E (2nq + 1) (E � �ωLO) . (6.353)

The same assumption as for non-polar optical phonon scattering gives themomentum
relaxation time τpop shown below from (6.333):

1

τpop
= L3

2π�

∫ qmax

qmin

1

k
A(q)

{
(nq + 1)

(
q

2k
+ m∗ω0

�kq

)

+nq

(
q

2k
− m∗ω0

�kq

)}
m∗q2

�2k
dq , (6.354)

where A(q) is taken from (6.242) as

A(q) = e2�ωLO

2L3ε0

(
1

κ∞
− 1

κ0

)(
q

q2 + q2
s

)2

. (6.355)

For simplicity, let the screening wavenumber qs = 0. The relaxation time for polar
optical phonon scattering is then given by
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1

τpop(E)

= e2ωLO

4
√
2πε0�

(
1

κ∞
− 1

κ0

) √
m∗

√E

×
[

(nq + 1)

{√

1 − �ωLO

E + �ωLO

E sinh−1

( E
�ωLO

− 1

)1/2
}

+nq

{√

1 + �ωLO

E − �ωLO
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( E
�ωLO
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}]

. (6.356)

This equation was first derived by Callen [30].
Polar optical phonon scattering rates (inverse of relaxation time) of polar optical

phonon scattering in GaAs at T = 300 K are calculated by (6.356) and plotted by the
solid curves in Fig. 6.18 as a function of electron energy by solid curves, where the
total rate 1/τpop, emission rate and absorption rates are separately shown. In addition
we plotted the scattering rate wpop given by (6.352). We find that the scattering rates
are below 1013 [1/s].

6.4.4 Piezoelectric Potential Scattering

Since the phonon energy involved in types of scattering is quite small, we may use a
similar approach to that for acoustic phonon scattering. Inserting (6.197) and (6.199)
into (6.340), the relaxation time for piezoelectric potential scattering and equivalently
the scattering rate is given by

1

τpz
= e2m∗kBT

2π�3

〈
e∗2
pz

c∗ε∗2

〉
1

k
= e2

√
m∗kBT

2
√
2π�2

〈
e∗2
pz

c∗ε∗2

〉
1√E , (6.357)

Fig. 6.18 Scattering rates
1/τpop for polar optical
phonon scattering given by
(6.356) in GaAs at T = 300
K are plotted as a function of
electron energy, where
absorption, emission, and
total processes are separately
shown for comparison. In
addition scattering rate given
by (6.352) are shown by the
dashed curve
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(a) (b)

Fig. 6.19 Scattering rates of an electron by piezoelectric potential in GaAs at 300 K, where a no
noticeable difference between the scattering rates with screening and without screening, except the
low electron energy region (see curves in b), where the divergence of the scattering rates without
the screening is removed in the case with screening effect as shown in b. The piezoelectric coupling
constant is simplified as 〈e∗2

pz/c
∗ε∗2〉 = 〈e214/c44(κ0ε0)

2〉

where 〈 〉 represents averaged values over the integral of q because e∗
pz = ei,klaiπkal ,

c∗ = ci jklπi a jπkal (= ρv2
s ) and ε∗ = εsi j aia j depend on the crystallographic direc-

tions. A detailed treatment for the case of an ellipsoidal energy surface is given by
Zook [2]. A relation e∗2

pz/c
∗ε∗ = K ∗2 is often used in the analysis, where K ∗ is

called the electromechanical coupling coefficient and is known to be an important
parameter for describing the strength of piezoelectricity.

The piezoelectric potential scattering rates (inverse of the relaxation time) 1/τpz
in GaAs at 300K are plotted in Fig. 6.19a, where we take account of the piezoelectric
scattering due to transverse acoustic waves propagating in the direction 〈110〉 with
polarization in the place (001) which gives the strongest interaction with electrons
and e∗

pz = e14 and c∗ = c44. Here we have to note that the difference in the scattering
rates with and without the screening effect in negligible in higher energy region,
E > �

2q2
s /2m

∗, Fig. 6.19b shows the scattering rates with and without the screening
effect in the lower energy region, where we find that the screening effect removes the
divergence of the scattering rate and the difference in the scattering rates with and
without the screening effect is quite small except the energy region E � �

2q2
s /2m

∗.
The scattering rate 1/τpz with the screening effect in GaAs at T = 300 K is plotted
in Fig. 6.19a, b for electron density n = 3.0 × 1013 cm−3.

The relaxation time for the piezoelectric scattering with the screening effect
(6.201) is derived with the help of the integration for the case of acoustic deformation
potential scattering, where the equipartition law holds: nq = 1/(exp(�ωq/kBT )−1)
� kBT/�ωq
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1

τpz
= e2

√
m∗kBT

2
√
2π�2

〈
e∗2
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c∗ε∗2

〉
1√E

×
[
1 + 1

1 + (8m∗E/�2q2
s )

− �
2q2

s

4m∗E log

(
1 + 8m∗E

�2q2
s

)]
(6.358)

When we neglect the screening effect and put qs = 0, (6.358) reduces to (6.357).

6.4.5 Inter–Valley Phonon Scattering

The inter–valley scattering described in Sect. 6.3.7 plays a very important role in
electron transport in many–valley semiconductors. It has been also shown that the
Gunn effect in GaAs is induced by inter–valley scattering from the Γ valley to the L
valleys. In general inter–valley scattering gives rise to the redistribution of electrons
in the valleys and the rate of change of the distribution function of the i-th valley is
written as

(
d fi
dt

)

coll

= L3

(2π)3

i 	= j∑

j

∫ [
P(k + q, k) f j (k + q){1 − fi (k)}

−P(k, k + q) fi (k){1 − f j (k + q)}
+P(k − q) f j (k − q){1 − fi (k)}
−P(k, k − q) fi (k){1 − f j (k − q)}] d3q . (6.359)

Estimated intervalley phonon energies and the deformation potentials are listed
in Table6.4, where the data obtained from magnetophonon resonance (MPR) are
listed together with the data from Jacoboni and Reggiani [31]. Analysis of MPR data

Table 6.4 Intervalley phonon energies and their deformation potentials in Si [31]. MPR data are
from magnetophonon resonance experiments described in Chap.7 which are estimated from the
fundamental resonance fields B f = 21.4, 70, 84.7, and 106[T]. Intervalley phonon scatterings of
g–type �ωiv,g = 22.7 and/or f -type �ωiv,f = 51.6 [meV] give rise to the strongest MPR giving rise
to B f = 84.7 [T]. Although MPR of B f = 21.4 [T] is weaker than those of 84.7 [T], resonance
peaks are clearly assigned as seen in Fig. 7.8

Type Energy Deformation
potential

Phonon energy [meV] from MPR for fundamental B f [T]

[meV] [108eV/cm] 21.4 [T] 70.0 [T] 84.7 [T] 106 [T]

g-TA 12 0.5 5.7

g-LA 18.5 0.8 18.8 22.7 28.7

g-LO 61.2 11.0

f-TA 19.0 0.3 13.0

f-LA 47.4 2.0 42.3

f-TO 59.0 2.0 51.6 65.2

http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
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are based on the assumption that electrons in the lowest Landau are scattered by the
intervalley phonons. Since the magnetic field is applied in the < 100 > direction
the lowest Landau level is related to the cyclotron mass mc = √

m tm l (= 0.432m)
in the valleys located < 010 > and < 001 >. The Si sample used for MPR is
very high resistivity (high purity), MPR is caused by the electron transfer form the
lowest Landau level to the other valleys of mc = m t ( f -type) and mc = √

m tm l

(g–type). It should be noted here that the phonon modes TA, LA, TO, and LO are not
clarified from MPR experiments and thus the intervalley phonon modes for MPR in
Table6.4 are not assigned but tentative. In Table6.4 the intervalley phonon energies
arising from B f = 24 [T] are very low and the assignment is not correct. At low
magnetic fields, the Landau level spacing is very small and thus electrons occupy the
lower Landau levels arising from the cyclotronmc = m t in addition tomc = √

m tm l.
Therefore the intervalley phonon energy �ωiv = 13 [meV]may be assigned to g–type
intervalley phonon energy.

In many–valley semiconductors such as Ge with 〈111〉 valleys and Si with 〈100〉
valleys, the distribution functions of the valleys in a low electric field region are
equivalent to each other. The relaxation time for the inter–valley phonon scattering
may be treated by assuming constant inter–valley phonon energies �ωi j , enabling us
to use the same procedure as for the non-polar optical phonon scattering. Therefore,
the scattering rate wint and inverse of relaxation time 1/τint for inter–valley phonon
scattering are given by the following equation:

wint(E) = 1

τint(E)
(6.360)

=
i 	= j∑

j

(2m∗)3/2

4π�3ρ

D2
i j

ωi j

[
nq

√E + �ωi j + (nq + 1)
√E − �ωi j

]
,

wherem∗
j is the effective density-of-states mass for electrons scattered into the valley

j , and
∑i 	= j

j is carried out over the equivalent valleys. In the case of Si,
∑i 	= j

j results

in one g–type valley and four f–type
∑i 	= j

j . Therefore, the sum is replaced by the
valley degeneracy givj , and in the case of Si the scattering rate is obtained by using
the valley degeneracy givg = 1 and givf = 4. There have been reported various data
on phonon energies and deformation potentials for inter–valley phonon scattering,
but the values have not yet been finalized. In Chap.7 the magnetophonon resonance
effect will be discussed, which is believed to be the best method to determine the
types and energies of inter–valley phonons, but the strength of the interaction has
not yet been determined [32, 33]. We have shown theoretical calculations of the
deformation potentials; the values depend strongly on the parameters used, resulting
in ambiguity of the calculated results.Hot carrier transport in Si and device simulation
of MOSFETs, where accurate values of deformation potentials and their types are
required, have been reported so far by using various parameters. The most reliable
values for the deformation potential are believed to be those estimated from Monte
Carlo simulation in Si, where the values are determined from a comparison of the
calculated drift velocity as a function of electric field with the experimental result

http://dx.doi.org/10.1007/978-3-319-66860-4_7
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Fig. 6.20 Intervalley phonon scattering rateswiv = 1/τiv (τiv: momentum relaxation time) in Si are
plotted as a function of electron energy at T = 300 [K]. The scattering rates are total, emission and
absorption, separately and the used deformation potential for the intervalley phonon �ωiv = 51.6
[meV] is estimated for b = 1.73 to give a good agreement of the observed electron mobility in pure
Si as shown in Fig. 6.31

[31]. The result is summarized in Table6.4. It is evident from Table6.4 that g–type
LO phonons play the most important role in determining the inter–valley phonon
scattering in Si. Figure6.20 shows the calculated scattering rate (or wiv = 1/τiv) as
a function of electron energy in Si, intervalley phonon scattering rates of absorption,
emission and total rates (sum of absorption and emission rates) are separately plotted.
It is seen in Fig. 6.20 that intervalley phonon scattering rates are in the range of 1013

[1/s] and much larger than the acoustic deformation potential scattering rate (<1012

[1/s] forΞ = 9 [eV]). Therefore the intervalley phonon scattering plays an important
role in the lattice scattering at higher temperature in Si. We have to note here again
that non-polar optical phonon scattering within the valley is not allowed in Si as
stated in Sect. 6.3.7, enabling us to ignore this type of scattering. However, non-
polar optical phonon scattering within the valley is much stronger than inter–valley
scattering in Ge and the scattering rate is written in a form similar to inter–valley
phonon scattering. Therefore, it may be expected that the curves for the scattering
rates and mobilities in Ge and Si are quite similar at higher temperatures.

6.4.6 Ionized Impurity Scattering

In general, semiconductors contain large amount of donors, acceptors andother impu-
rities, and sometimes they are ionized. Such ionized impurities produce Coulomb
potentials which scatter electrons and holes, as described in Sects. 6.3 and 6.3.3. The
relaxation time for electron scattering by a screenedCoulomb potential (or scattering
rate) is given by the Brooks–Herring formula, (6.175):
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1

τBH
= z2e4nI

16πε2
√
2m∗ E

−3/2

[
log(1 + ξ) − ξ

1 + ξ

]
, (6.361)

where

ξ = 8εm∗kBT
�2e2n

E . (6.362)

On the other hand, neglecting the screening effect and using the Rutherford scat-
tering cross-section, Conwell and Weisskopf derived the relaxation time for ionized
impurity scattering which is derived from (6.185) as

1

τCW
= z2e4nI

16πε2
√
2m∗ E

−3/2 ln

[

1 +
(
2E
Em

)2
]

, (6.363)

where

2E
Em = rm

R

(
Em = ze2

4πεrm

)
. (6.364)

The ionized impurity scattering rate due to Brooks–Herring formula 1/τBH and
Conwell–Weisskopf 1/τCW in GaAs at T = 10K are plotted as a function of the
electron energy in Fig. 6.21. In the calculations we assumed the ionize impurity
density is nI = 6.0 × 1013 cm−3 and the half of the impurities give the conduction
band electrons. This assumption is based on the fact that some parts of doped donors
will fill deep levels, giving rise to ionized impurities and the others are excited in the

Fig. 6.21 Impurity
scattering rates in GaAs
given by Brooks–Herring
formula and by
Conwell–Weisskopf formula
as a function of electron
energy at lattice temperature
T = 10K, where the ionized
impurity density is assumed
to be nI = 6.0 × 1013 cm−3

and a half of the impurities
give rise to the conduction
band electron density
n = 3.0 × 1013 cm−3
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conduction band, giving rise to conduction electrons. Here we find that the screening
effect is very important and 1/τBH is reduced to be about 1/10 of 1/τCW.

6.4.7 Neutral Impurity Scattering

At low temperatures the donor and acceptor states in semiconductors are occupied
by electrons and holes, respectively, and behave as neutral impurities, giving rise to
no contribution to Coulomb scattering. The wave function of an electron captured
by a shallow donor is spread out over a wide range, as shown in Sects. 3.3 and 3.4
and the effective Bohr radius of the ground state aI is much larger than the lattice
constant. Erginsoy derived the scattering cross-section of an electron by a neutral
donor, where the effective Bohr radius and the effective ionization energy are used
in the scattering formula for neutral He [34]. Let the electron wave vector be k and
ka∗

nI ≤ 0.5. The scattering cross-section may then be approximated as

σnI = 20anI
k

. (6.365)

Let the neutral impurity density be nnI; the scattering probability of an electron
traversing a unit distance through unit area is then defined by nnIσnI and thus the
mean-free path of the electron is lnI = τnIv = τnI�k/m∗. These relations lead to

1

lnI
= nnIσnI (6.366)

for the mean-free path. Therefore, the relaxation time for neutral impurity scattering
(and thus the scattering rate) is given by

1

τnI
= �k

m∗ · nnIσnI = 20nnIanI�

m∗ . (6.367)

This approximation is based on the assumption that the scattering cross-section is
determined by the s orbital of an electron. A better approximation has been given by
Sclar [35] and McGill and Baron [36] which is valid for a wider range of electron
energy.

6.4.8 Plasmon Scattering

We have derived the matrix elements for plasmon scattering in Sect. 6.3.10 and hence
the scattering rate wpl. Since the relaxation time for plasmon scattering is given by
1/τpl = wpl, (6.300) leads to the result

http://dx.doi.org/10.1007/978-3-319-66860-4_3
http://dx.doi.org/10.1007/978-3-319-66860-4_3
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(a) (b)

Fig. 6.22 a Plasmon scattering rates of GaAs at T = 300 [K] are plotted as a function of electron
energy up to 0.5 eV for electron density (1) n = 2×1018, (2) n = 1.0×1018, and (3) n = 5×1017

[cm−3]. b Plasmon scattering rates of the total wpl, absorption wpla, and emission wple for GaAs
at T = 300 [K] are plotted as a function of electron energy up to 0.5 eV for the electron densities
n = 1.0 × 1018 [cm−3]. Used parameters are m∗ = 0.067m and ε∞ = 10.92ε0

wpl = 1

τpl
= e2

4π�ε∞

√
2m∗

�2

�ωp√E(k)
×

[
np ln

(
qc

k
√

η+ − k

)

+(np + 1) ln

(
qc

k − k
√

η−

)
u(η−)

]
, (6.368)

whereωp = √
ne2/κ∞ε0m∗ is the plasma angular frequency, qc is Thomas–Fermi (or

Debye–Hückel) screening wavenumber, η± = 1 ± �ωp/E(k), u(η−) = 1 (η− ≥ 0)
and u(η−) = 0 (η− < 0).

Calculated plasmon scattering rates of GaAs are shown in Fig. 6.22a, where we
used scalar effective mass m∗ = 0.0.067m, dielectric constant ε∞ = 10.92ε0, and
T = 300 [K] and the electron densities are 0.5 × 1018, 1.0 × 1018, and 2.0 × 1018

[cm−3]. In Fig. 6.22a we find that the scattering rate increases for higher electron
densities in higher energy region. In the lower electron energy region, however, the
scattering rates are very complicated. In order to get inside of the plasmon scattering,
we plot the total scattering rate wpl, absorption rate wpla, and emission absorption
rate wple separately in Fig. 6.22b for GaAs at T = 300 [K] as a function of electron
energy up to 0.5 eV for electron density n = 1.0 × 1018 [cm−3]. We have to note
here that the plasmon emission process is allowed for the case �ωp > E(k) and that
the plasmon absorption process plays in the lower energy region e(k) < �ωp.

6.4.9 Alloy Scattering

Alloy scattering is discussed in Sect. 6.3.11,where the scattering ratewalloy is derived.
The relaxation time for alloy scattering (scattering rate) is then written from (6.313)
as
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Fig. 6.23 Alloy scattering
rates as a function of electron
energy for In1 − xGaxAs
assuming the effective mass
is 0.068m

1

τalloy
= 2π

�
(Va − Vb)

2x(1 − x)Ω
(2m∗)3/2

√E(k)
4π2�3

, (6.369)

where Ω is the unit cell volume. As discussed later, estimation |Va − Vb| is difficult,
and we evaluate the electron mobility limited by the alloy scattering by assuming the
mobility at 10K for x = 0.5 is 1.0 × 104 [cm2/Vs], which gives |Va − Vb| = 3.185
[eV] form∗ = 0.068m, a = 5.66×10−10 [m]. Using these parameters the scattering
rate of the alloy scattering for x = 0.1 ∼ 0.5 are plotted in Fig. 6.23, where we find
that the alloy scattering rate increases with increasing the alloy composition form
x = 0.1 to 0.5.

6.5 Mobility

In general, the electrons in semiconductors involvemanykinds of scatteringprocesses
and the total relaxation time τ is given by

1

τ
=

∑

j

1

τ j
, (6.370)

which assumes that the total scattering probability is defined by the sumof all possible
scattering probabilities. Therefore, the electronmobility is obtained from (6.116) (the
definition) and (6.119) (average over the distribution function). When the scattering
and thus the relaxation time is isotropic, the mobility is calculated from

μ = e

m∗
c

〈τ 〉 = e

m∗
c

〈
1

∑
j (1/τ j )

〉

, (6.371)
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wherem∗
c is the conductivity effective mass. For many–valley semiconductors with

ellipsoidal energy surfaces such as in Ge and Si and for an isotropic relaxation time,
the conductivity effective mass is given by

1

m∗
c

= 1

3

(
2

m t
+ 1

m l

)
. (6.372)

It is evident that in semiconductors with isotropic scalar effective mass such as
in GaAs, the conductivity effective mass is given by the isotropic effective mass,
m∗

c = m∗. Herewe have to point out that the conductivity effectivemass is different in
its definition from the effective density-of-states mass. As stated before, the effective
mass m∗ (referred to as m∗

d hereafter) appearing in the relaxation time 1/τ is the
effective density-of-states mass. In Ge and Si with many–valley structures, where
the constant energy surface is ellipsoidal, the effective density-of-states mass is given
bym∗

d = (m2
tm l)

1/3. When the effective masses in Si,m t = 0.19m andm l = 0.98m,
are used, we have mc = 0.260m and md = 0.328m.

In the following we calculate the electron or hole mobility assuming that the
electrons and holes are not degenerate and that their distribution function is given by
Maxwell–Boltzmann statistics. In the case of degenerate semiconductors we have
to use the Fermi–Dirac distribution function and the results are different from those
given here. Sometimeswefind a casewhere two scattering processes play amajor part
in the scattering or limit the mobility. For example when acoustic phonon scattering
and ionized impurity scattering dominate the scattering processes, the relaxation time
is written as

1

τ
= 1

τac
+ 1

τI
, (6.373)

which may be approximated as follows, except in the region 〈τac〉 = 〈τI〉,
1

〈τ 〉 � 1

〈τac〉 + 1

〈τI〉 . (6.374)

When this approximation is valid, it is very convenient to estimate the overall behavior
of the temperature dependence of the mobility from an averaged value of each relax-
ation time. For this reason this assumption is often used to calculate the averagedvalue
of the relaxation time and thus the mobility for each scattering process. Although this
technique is very convenient, we carried out exact value of the total relaxation time
and the average mobility by numerical integration in this textbook. The results for
the mobility given here are basically calculated by using the Maxwell–Boltzmann
distribution function and (6.116). See the review paper of electron mobility in direct
gap polar semiconductors by Rode [37] for more information.
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Fig. 6.24 Electron mobility
μac due to deformation
potential-type acoustic
phonon scattering in Si are
plotted as a function of
temperature T [K]. The
deformation potentials used
in the calculation are
dilational Ξd = 5, average
Ξl = 14.5 [eV], and
Ξ = 9.0 [eV] is determined
from the analysis of
temperature dependence of
the mobility

6.5.1 Acoustic Phonon Scattering

The relaxation time for acoustic phonon scattering (6.341) gives the mobility

μac = 23/2
√

πe�4ρv2
s

3m∗
d
3/2m∗

cD
2
ac(kBT )3/2

, (6.375)

where m∗
d
3/2m∗

c = m∗5/2 for electrons with isotropic effective mass m∗.
Electron mobilities due to acoustic deformation potential scattering in Si and Ge

are plotted in Figs. 6.24 and 6.25, respectively, where the material parameters used in
the present calculations are tabulated in Table6.3. The mobility becomes very high
at lower temperatures, and thus we have to take into account of the other scattering
processes such as impurity scattering to evaluate the mobility at low temperatures.
Also as seen in Figs. 6.24 and 6.25, the mobility due to acoustic phonon scattering
depends on the value of Ξ 2 and thus proper value of the deformation potential
should be determined by comparing with the experimental results. This may be done
by calculating the electron mobility by taking all the scattering processes involved
and comparing the calculated curve with the experimental data, which will be shown
later.

6.5.2 Non-polar Optical Phonon Scattering

Using (6.351) for the relaxation time of non-polar optical phonon scattering, the
electron mobility is given by
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Fig. 6.25 Electron mobility
μac due to deformation
potential-type acoustic
phonon scattering in Ge are
plotted as a function of
temperature T [K]. The
deformation potentials used
in the calculation are
dilational (average)
Ξl = 5.91 [eV] and
Ξ = 11.5 [eV], where
Ξ = 11.5 [eV] is determined
from the analysis of
temperature dependence of
the mobility

μop = 4
√
2πe�2ρ

√
�ω0

3m∗3/2
d m∗

cD
2
op

f (x0) , (6.376)

where

f (x0) = x5/20

(
ex0 − 1

)

×
∫ ∞

0
xe−x

[(
1 + x0

x

)1/2 + ex0
(
1 − x0

x

)1/2]−1

dx , (6.377)

x0 = �ω0

kBT
, x = E

kBT
. (6.378)

When both acoustic phonon and non-polar optical phonon scattering are taken into
account, the mobility is evaluated from the following equation:

μ = μac · I (x0) , (6.379)

I (x0) =
∫ ∞

0
xe−x

[
1 + lac

lop

1

ex0 − 1

{(
1 + x0

x

)1/2

+ex0
(
1 − x0

x

)1/2}]−1

dx , (6.380)

lop = 2π�
3ρω0

(Dopm∗
d)

2
,

lac
lop

= x0
2

D2
ac

E2
op

. (6.381)

Calculated electronmobilityμop due to non-polar optical phonon scattering only is
shown in Fig. 6.26, where the deformation potential Dop for non-polar optical phonon
scattering is determined as follows. This is done by comparing the measured electron
mobilitywith the theoretical calculations by taking account of the acoustic and optical
phonon scatterings shown in Fig. 6.27. As given by (6.381) the squared ratio of the



6.5 Mobility 349

Fig. 6.26 Electron mobility
μop due to non-polar optical
phonon scattering in Ge are
plotted as a function of
temperature T [K]. The
deformation potential for
non-polar optical phonon
scattering is estimated from
D2
ac/E

2
op ≡ b = 0.4 with

Dac = 11.5 [eV], which give
the mobility μac+op = 3822
[cm2/Vs] due to acoustic
phonon scattering and
optical phonon scattering at
300 K as shown in Fig. 6.27
(see also text in detail)

Fig. 6.27 Electron mobility
μac+op due to deformation
potential-type acoustic
phonon scattering and
non-polar optical phonon
scattering in Ge are plotted
as a function of temperature
T [K]. The used deformation
potentials are Dac = 11.5
[eV] and
D2
ac/E

2
op ≡ b = 0.4, which

give the electron mobility
μac+op = 3822 [cm2/Vs] at
300 [K]. The ◦ points
represent experimental data,
calculated from the empirical
formula of Morin [38]

acoustic deformation potential D2
ac/Ξ

2
op = b is determined by comparing the electron

mobility with the calculated mobility with acoustic and optical phonon scattering as
the following. First we choose a proper value of the acoustic phonon deformation
potential Dac(≡ Ξ) and then determine the ration b by fitting the calculated curve
μac+op to the experimental results. It is well known that the ratio is b = 0.4 for
n–Ge and 3.5 ∼ 3.8 for p–Ge as reported by Conwell [6], and Brown and Bray
[39]. Using b = 0.4 we determined Dac = Ξ = 11.5 which gives μac+op � 3800
[cm2/Vs] at T = 300 K as shown in Fig. 6.27. The ◦ points are obtained from
the experimental data of Morin [38], which are expressed by the empirical formula
μ = 4.90 × 107T−1.66 [cm2/Vs] and agree well with the calculated result.
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The electron mobility in n-Ge and n-Si is analyzed by taking the inter–valley
phonon scattering into consideration. However, it is known that inter–valley phonon
scattering is weak in n-Ge and thus the electron mobility of Ge is analyzed by taking
account of acoustic phonon scattering and non-polar optical phonon scattering only.
Although the valence band structure in Ge is complicated, the analysis of the hole
mobility is simple. Herewewill show a comparison of the experimental holemobility
with the theoretical analysis byBrown andBray [39]. The valence bands ofGe consist
of heavy-hole and light-hole bands as discussed in Chaps. 1 and 2, where the constant
energy surface of the heavy-hole band is not spherical but warped. In the analysis the
hole bands are approximated by a spherical surface with effective massmh = 0.35m
for heavy hole and m l = 0.043m for light hole. With this approximation the density
ratio of heavy holes to light holes is given by ph/pl = (mh/m l)

3/2 = 23.2. Let the
heavy–hole mobility be μh and light–hole mobility be μl; the average hole mobility
μ is given by

μ = μh ph + μl pl
ph + pl

= 1

24.2
(μl + 23.2μh) . (6.382)

In order to analyze the hole mobility in p-Ge we have to take account of ion-
ized impurity scattering, acoustic phonon scattering and non-polar optical phonon
scattering. At low temperatures the ionized impurity scattering and acoustic phonon
scattering dominate the other scattering processes, while at higher temperatures the
acoustic phonon scattering and non-polar optical phonon scatteringwill limit the hole
mobility. For these reasons we deal with the mobility analysis in two temperature
regions, the lower and higher temperature regions, and two scattering mechanisms in
each temperature region are considered. The hole mobility calculated in this approx-
imation is plotted in Fig. 6.28a, b. From the analysis of the hole mobility at lower
temperatures the following relations are obtained.

μac = 3.37 × 107T−3/2 cm2/V · s ,

(μh)ac = 2.60 × 107T−3/2 cm2/V · s , (6.383)

(μl)ac = 2.12 × 108T−3/2 cm2/V · s .

It is very important to point out that intra-band scattering dominates for heavy holes
whereas light-hole scattering is dominated by scattering from the light-hole band to
the heavy-hole band because of the difference in the effective density-of-states mass.
Under this assumption and from (6.375), μh ∝ 1/m5/2

h and μl ∝ 1/m3/2
h m l, giving

rise to μl/μh = mh/m l = 8.1. This result is supported by the analyzed hole mobility.
From the analysis at higher temperatures, they obtained

b = E2
lop

D2
ac

= D2
op

D2
ac

· v2
s

ω2
0

= 3.8 (6.384)

for the squared deformation potential ratio b. Analysis of the electron mobility in
n-Ge gives b = 0.4. These results tell us that the interaction between holes and non-

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. 6.28 Calculated hole mobility in p-Ge plotted as a function of temperature, along with experi-
mental data. a Experimental mobility in the low temperature region is compared with the calculated
hole mobility by taking account of ionized impurity scattering and acoustic phonon scattering. b
Experimental data in the high temperature range are compared with the calculated mobility by tak-
ing account of acoustic phonon scattering and non-polar optical phonon scattering. Experimental
data are from Brown and Bray [39]

polar optical phonons is much stronger than that between electrons and non-polar
optical phonons in n-Ge.

6.5.3 Polar Optical Phonon Scattering

Electron mobility due to polar optical phonon scattering is evaluated from the relax-
ation time given by (6.352) and using the drifted Maxwellian distribution function
define by

f (v) = exp

{
−m∗(v − vd)

2

2kBT

}
. (6.385)

The electron mobility is then given by

μpop = 3(2π�ωLO)1/2

4m∗1/2E0n(ωLO)

1

x3/20 ex0/2K1(x0/2)
, (6.386)

where

E0 = m∗e�ωLO

4π�2ε0

(
1

κ∞
− 1

κ

)
, n(ωLO) = 1

ex0 − 1
, x0 = �ωLO

kBT
, (6.387)
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K1(t) = t
∫ ∞

1

√
z2 − 1e−t zdz = e−t

t

∫ ∞

0

√
z(z + 2t)e−zdz , (6.388)

and K1(t) is the modified Bessel function. In the case of E � �ωLO, (6.353) gives
the electron mobility for polar optical phonon scattering, which is expressed as

μpop
∼= 8

√
2kBT

3
√

πm∗E0
· e

x0 − 1

ex0 + 1
. (6.389)

The electronmobility due to polar optical phonon scattering is calculated by using
the relation (6.356) deduced by Callen [30] and shown in Fig. 6.29. In the calculation
we employed numerical integration of the following equation and used the material
parameters given in Table6.3, where the integration range of the electron energy
x = E/kBT is divided into two regions [0, �ωpop/kBT ] and [�ωpop/kBT ],∞] (∞ is
replaced by 100 × �ωpop/kBT ].

μpop = e

m∗ < τpop >, (6.390)

where τpop given by (6.356) is used.
In addition we plotted electron mobilities due to acoustic phonon scattering using

two different values of deformation potentialsΞ = 7.0 [eV] [37] andΞ = 14.0 [eV],

Fig. 6.29 Electronmobilityμpop for polar optical phonon scattering inGaAs is plotted as a function
of temperature T , in addition to the mobilities due to acoustic phonon scattering, and piezoelectric
potential scattering, where the used parameters are given in Table6.3. Themobilities due to acoustic
phonon scattering for Ξ = 7.0 and Ξ = 14.0 [eV] are shown to see the difference. The electron
mobility μtotal due to acoustic (Ξ = 14.0 [eV]), piezoelectric, and polar optical phonon scattering is
also shown, which gives mobility μ = 8, 840 [cm2/Vs] at T = 300 [K]. Data points ◦ are obtained
by averaging the reported experimental data from Rode [40]
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and piezoelectric potential scattering. Themobility due to acoustic phonon scattering
deduced from Ξ = 7.0 [eV] is too high and the electron mobility due to these three
scattering processes does not agree with experimental observation.We calculated the
electron mobility due to acoustic, piezoelectric, and polar optical phonon scatterings
and Ξ = 14.0 [eV] is quite reasonable value of the electron mobility μ = 8, 840
[cm2/Vs] at T = 300K, as shownbyμtotal=μac+pz+pop in Fig. 6.29. In the calculations
we employed numerical integration stated above for the case of combined acoustic
deformation potential and polar optical phonon scatterings, where we find a very
good agreement between the present calculation and the experimental data. The
experimental data are obtained by averaging the reported values of Rode [40]. Here
we have to note that the acoustic deformation potential Ξ = 14.0 eV gives a very
good agreement between the calculations and the experimental data.

6.5.4 Piezoelectric Potential Scattering

As discussed in Sect. 6.4.4, the effect of screening does not play an important role in
the piezoelectric potential scattering, we neglect the effect and estimate the electron
mobility for piezoelectric potential scattering. Then the mobility is given by the
following equation using (6.357).

μpz = 16
√
2π�

2

3m∗3/2e〈e∗2
pz/c

∗ε∗2〉 (kBT )−1/2 . (6.391)

Electron mobility due to piezoelectric potential scattering is shown in Fig. 6.30 as
a function of temperature T , where we see the mobility decreased with increasing
temperature T . Here we neglected the screening effect which is discussed by Ridley
[5]. In the calculation the piezoelectric coupling constant is obtained by using e∗

pz =
e14 = 0.16 and c∗ = c44, neglecting anisotropy.

6.5.5 Inter–Valley Phonon Scattering

The mobility for inter–valley phonon scattering is evaluated with a relation similar
to that for non-polar optical phonon scattering, and is obtained by replacing the
optical phonon deformation potential Dop by the inter–valley phonon deformation
potential Di j and the optical phonon energy �ωop by the inter–valley phonon energy
�ωi j . In many–valley semiconductors such as Ge and Si, however, there are four and
six equivalent valleys, respectively, and the degeneracy factor of the valleys givi j for
scattered electron must be considered. The electron mobility for inter–valley phonon
scattering is given by the following equation using (6.361)
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Fig. 6.30 Calculated electron mobility due to piezoelectric potential scattering in GaAs plotted as
a function of temperature, where the material parameters are given by Table6.3, and e∗

pz = e14 and
c∗ = c44 are used without averaging

μint = 4givi j
√
2πe�2ρ(�ωi j )

1/2

3m∗3/2
d m∗

cD
2
i j

f (xi j ) , (6.392)

where xi j = �ωi j/kBT and f (xi j ) is obtained by replacing x0 in (6.377) by xi j . Let
us examine the temperature dependence of the electron mobility in Si. As discussed
in Sect. 6.4, the conduction bands of Si consist of equivalent valleys located along
the 〈100〉 direction, and g–type and f–type inter–valley scattering will dominate the
other scattering processes at higher temperatures. In order to get an insight into the
importance of inter–valley scattering, we calculate the electron mobility by taking
account of acoustic phonon scattering and f–type inter–valley phonon scattering
�ωiv = 51.6 [meV], which is obtained from magnetophonon resonance experiments
describe in Sect. 7.4. The assignment of the phonon energy and the types f– and g–
are made by assuming that the electrons occupy the lowest Landau level because
of the electron density is very low in the used pure samples. The results are sum-
marized in Table6.4. The deformation potentials for inter–valley phonons listed are
from Jacoboni et al. [31] and the intervalley phonon types and energies obtained
from magnetophonon experiments are also summarized in Table6.4. In the present
analysis we used the f–type inter–valley phonon energy �ωiv,f = 51.6 [meV] and
the intervalley deformation potential, where the degeneracy factor of the valleys are
included in the deformation potential. This approximation is adopted to calculate the
scattering rate in Si shown in Fig. 6.20. Usually, the calculated electron mobility is
adjusted to fit the experimental data by changing the deformation potential parameter
b = Ξ 2

iv/D
2
ac. The left hand side of Fig. 6.31 shows the electron mobility limited by

http://dx.doi.org/10.1007/978-3-319-66860-4_7
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Fig. 6.31 Left Calculated temperature dependence of the electron mobility due to acoustic phonon
scattering and intervalley phonon scattering in Si for different values of b = 0, 0.5, 1.0, and 2.0
from top to bottom curve. Right Comparison of the temperature dependence of electron mobility
in Si between experiments and theoretical calculation with b = 1.73. The material parameters are
given by Table6.3, and acoustic deformation potential Ξ = 9.0[eV], f–type intervalley phonon
energy �ωiv,f = 51.6 [meV], and the deformation potential ratio b = 1.73, which gives electron
mobility μ = 1452 [cm2/Vs] at T = 300 K. The experimental data • are from Canali et al. [41]
and Jacoboni et al. [42]

lattice scatterings (acoustic and intervalley phonons) as a function of temperature
with b = 0, 0.5, 1.0, 2.0 as an adjustable parameter. The right hand side of Fig. 6.31
shows the best fitted temperature dependence of the electron mobility in high purity
Si with b = 1.73, where the experimental data • are from Canali et al. [41] and
Jacoboni et al. [42].

The deformation potential parameter b is obtained by replacing the deformation
potential for non-polar optical phonon scattering by the deformation potential of
inter–valley phonon scattering and is defined as follows.

b = E2
iv

D2
ac

, E2
iv = D2

ivv
2
s

ω2
iv

.

Here we have to note that the acoustic phonon deformation potential Dac used
here is equivalent to the deformation potential Ξ = 9, 0 [eV] determined from the
mobility analysis. The parameters used to calculate the scattering rates shown in
Fig. 6.20 and the electron mobility in Fig. 6.31 are Ξ = 9.0 [eV] and b = 1.73.
When only acoustic phonon scattering is taken into account (b = 0) with acoustic
deformation potential Ξ = 9.0 [eV], the calculated mobility at T = 300K is
μ = 2560 cm2/Vs, which is much larger than the observed mobility 1450 cm2/Vs,
whereas the deformationpotential parameterb = 1.73 results in 1452 cm2/Vs,which
is very close to the measured value. In the calculation we take into account of only
f–type intervalley phonon �ωiv = 51.6[meV] listed in Table6.4 which gives rise to
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the strongest magnetophonon resonance as shown in Sect. 7.4. It is seen in Fig. 6.31
that the electron mobility decreases with increasing b from 0 to 2.0, which means
that the electrons are scattered more by inter–valley phonons, resulting in a lower
mobility. It may be expected from these results that the calculated electron mobility
can be fitted to the experimental results by taking g–type and f–type inter–valley
phonon scattering accurately into account and adjusting the deformation potentials.
It is also seen in Fig. 6.31 that inter–valley phonon scattering may be disregarded
at lower temperatures and that inter–valley phonon scattering affects the electron
mobility at temperatures T > 100K [43].

6.5.6 Ionized Impurity Scattering

We have shown that the relaxation time for ionized impurity scattering is given by
the Brooks–Herring formula (6.362) and the Conwell–Weisskopf formula (6.363),
where these formulae are derivedwith andwithout screeningby conduction electrons,
respectively. The relaxation time becomes a maximum when E in the logarithmic
terms is 3kBT and thus the integral is approximated by replacing E by 3kBT except
for E in the prefactor. The electron mobility of Brooks–Herring formula is written
as

μBH = 64
√

πε2

nIz2e3m∗1/2 (2kBT )3/2
[
log(1 + ξ0) − ξ0

1 + ξ0

]−1

, (6.393)

where

ξ0 = 24εm∗(kBT )2

�2e2n
. (6.394)

The electron mobility of the Conwell–Weisskopf formula is given by

μCW = 64
√

πε2

nIz2e3m∗1/2 (2kBT )3/2
[
log

(

1 + 144π2ε2k2BT
2

z2e4n2/3I

)]−1

. (6.395)

Figure6.32a is the temperature dependence of calculated mobilities due to ionized
impurity scattering byBrooks–Herring formula and byConwell–Weisskopf formula,
evaluated by numerical integration. As expected, however, the logarithmic term is
well approximated by replacing E with 3kBT and the difference between the numeri-
cal analysis and the approximation is negligible, such as μBH = 2.228×105 (numer-
ical) and μBH = 2.262× 105 (approximation) at T = 10K for nI = 6.0× 1013cm−3

and n = nI/2 in GaAs.

http://dx.doi.org/10.1007/978-3-319-66860-4_7
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(a) (b)

Fig. 6.32 a Calculated temperature dependence of the electron mobilities of GaAs due to ionized
impurity scattering by Brooks–Herring formula and Conwell–Weisskopf formula, where density of
ionized impurity is nI = 6.0×1013cm−3 and electron density in the conduction band is assumed to
be half of the ionized impurity density n = 3.0×1013cm−3. b Temperature dependence of electron
mobility in GaAs, where ionized impurity scattering, acoustic deformation potential scattering,
piezoelectric potential scattering, and polar optical phonon scattering are shown, respectively. The
curveμtotal is the theoretical curve due to all the scattering, and the parameters are given in Table6.3.
All the mobilities are evaluated by numerical integration. The averaged values of the experimental
data are plotted by ◦ (see Rode [37, 40])

Figure6.32b shows temperature dependence of the electron mobility in GaAs,
where ionized impurity scattering, acoustic deformation potential scattering, piezo-
electric potential scattering, and polar optical phonon scattering are shown, respec-
tively. The curve μtotal is the theoretical curve due to over all scatterings, and the used
parameters are given in Table6.3. All of the mobilities are evaluated by numerical
integration. The points assigned by ◦ is the averaged value of the experimental data
of Rode [37, 40].

The total mobility μtotal is numerically evaluated by using τtotal defined by the
following equation

1

τtotal
= 1

τBH
+ 1

τac
+ + 1

τpz
+ 1

τpop
(6.396)

and using (6.119),

μtotal = e

m∗ 〈τtotal〉 . (6.397)
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6.5.7 Neutral Impurity Scattering

The relaxation time of the Erginsoy formula for neutral impurity scattering leads to

μnI = e

20anI�

1

nnI
= e

20aB�
· m

∗/m
κnnI

, (6.398)

where aB is Bohr radius.

6.5.8 Plasmon Scattering

The relaxation time for plasmon scattering is given by (6.368) (the inverse of the
scattering rate). However, the electron mobility due to the plasmon scattering is not
easily evaluated because of the complicated logarithmic terms and thus here we
evaluate the mobility by approximating E(k) by kBT in the logarithmic terms. Then
the mobility due to the plasmon scattering is then given by

μpl = e

m∗ 〈τpl〉

� 32
√

π�
2ε∞

3
√
2e(m∗)3/2�ωp

(kBT )1/2

×
[

np ln

(
qc√

η+
√
2m∗kBT/�2 − √

2m∗kBT/�2

)

+(np + 1) ln

(
qcu(η−)

√
2m∗kBT/�2 − √

η−
√
2m∗kBT/�2

)]−1

, (6.399)

where η± = 1 ± (�ωp/kBT ), and other parameters are the same as defined before.
Calculated temperature dependence of the mobilities limited by plasmon scattering
are shown in Fig. 6.33, where we used scalar effective mass m∗ = 0.067m and
dielectric constant ε∞ = 10.92ε0, and the curves are obtained for three different
electron densities (1) 0.5 × 1018, (2) 1.0 × 1018, and (3) 2.0 × 1018 [cm−3]. These
results indicate that the plasmon limited mobility play an important role at higher
temperature, which reflects the excited number of the plasmon np.

In Fig. 6.34 the electronmobility due to plasmon scattering is plotted as a function
of electron density. We see a small step around T = 350 [K] for the electron density
n � 5.0× 1017 [cm−3], which will be explained in terms that the plasmon emission
rate includes the step function u(η−), where η− becomes 0 at T = 356.2 [K] for
�ωp = 30.7 [meV]. The discontinuity at lower electron density is explained in
terms that plasmon emission process is forbidden for kBT < �ωp. In order to obtain
the electron mobility limited by plasmon scattering we approximated by replacing
electron energy E(k) by kBT . However, we find that the calculated electron mobility
due to plasmon scattering does not show any noticeable change when we change the
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Fig. 6.33 Calculated
mobilities limited by
plasmon scattering in GaAs
are plotted as a function of
lattice temperature for
electron densities (1)
n = 0.5 × 1018, (2)
n = 1.0 × 1018, and
2.0 × 1018 [cm−3]. Used
parameters are
m∗ = 0.067m and
ε∞ = 10.92ε0

Fig. 6.34 Calculated
mobilities limited by
plasmon scattering in GaAs
are plotted as a function of
electron density at T = 300.
Electron energy in the
logarithmic terms are
approximated by average
electron energy
〈E(k)〉 = kBT and thus the
electron density
n = 3.55 × 1023 (dotted bar
in the figure) gives the
condition �ωp = kBT . In the
region of lower electron
density, only plasmon
absorption is allowed

average electron energy from kBT to (3/2)kBT , and thus the approximation is valid
for the electron mobility due to plasmon scattering.

Nowwe have to discuss the electron density dependence of themobility. As shown
Figs. 6.33 and 6.34, the electron mobility μpl increases with increasing the electron
density n. The mobility behaves as

μpl ∝ 1

�ωp
· 1

np
=

√
εm∗

ne2
·
[
exp

(
�ωp

kBT

)
− 1

]
(6.400)
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and thus at higher temperatures or lower electron density such as �ωp/kBT � 1 the
mobility is approximated as μpl ∝ �ωp/

√
n and thus electron density dependence is

very weak as observed in lower electron density n in Fig. 6.34. On the other hands, at
lower temperatures or higher electron density such as �ωp/kBT � 1, the mobility is
proportional to exp(�ωp/kBT )/

√
n, and thus the mobility increase with increasing

the electron density n because of the exponential term exp(�ωp/kBT ) as seen the
mobility at higher electron density in Fig. 6.34.

6.5.9 Alloy Scattering

The relaxation time for alloy scattering is given by (6.313) or (6.369), and the electron
mobility for alloy scattering is evaluated as

μalloy = 16e
√

π�
4

3(2m∗)5/2
1

(Va − Vb)2x(1 − x)Ω
(kBT )−1/2 , (6.401)

wherem∗ is the effective mass of the carrier Ω = a3/4 for a zinc blende crystal with
the lattice constant a.

Since we are not able to estimate |Va − Vb|, we evaluate the electron mobility
limited by the alloy scattering by assuming the mobility at 10K for x = 0.5 is 1.0×
104 [cm2/Vs], which gives |Va − Vb| = 3.185 [eV] for m∗ = 0.067m, a = 5.66 ×
10−10[m]. The calculated electron mobilities due to the alloy scattering are plotted
in Fig. 6.35 for x = 0.1 ∼ 0.5. We find in Fig. 6.35 that the alloy scattering becomes
very weak at lower temperatures and depends strongly on the alloy composition. The
alloy scattering depends strongly on the potential |Va − Vb|2 and the composition x .
Wemay expect that the alloy scattering plays an important role at higher temperatures
as shown in Fig. 6.35.

Fig. 6.35 Calculated electron mobility due to alloy scattering as a function of temperature for the
alloy composition x = 0.1 ∼ 0.5. The parameter |Va − Vb| is determined to give μ = 10 [m2/Vs]
at T = 10 [K]. Alloy scattering becomes very weak at lower temperatures and depends strongly on
the alloy composition
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6.5.10 Electron Mobility in GaN

Devices based on nitrides and their ternary alloys such as GaN and GaInN are very
important for light emitting diodes and lasers in the blue ray region. In addition
heterobipolar devices based on nitrides are becoming very important for high power
and high frequency devices. However, the transport properties are not well known
because of their complicated band structures. We deal with the energy band cal-
culations on nitrides and their ternary alloys in Chap. 9. Here electron mobility in
GaN is evaluated, assuming that the electron mobility is limited by the scattering
processes (1) acoustic phonon deformation potential (ac), (2) piezoelectric potential
(pz), (3) ionized impurity (BH: Brooks–Herring formula), (4) polar optical phonon
(pop) scatterings. Including these scattering processes, the relaxation time is given
by (6.396)

1

τtotal
= 1

τac
+ 1

τpz
+ 1

τBH
+ 1

τpop
, (6.402)

where the relaxation time for the respective scattering process is derived in Chap. 6.
The electron mobility is evaluated by (6.397)

μ = e

m∗
c

〈τtotal〉 , (6.403)

where we assume the effective mass is isotropic andm∗
c = m∗

d = m∗. The results are
shown in Fig. 6.36. The parameters used in the calculations are listed in Table6.5.

We find in Fig. 6.36 that the electron mobility of GaN at higher temperatures is
limited by the polar optical phonon energy and that the mobility at low temperatures
depend on the density of ionized impurities. The electron mobility is expected to
depend on the electron effective mass through the density of states mass m∗

d and
the conductivity effective mass m∗

c . Since the electron effective mass is not well
determined, it is very interesting to check the effective mass dependence of the

Fig. 6.36 Calculated
electron mobility of n-GaN,
where the used parameters
are given in Table6.5 and the
ionized impurity densities
are nI = 1.0 × 1015,
2.0 × 1015, and 5.0 × 1015

[cm−3]

http://dx.doi.org/10.1007/978-3-319-66860-4_9
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Table 6.5 Used parameters to evaluate electron mobility in n-GaN

Material parameters Symbol [units] Values

Electron effective mass m∗/m 0.22

Mass density ρ [kg/m3] 6.11 × 103

Elastic constant cl [N/m2] 3.82 × 1011

Static dielectric constant κ0 10.4

High freq. dielectric constant κ∞ 5.15

Optical phonon equiv temp. θpop [K] 1057 (91.1 meV)

Piezoelectric constant e31 [C/m2] -0.32

Piezoelectric constant e33 [C/m2] 0.63

Acoustic deformation potential E1 [eV] 13.5

Ionized impurity density nI [cm−3] 1.0 ∼ 5.0 × 1015

Table 6.6 Calculated electron mobility in GaN at T = 77 K and T = 300 K with the effective
mass m∗ = 0.22m and m∗ = 0.145m. The ionized impurity density is assumed to be 1.0 × 1015

cm−3

Electron effective mass m∗ μ (77K) μ (300K)

0.22m 2.05m2/Vs 0.225m2/Vs

0.145m 4.14m2/Vs 0.496m2/Vs

mobility. We describe the numerical calculations of the electron effective mass and
holemass by the pseudopotentialmethod inChap.9,whereweobtainm⊥/m = 0.145
andm‖/m = 0.135 for perpendicular and parallel to the c–axis of the crystal. On the
other hand the reported effective mass is m∗ = 0.22m as shown in Table9.6 (after
Vurgaftman andMeyer [59] in Chap.9). In Table6.6 the calculated electron mobility
at T = 77 K and T = 300 K with the effective mass m∗ = m∗

d = m∗
c = 0.145m and

0.22mas an example. Herewe find that the electronmobility depends on the effective
mass and the mobility for m∗ = 0.145 is approximately twice as the mobility for
m∗ = 0.22m. The effective mass dependence of the mobilities due to the respective
scatterings are

μac ∝ m∗−5/2
, μpop ∝ m∗−3/2

, μpz ∝ m∗−3/2
, μBH ∝ m∗−1/2

. (6.404)

6.6 Problems

This chapter deals with the scattering processes and evaluate electron mobilities due
to various scattering processes in detail. It is very helpful for readers to summarize the
processes in a short version. Here the readers are asked to summarize the respective

http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
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equations for acoustic phonon scattering as an example. This will help the readers
to understand other scattering processes.

(6.1) Show the scattering probability P(k, k′) for the acoustic phonon scattering,
using the interactionHamiltonian H1 = Hel. Describe how to derive the scattering
ratewac for an electron by acoustic phonon deformation potential scattering given
by (6.332). Discuss the assumptions used to derive the final result.

(6.2) Show that the relaxation time τac for an electron by acoustic phonon deforma-
tion potential scattering is given by (6.341) under the qmax = 2k(1±m∗vs/�k) �
2k.

(6.3) Calculate the relaxation time without the approximation, and compare the
result with the above calculations.

(6.4) Electron mobility of n-GaAs is limited by polar optical phonon scattering.
Using the parameters for GaAs listed in Table6.3, calculate the electron mobility
limited by polar optical phonon scattering in GaAs at the range of temperature
from 100 to 500 K.

(6.5) Calculate the electronmobility of GaN due to polar optical phonon scattering
and show the high temperaturemobility is limited by the polar optical phonon scat-
tering. Use the parameters listed in Table6.5. Also compare the electron mobility
for m∗ = 0.22m and m∗ = 0.10m at T = 100 and T = 300 K.
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Chapter 7
Magnetotransport Phenomena

Abstract Electron transport in a magnetic field exhibits various interesting char-
acteristics, which is called magnetotransport phenomena. In this chapter we deal
with Hall effect, magnetoresistance, and oscillatory magnetoresistance effects in
detail. Hall effect is very useful to determine the mobility and density of carri-
ers. Shubnikov–de Haas oscillations are observed in degenerate semiconductors and
provide the information of Fermi energy. Magnetophonon resonance arises from
inter-Landau level transitions of nondegenerate electron gas and gives the effective
mass. Once we know the effective mass we can deduce phonon energy involved
with the magnetophonon magnetophonon resonance. These two oscillatory magne-
toresistance effects are very widely used to investigate semiconductor parameters.
Quantum Hall effect is not dealt with here but discussed in detail in Chap. 8.

7.1 Phenomenological Theory of the Hall Effect

The application of a magnetic field perpendicular to the current through a conducting
material results in the generation of an electric field perpendicular to both the current
and the magnetic field. This phenomena was discovered in 1879 by E.H. Hall and
is called the Hall effect. This phenomena has been successfully used to investigate
the electronic properties of semiconductors and metals. In this section, first we deal
with the Hall effect in a simple way in which all the electrons have the same velocity
and later we will discuss a more accurate treatment using the Boltzmann transport
equation.

First, let us consider an infinitely long sample, as shown in Fig. 7.1, and assume that
a uniform current density J flows along the sample. An electron with drift velocity v

experience the Lorentz force F = −ev × B, where −e is the charge of the electron.
Let the electron density be n; the current density is then given by J = n(−e)v. When
the current flows in the +x direction, the velocity component is vx < 0 and thus the
electron drifts in the −x direction. In a magnetic field applied in the z direction, the
Lorentz force for the electron is given by Fy = −e(|vx |Bz) = −e|vx |Bz < 0, and
thus the electron is forced to move in the −y direction. Noting that the Hall effect is
normally measured as the electric field induced in the y direction without any flow
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Fig. 7.1 Hall effect in semiconductors. Hall fields for a electron (n-type semiconductor) and b
hole (p-type semiconductor) are reversed

of current in this direction, negative charges due to the electrons will accumulate on
the front surface as shown in Fig. 7.1 and immobile positive charges (donors) will
appear on the back surface, resulting in an electric field in the −y direction. The
induced electric field (Hall field) Ey < 0 will balance the Lorentz force and a steady
state will be achieved so that Fy + (−e)Ey = 0. This electric field Ey is called the
Hall Field, and we find the following relation:

Ey = vx Bz = − Bz Jx
ne

≡ RH Jx Bz , (7.1)

where RH is called the Hall coefficient. For electrons the Hall coefficient is given
by

RH = − 1

ne
. (7.2)

The angle θH between Ex and Ey is called the Hall angle, which is given by

tan θH = Ey

Ex
= −μeBz = ωcτ . (7.3)

In the above equation Jx = neμeEx , vx = −μEx and

ωc = eBz

m∗ , μe = eτ

m∗ (7.4)

are used and ωc is the cyclotron angular frequency defined in Chap. 2. The Hall effect
is schematically shown in Fig. 7.1a for negative charge carriers (electrons in n-type
semiconductors). On the other hand, Fig. 7.1b shows the Hall effect for holes (p-type
semiconductors). A hole current in the +x direction is produced by hole drift in the
+y direction (vx > 0), and the Lorentz force for a hole in the presence of a magnetic

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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field in the z direction directs it along the −y direction, resulting in positive and
negative charge accumulation on the +y surface and −y surface, respectively. This
charge accumulation gives rise to a Hall field in the +y direction, which is opposite
to the case for electrons. The Hall coefficient for holes with density p is therefore
given by

RH = 1

pe
. (7.5)

If we let the width in the y direction of a semiconductor sample be w and the thickness
in the z direction be t , then we obtain the Hall voltage in the y direction VH = wEy .
From current Ix = Jxwt and from (7.1) the Hall voltage is expressed as

VH = RH

t
Ix Bz . (7.6)

Measurement of the Hall effect gives the Hall coefficient RH from (7.6) and the
electron density n or hole density p are determined from (7.2) or (7.5), respectively.

It should be noted here that the Hall coefficient given by (7.2) and (7.5) are derived
under the assumption that the carrier relaxation time τ is independent of the carrier
energy. When the relaxation time τ depends on the carrier energy and the effective
mass is not scalar, the Hall coefficient is given by the following relation instead of
(7.2):

RH = − rH

ne
, (7.7)

where rH is called the scattering factor of the Hall coefficient, and is determined
from the scattering mechanisms and distribution function of the carriers. A detailed
treatment will be given in next section.

Using (6.121) for the conductivity σ the Hall coefficient (7.2) is rewritten as

|RH| σ = μ . (7.8)

This relation is valid only for rH = 1 as seen from (7.7), and in general use the
relation

|RH| σ = rHμ . (7.9)

As discussed later, it is very difficult to determine the scattering factor rH in semi-
conductors. We define the Hall mobility by

|RH| σ = μH (7.10)

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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where μH is called the Hall mobility. The Hall mobility defined above has the same
dimensions as the drift mobility but differs by a factor rH, or in other words, the
following relation holds.

μH

μ
= rH . (7.11)

Although the treatment stated above is based on a simplified model, the results
give good information to interpret the Hall effect. In the following we will derive
relations useful for understanding magnetotransport in semiconductors, which may
be extended to the more detailed general case. The equation of motion for an electron
is written as

m∗ dv

dt
+ m∗v

τ
= −e(E + v × B) . (7.12)

When a static electric field is applied to a semiconductor, the steady state condition
dv/dt = 0 gives rise to a steady-state drift velocity v given by

v = − eτ

m∗ E ≡ −μE . (7.13)

Applying the averaging procedure on this relation used in Sect. 6.2.2 gives the same
result for the drift mobility as (6.118). Therefore, the velocity is interpreted as the
drift velocity. In the presence of a magnetic field B, the velocity is given by

v = − eτ

m∗ (E + v × B) . (7.14)

If the magnetic field is along the z direction, the above equation leads to

vx = − eτ

m∗ (Ex + vy Bz) , (7.15a)

vy = − eτ

m∗ (Ey − vx Bz) , (7.15b)

vz = − eτ

m∗ Ez . (7.15c)

These relations are rewritten as

vx = − e

m∗

[
τ

1 + ω2
c τ

2
Ex − ωcτ

2

1 + ω2
c τ

2
Ey

]
, (7.16a)

vy = − e

m∗

[
ωcτ

2

1 + ω2
cτ

2
Ex + τ

1 + ω2
c τ

2
Ey

]
, (7.16b)

vz = − e

m∗ τEz . (7.16c)

Since the current density is given by J = n(−e)v, we obtain

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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Jx = ne2

m∗

[
τ

1 + ω2
c τ

2
Ex − ωcτ

2

1 + ω2
c τ

2
Ey

]
, (7.17a)

Jy = ne2

m∗

[
ωcτ

2

1 + ω2
c τ

2
Ex + τ

1 + ω2
c τ

2
Ey

]
, (7.17b)

Jz = ne2

m∗ τEz . (7.17c)

Therefore, writing the i component of the current as

Ji = σi j E j , [J ] = [σ][E] (7.18)

we find

[σ] =
⎡
⎣ σxx σxy 0

σyx σyy 0
0 0 σzz

⎤
⎦ , (7.19)

σxx = σyy = ne2

m∗ · τ

1 + ω2
c τ

2
, (7.20a)

σxy = −σyx = −ne2

m∗ · ωcτ
2

1 + ω2
c τ

2
, (7.20b)

σzz = ne2

m∗ τ ≡ σ0 . (7.20c)

Next, we will discuss the Hall effect, where we assume the current is in the x
direction and the magnetic field is applied in the z direction. The current density in
the x and y directions are then given by

Jx = σxx Ex + σxy Ey , (7.21a)

Jy = σyx Ex + σyy Ey . (7.21b)

Since the Hall effect is measured without current flow in the y direction, i.e. Jy = 0,
this condition gives rise to the following relation

Ey = −σyx

σyy
Ex = σxy

σxx
Ex = −ωcτEx . (7.22)

Inserting Ey into Jx of (7.21a), we get

Jx = σ2
xx + σ2

xy

σxx
Ex . (7.23)

It is very interesting to point out that (7.20a) and (7.20b) result in

Jx = ne2

m∗ τEx = neμEx = σ0Ex . (7.24)
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This result means that the current density Jx is independent of the magnetic field
Bz under the assumption we have used above, and that the resistivity is not changed
by the application of a magnetic field, resulting in no magnetoresistance effect. We
know that this conclusion conflicts with the experimental observations and that all
semiconductors exhibit magnetoresistance. This conflicting conclusion arises from
the following incorrect assumptions: (1) isotropic effective mass (spherical energy
surface), (2) electron relaxation time τ independent of electron energy and all elec-
trons drifting with the same velocity v, (3) shape of the sample not considered (the
length is infinite). Although these assumptions will lead to wrong conclusions, the
relations derived here give the correct expressions when we introduce the averaging
procedures later. For this reason we shall proceed with the theoretical analysis of
magnetotransport with the above simplified assumptions.

From (7.21b) and (7.23) we have

Ey = σxy

σxx
Ex = σxy

σ2
xx + σ2

xy

Jx ≡ RHBz Jx , (7.25)

and the Hall coefficient is generally expressed as

RH = σxy

σ2
xx + σ2

xy

1

Bz
. (7.26)

Under the above assumption, substituting (7.20a), (7.20b) or (7.24) into (7.25) we
obtain

Ey = −ωcτEx = −μBz
Jx
σ0

= − 1

ne
Bz Jx (7.27)

and thus RH = −1/ne, which is equivalent to (7.2).
Next, we will consider the case where two types of carriers are present. Let us

identify two types of carriers by using subscripts 1 and 2. We therefore obtain

Jx = [
σ(1)
xx + σ(2)

xx

]
Ex + [

σ(1)
xy + σ(2)

xy

]
Ey , (7.28a)

Jy = [
σ(1)
xy + σ(2)

xy

]
Ex + [

σ(1)
xx + σ(2)

xx

]
Ey . (7.28b)

Let us define the electrical conductivity for each carrier by σ1 and σ2, and the Hall
coefficient by R1 and R2. Then, from (7.20a) and (7.20b) we have for carrier 1

σ(1)
xx = σ1

1 + σ2
1 R

2
1 B

2
z

, σ(1)
xy = − σ2

1 R1Bz

1 + σ2
1 R

2
1 B

2
z

(7.29)

and similar relations for carrier 2. From the condition for achieving the Hall effect
we put Jy = 0 and in the same way as we derived (7.26) we obtain

RHBz = σ(1)
xy + σ(2)

xy[
σ(1)
xx + σ(2)

xx
]2 + [

σ(1)
xy + σ(2)

xy
]2 . (7.30)
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Inserting (7.29) and the same expression for carrier 2 in this equation we find

RH = σ2
1 R1(1 + σ2

2 R
2
2 B

2
z ) + σ2

2 R
2
2(1 + σ2

1 R
2
1 B

2
z )

(σ1 + σ2)2 + σ2
1σ

2
2(R1 + R2)2B2

z

. (7.31)

It is very important to point out here that (7.31) is valid even if the relaxation time
τ (τ1 and τ2) depends on the carrier energy, and thus it gives the general expression
for the Hall coefficient with two types of carriers.

Since σ1|R1| = μ1 and σ2|R2| = μ2, in the weak magnetic field case such as
μ1Bz � 1 and μ2Bz � 1, (7.31) may be approximated as

RH(0) = σ2
1 R1 + σ2

2 R2

(σ1 + σ2)2
. (7.32)

On the other hand, in the high magnetic field case such that σ1|R1|Bz = μ1Bz � 1
and σ2|R2|Bz = μ2Bz � 1 are satisfied, we obtain

RH(∞) =
(

1

R1
+ 1

R2

)−1

. (7.33)

As an example, we consider the case of two carriers, electrons and holes, with
respective mobilities μe and μh , densities n and p, and assume rH = 1 for simplicity.
Inserting σ1 = neμe, σ2 = peμh, R1 = −1/ne and R2 = 1/pe into (7.31) we obtain

RH = (p − nb2) + b2μ2
hB

2
z (p − n)

(bn + p)2 + b2μ2
hB

2
z (p − n)2

· 1

e
, (7.34)

where b = μe/μh is the mobility ratio. Due to the assumptions described above, the
above equation is valid for rH = 1 and thus for the case where the relaxation times
are independent of energy and are constant. From this equation we find that the Hall
coefficient becomes zero or RH = 0, when the following relation is satisfied:

p = nb2(1 + μ2
hB

2
z )

1 + b2μ2
hB

2
z

. (7.35)

The Hall coefficients at low magnetic fields, RH(0), and at high magnetic fields,
RH (∞), are given as follows from (7.32) and (7.33): respectively.

RH(0) = pμ2
h − nμ2

e

e(pμh + nμe)2
= p − b2n

e(nb + p)2
, (7.36)

RH(∞) = 1

e(p − n)
. (7.37)
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7.2 Magnetoresistance Effects

7.2.1 Theory of Magnetoresistance

We have discussed the current density in the presence of a magnetic field in Sect. 7.1,
where we assumed free electrons with scalar effective mass m∗ and constant drift
velocity v. Under this assumption we have shown that no magnetoresistance effect
appears. Here we discuss a more exact treatment of the magnetoresistance effect with
the help of the Boltzmann transport equation.

In the presence of a d.c electric field E and magnetic field B, the Lorentz force
acting on the electrons given by the right-hand side of (7.12), and insertion of this
relation into (6.90) results in

− e

�

(
E + 1

�

∂E
∂k

× B
)

· ∂ f

∂k
= − f − f0

τ
≡ − f1

τ
. (7.38)

Here, the distribution function f0 under thermal equilibrium is a function of the
electron energy E(k) and we find

∂ f0
∂k

= ∂ f0
∂E · ∂E

∂k
. (7.39)

The right-hand side of (7.38), − f1/τ , is obtained from the first-order approximation
by inserting f0 into f of the right-hand side:

− f1
τ

= − e

�2

(
∂E
∂k

× B
)

· ∂E
∂k

∂ f0
∂E . (7.40)

Since [∂E(k)/∂k]× B is orthonormal to ∂E(k)/∂k, (7.40) becomes zero. Therefore,
only the term f1 of the distribution function f = f0 + f1 will contribute to the
magnetic effect and (7.38) is approximated as

− e

�
E · ∂ f0

∂k
− e

�2

∂E
∂k

× B · f1
∂k

= − f1
τ

. (7.41)

In the following we will solve this equation under the assumption that the distribution
function is not significantly changed in a weak electric field. In addition, we will not
take account of the quantization of the electronic states.

7.2.2 General Solutions for a Weak Magnetic Field

In a weak magnetic field B, except for B = 0, we may obtain solutions by an iterative
method. We start from the solution for zero magnetic field. In zero magnetic field

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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we have from (7.41)

f1 = eτ

�
E · ∂ f0

∂k
≡ eτ

�

(
E · ∂E

∂k

)
∂ f0
∂E = eτ

�

(∑
j

E j
∂E
∂k j

)
∂ f0
∂E

≡ f (0)
1 , (7.42)

where E j and ∂E/∂k j represent the j component of E and ∂E/∂k, respectively.
In the following we have omitted the symbol of summation. Inserting this f1 into
(7.41), the distribution function in the case of B �= 0 is obtained in the first order of
B, which is given by

f1 = f (0)
1 + eτ

�2

(
∂E
∂k

× B
)

· ∂ f (0)
1

∂k

+ e2τ

�4

(
∂E
∂k

× B
)

· ∂

∂k

[
τ

(
∂E
∂k

× B
)

· ∂ f (0)
1

∂k

]

≡ f (2)
1 . (7.43)

Inserting this in the equation of current density

J = − e

4π3

∫
v f1d3k = − e

4π3

∫
1

�

∂E
∂k

f1d3k , (7.44)

we obtain the current density in the general form in the presence of a weak magnetic
field. The equation may be written in the tensor form

Ji = σi j E j + σi jl E j Bl + σi jlm E j Bl Bm , (7.45)

where the first, second and third terms on the right-hand side are respectively obtained
from the first, second and third terms on the right-hand side of (7.43). Rewriting (7.44)
as

Ji = − e

4π3�

∫
∂E
∂ki

f1d3k , (7.46)

we obtain the following relations:

σi j = − e2

4π3�2

∫
d3k

∂ f0
∂E τ

∂E
∂ki

∂E
∂k j

, (7.47a)

σi jl = − e3

4π3�4

∫
d3k

∂ f0
∂E τ

∂E
∂ki

[
∂E
∂kr

∂

∂ks

(
τ

∂E
∂k j

)]
εrls , (7.47b)

σi jlm = − e4

4π3�6

∫
d3k

∂ f0
∂E τ

∂E
∂ki

×
{

∂E
∂kr

∂

∂ks

[
τ

∂E
∂kt

∂

∂ku

(
τ

∂

∂k j

)]}
εmrsεltu , (7.47c)



374 7 Magnetotransport Phenomena

where εlrs is called the permutation tensor and has the following relations. When
two of the subscripts lrs are the same, εlrs = 0. When the subscripts are in the order
12312 . . . and 21321 . . ., εlrs are 1 and −1, respectively. The coefficients defined
in (7.47a)–(7.47c) are general expressions for the electrical conductivity tensor in
the presence of a magnetic field, and its i j component is given by (σi j + σi jl Bl +
σi jlm Bl Bm). Here, σi j is the second-rank tensor of the electrical conductivity and
the equivalent to the conductivity for B = 0. σi jl is the third-rank Hall effect tensor
and σi jlm is the fourth-rank magnetoconductivity tensor. The physical meaning of
these tensors can be understood from the following examples.

7.2.3 Case of Scalar Effective Mass

The constant energy surface of conduction band is assumed to be spherical and
expressed as

E(k) = �
2

2m∗ k
2 , (7.48)

where m∗ is the scalar effective mass. Then we have the following relations:

∂E
∂ki

= �
2

m∗ ki ,
∂2

∂ki∂k j
= �

2

m∗ δi j . (7.49)

Inserting these relations into (7.47a)–(7.47c), we carry out the integration using polar
coordinates with the polar axis along the electric field E and with the angle θ between
k and E. In other words, we may put d3k = k2 sin θdθdφdk and we obtain from
(7.47a)

σi j = − e2
�

2

4π3m∗2

∫ ∞

0
dk · k2

∫ π

0
dθ · sin θ

∫ 2π

0
dφ · k2 · cos2 θ

∂ f0
∂E τδi j

= −2ne2

3m∗

[∫ ∞

0
τE3/2 ∂ f0

∂E dE
/ ∫ ∞

0
E1/2 f0dE

]
δi j . (7.50)

Using (6.103) in the above equation, we find the same result as (6.106). In the case
of non-degenerate semiconductors, the above result leads to (6.114). In a similar
fashion, we may calculate (7.47b) and (7.47c), giving rise to the following relations:

σi j = ne2

m∗ 〈τ 〉δi j ≡ σ0δi j , (7.51a)

σi jl = − ne3

m∗2
〈τ 2〉εi jl ≡ γ0εi jl , (7.51b)

σi jlm = ne4

m∗3
〈τ 3〉εmisεls j ≡ β0εmisεls j . (7.51c)
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Therefore, if we write the current density tensor in a weak magnetic field as

[J ] = [σ(B)][E] , (7.52)

we obtain the electrical conductivity tensor [σ(B)] given by

[σ(B)]

=
⎡
⎣ σ0 + β0[B2

y + B2
z ] γ0Bz − β0Bx By −γ0By − β0Bx Bz

−γ0Bz − β0Bx By σ0 + β0(B2
x + B2

z ) γ0Bx − β0By Bz

γ0By − β0Bx Bz −γ0Bx − β0By Bz σ0 + β0(B2
x + B2

y )

⎤
⎦ . (7.53)

Here we will separate the conductivity tensor into terms independent of the mag-
netic field B, and terms proportional to B and to B2, and then we find the following
relations:

σi j =
⎡
⎣ σ0 0 0

0 σ0 0
0 σ0

⎤
⎦ , σi jl Bl =

⎡
⎣ 0 γ0Bz −γ0By

−γ0Bz 0 γ0Bx

γ0By −γ0Bx 0

⎤
⎦ ,

σi jlm Bl Bm =
⎡
⎣ β0(B2

y + B2
z ) −β0Bx By −βBx Bz

−β0Bx By β0(B2
x + B2

z ) −β0By Bz

−β0Bx Bz −β0By Bz β0(B2
x + B2

y )

⎤
⎦ . (7.54)

Next, we discuss the Hall effect in a weak magnetic field. In order to compare the
results of Sect. 7.1, we assume that the magnetic field B is applied in the z direction
and Bx = By = 0. Then we obtain from (7.53) and (7.54)

Jx = (σ0 + β0B
2
z )Ex + γ0BzEy , (7.55a)

Jy = −γ0BzEx + (σ0 + β0B
2
z )Ey . (7.55b)

Comparing this with (7.20a)–(7.20c), (7.21a) and (7.21b) the following results are
derived.

σxx = σyy = σ0 + β0B
2
z

ne2

m∗ 〈τ 〉 − ne2ω2
c

m∗ 〈τ 3〉 , (7.56a)

σxy = −σyx = γ0Bz = −ne2ωc

m∗ 〈τ 2〉 . (7.56b)

Here the final expressions of the above equations are rewritten by using (7.51a)–
(7.51c) and the cyclotron frequency ωc = eBz/m∗. When τ is independent of the
electron energy, we have 〈τ n〉 = τ n and thus (7.20a) and (7.20b) agree with (7.56a)
and (7.56b) in the limit of a weak magnetic field ωcτ � 1. The Hall coefficient is
also obtained by introducing the condition Jy = 0 as follows. Putting Jy = 0 in
(7.55b), we calculate Ex and insert it into (7.55a) to obtain

Ey = σxy

σ2
xx + σ2

xy

Jx = γ0

(σ0 + β0B2
z )

2 + γ0B2
z

Jx Bz . (7.57)



376 7 Magnetotransport Phenomena

Therefore, the Hall coefficient RH is given by

RH = σxy

σ2
xx + σ2

xy

Jx = γ0

(σ0 + β0B2
z )

2 + γ2
0 B

2
z

∼= γ0

σ2
0

, (7.58)

where the final result is obtained by taking account of the fact that σ0 � β0B2
z and

σ0 � γ0Bz in the weak magnetic field limit. Substituting (7.51b) in (7.58), the Hall
coefficient in a weak magnetic field is written as

RH = − rH

ne
, (7.59)

where rH is defined by

rH = 〈τ 2〉
〈τ 〉2

. (7.60)

According to the above results we find that the scattering factor of the Hall effect
rH may be calculated when the distribution function and energy dependence of the
relaxation time τ are known. As an example, we assume a Maxwellian distribution
function and τ = aE−s , and then from (6.116) the following result is obtained:

rH = Γ (5/2 − 2s)Γ (5/2)

[Γ (5/2 − s)]2
. (7.61)

In the case of acoustic phonon scattering as discussed in Sect. 6.4 (see (6.341)), we
have s = 1/2 and

rH = 3π

8
= 1.18 , (7.62)

which is very close to 1. In the case of impurity scattering, however, we have s =
−3/2, as derived in Sect. 6.4, and

rH = 315π

512
= 1.93 , (7.63)

which means that the Hall mobility is almost twice the drift mobility.

7.2.4 Magnetoresistance

Here we will derive the Hall coefficient and magnetoresistance in a semiconductor
with scalar mass in an arbitrary magnetic field. Let us assume the distribution function

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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f1 = c · k , (7.64)

and determine the coefficient c. Inserting this f1 into (7.41) we obtain

[
�e

m∗
∂ f0
∂E E + e

m∗ B × ∂

∂k
(c · k) − c

τ

]
· k = 0 . (7.65)

The coefficient c is determined by dividing (7.65) into its components and solving
the simultaneous equations of cx , cy and cz . Inserting the components cx , cy and cz
into (7.64) and rewriting again in a vector form we obtain

f1 = �e

m∗
τ

1 + (eτ/m∗)2B2

∂ f0
∂E

×
[

E + eτ

m∗ B × E +
( eτ

m∗
)2

(B · E)B
]

· k . (7.66)

Here we show that the above result coincides with that obtained for the weak magnetic
field case. Rewriting the coefficient of the above equation as

τ

1 + ω2
c τ

2
= τ − ω2

c τ
3

1 + ω2
c τ

2
,

we easily find that it may be approximated τ −ω2
c τ

3 in the case of ωcτ � 1, leading
to conductivity tensor (7.53) for low magnetic field case. From such a comparison
the conductivity tensor for an arbitrary magnetic field is obtained from (7.53) by
replacing

γ0 → γ = − ne3

m∗2

〈
τ 2

1 + ω2
c τ

2

〉
, (7.67a)

β0 → β = − ne4

m∗3

〈
τ 3

1 + ω2
c τ

2

〉
, (7.67b)

where 〈· · · 〉 is the averaged value over the distribution function as given by (6.116).
In the case of Bx = By = 0, Bz �= 0, and Ez = 0, we obtain

Jx = (σ0 + βB2
z )Ex + γBzEy

= ne2

m∗

[〈
τ

1 + ω2τ 2

〉
Ex −

〈
ωcτ

2

1 + ω2
cτ

2

〉
Ey

]
, (7.68a)

Jy = −γBzEx + (σ0 + βB2
z )Ey

= ne2

m∗

[〈
ωcτ

2

1 + ω2
c τ

2

〉
Ex +

〈
τ

1 + ω2
c τ

2

〉
Ey

]
. (7.68b)

From a comparison of these relations with (7.17a) and (7.17b), we find that the
difference is the averaging by the distribution function. Therefore, we obtain for the
Hall coefficient

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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RH = − 1

ne

〈
τ 2

1 + ω2
c τ

2

〉

〈
τ

1 + ω2
c τ

2

〉2

+ ω2
c

〈
τ 2

1 + ω2
c τ

2

〉2 (7.69)

and thus the scattering factor of the Hall coefficient rH is given by

rH =

〈
τ 2

1 + ω2
c τ

2

〉

〈
τ

1 + ω2
c τ

2

〉2

+ ω2
c

〈
τ 2

1 + ω2
c τ

2

〉2 . (7.70)

Next, deriving Ey from the condition Jy = 0 and inserting it into (7.68a), we
obtain

Jx = σ2
xx + σ2

xy

σxx
Ex ≡ σ(B)Ex , (7.71a)

σ(B) = ne2

m∗

〈
τ

1 + ω2
c τ

2

〉2

+ ω2
c

〈
τ 2

1 + ω2
c τ

2

〉2

〈
τ

1 + ω2
c τ

2

〉 . (7.71b)

Equation (7.69) leads to the Hall coefficient in two extreme cases. In a weak magnetic
field such that ωcτ � 1, (7.59) and (7.60) are deduced. On the other hand, in a strong
magnetic field such that ωcτ � 1, we obtain

RH
∼= − 1

ne
, (7.72)

and the Hall coefficient is independent of the scattering mechanisms and exhibits
saturation.

The magnetoresistance is calculated from (7.71b). Since the resistivity ρ is related
to the conductivity σ by the relation ρ = 1/σ, expressing these by

σ = σ0

(
1 − Δσ

σ0

)
, (7.73a)

ρ = ρ0

(
1 + Δρ

ρ0

)
, (7.73b)

the magnetoresistance and magnetoconductance in a weak magnetic field are obtained
from (7.71b) and from the assumption of Δσ/σ0 � 1 as

−Δσ

σ0
= Δρ

ρ0
= ω2

c
〈τ 3〉〈τ 〉 − 〈τ 2〉2

〈τ 〉2
. (7.74)
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This may be rewritten as the following by defining the Hall coefficient given by
(7.59) at low magnetic field as RH(0) and using (7.60):

Δρ

ρ0
= −Δσ

σ0
= ξRH(0)2σ2

0B
2
z = ξ(μHBz)

2 , (7.75a)

ξ = 〈τ 3〉〈τ 〉
〈τ 2〉2

− 1 . (7.75b)

When we assume a relation τ = aE−s , ξ is given by

ξ = Γ (5/2 − 3s)Γ (5/2 − s)

[Γ (5/2 − 2s)]
− 1 . (7.76)

For acoustic phonon scattering, s = 1/2, the above expression reduces to

ξ = 4

π
− 1 = 0.273 , (7.77)

and for ionized impurity scattering, s = −3/2, we obtain

ξ = 32768

6615π
− 1 = 0.577 . (7.78)

In general, 〈τ 3〉〈τ 〉 is larger than 〈τ 2〉2, and the relation ξ ≥ 0 holds. Therefore, in
the presence of a magnetic field, the resistivity increases, showing positive mag-
netoresistance. It is also clear that no magnetoresistance appears in the case of
constant τ (τ is independent of electron energy) because we have ξ = 0 for this
case. Another important conclusion is drawn for a degenerate semiconductor. Since
∂ f0/∂E is approximated by the δ-function in degenerate semiconductors, 〈τ n〉 ∼= τ n

F
and ξ ∼= 0, indicating that the magnetoresistance is extremely small for a degenerate
semiconductor with scalar effective mass.

The physical meaning of the magnetoresistance is as follows. In a transverse
magnetic field an electron is exposed to a Lorentz force, moving in the direction
perpendicular to the magnetic field and the current, and induces the Hall field. When
the force due to the Hall field balances the Lorentz force, the electron will move
straight through the sample. However, the electrons are distributed over the energy
range determined by the distribution function and thus there exist electrons with
lower and higher velocities compared to the average velocity which produces the
Hall field. The Lorentz force of the electrons with lower and higher velocities will
not balance the force due to the Hall field and and thus they spread out, resulting in
increasing resistivity (magnetoresistance: Δρ/ρ0 ≥ 0).

Finally, we derive the magnetoresitance in a high magnetic field. From (7.71b)
the conductivity σ∞ and resistivity ρ∞ in the limit of ωcτ � 1 are given by

σ0

σ∞
= ρ∞

ρ0
= 〈1/τ 〉〈τ 〉 , (7.79)
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and again assuming the relation τ = aE−s we obtain

ρ∞
ρ0

= Γ (5/2 + s) · Γ (5/2 − s)

[Γ (5/2)]2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

32

9π
= 1.13 (s = 1/2) ,

32

3π
= 3.39 (s = −3/2) .

(7.80)

7.3 Shubnikov–de Haas Effect

7.3.1 Theory of Shubnikov–de Haas Effect

In Sect. 2.5 we have discussed electron motion in a magnetic field and explained that
the electron cyclotron motion is quantized to form Landau levels. In addition the
density of states for the quantized electrons is given by (2.132) and the features are
shown in Fig. 2.16. Considering a degenerate semiconductor, and letting the electron
density be n and the Fermi energy be EF , we have in the limit of temperature T = 0

EF = �
2

2m∗
(
3π2n

)2/3
. (7.81)

When a magnetic field applied to the semiconductor is changed, the Fermi energy
passes through the bottoms of the Landau levels. In a magnetic field such that the
Fermi energy is located at the bottom of one of the Landau levels, where the density
of states is a maximum, the scattering rate for electrons is high because there are
many final states for scattered electrons. If the Fermi energy is not changed by the
presence of magnetic field, the above condition is written as

EF = �ωc

(
N + 1

2

)
= eB

m∗

(
N + 1

2

)
, N = 0, 1, 2, . . . (7.82)

and therefore the magnetoresistance oscillates periodically with the inverse magnetic
field 1/B. The period is then given by

Δ

(
1

B

)
= e�

m∗EF
= 2e

�

(
3π2n

)−2/3
. (7.83)

This phenomenon is called the Shubnikov–de Haas effect. It is not possible to
explain the Shubnikov–de Haas effect by the classical theory of the Boltzmann
transport equation. One of the most well-known and understandable methods for
this is the density matrix method. The Kubo formula, a generalized linear theory,
has been widely used to understand quantum transport including the Shubnikov–de

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Haas effect and the detail is found in references [1, 2]. Here we will try to explain it
in a simplified manner.

Using the result of the previous section, in a magnetic field applied in the z
direction, the transverse magnetoresistance ρ⊥, longitudinal magnetoresistance ρ‖
and Hall coefficient RH are, respectively, given by

ρ⊥ = σxx

σ2
xx + σ2

xy

, (7.84a)

ρ‖ = 1

σzz
, (7.84b)

RH = − 1

Bz

σyx

σ2
xx + σ2

yx

. (7.84c)

As described later, not only the Shubnikov–de Haas effect but also other quantum
effects, namely the quantum galvanomagnetic effect, are observed under the con-
dition ωcτ = μBz � 1. Under this condition σxy � σxx is satisfied and thus we
obtain the relations

ρ⊥ ∼= σxx

σ2
xy

, (7.85a)

RH
∼= − 1

Bzσyx
. (7.85b)

In the a case where ωcτ � 1 is satisfied, the magnetoresistance effect cannot be
treated by classical theory. This is understood from the discussion stated in Sect. 2.5.
When ωcτ � 1 is satisfied, the electron motion of the Landau orbit results in the
formation of Landau levels. When an electric field Ex is applied in the x direction,
perpendicular to the magnetic field applied in the z direction, the electron will move
with a velocity Ex/Bz in the y direction as shown on the left of Fig. 2.15. In other
words, as shown by (2.127), the cyclotron center coordinates (X,Y ) are given by

Ẏ = Ex

Bz
, Ẋ = 0 , (7.86)

and the electron moves with a constant velocity in the y direction. This gives us the
current density Jy = neEx/By ≡ σyx Ex , and therefore we obtain the conductivity
σyx

σyx = ne

Bz
. (7.87)

Inserting this conductivity tensor into (7.85b), we find that the result agrees with the
Hall coefficient (7.72) for high magnetic field obtained in Sect. 7.2:

RH
∼= − 1

ne
. (7.88)

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Since no current flows in the x direction, we have σxx = 0. In experiments we
observe current in the x direction, which may be interpreted as follows. As shown
on the right of Fig. 2.15, scattering of an electron results in a change of its cyclotron
center, and its component along the x direction gives rise to a current component Jx
and thus to σxx �= 0. It is very interesting to point out that the current due to the drift
motion is disturbed by scattering according to the classical transport theory, whereas
in the presence of a high magnetic field a current component along the electric field
direction is induced by electron scattering.

From the example stated above, we find that quantum magnetotransport phenom-
ena are completely different from classical transport phenomena. Also, we have to
note again that the electron motion is quantized due to cyclotron motion in the plane
perpendicular to the magnetic field, giving rise to one-dimensional motion allowed
only along the z direction. This quantization leads to the density of states shown in
Fig. 2.16. The one-dimensional density of states results in a divergence of the elec-
tron scattering rate at the bottom of the Landau level. To calculate the current density
by solving a transport equation, the current density is evaluated with the electron
density of states by averaging over the electron energy. Therefore, the density of
states appears twice in the calculations, resulting in a logarithmic divergence of the
current. This means that the current and thus the conductivity plotted as a function of
inverse magnetic field oscillate periodically. Although magnetotransport phenomena
are often analyzed by the density matrix method or Kubo formula [2] as stated earlier,
here we describe the outline of the method adopted by Roth and Argyres [1].

We define the one-electron Hamiltonian in a magnetic field by H0, which is written
as

H0 = 1

2m∗ ( p + eA)2 + gμBs · B , (7.89)

where the electron spin is considered, g is the effective g-factor, and μB = e�/2m.
The eigenvalues for the Hamiltonian (7.89) may be given by the following equation
from the analogy of the treatment stated in Sect. 2.5:

Enk± =
(
N + 1

2
± ν

2

)
�ωc + Ez ; Ez = �

2k2
z

2m∗ , (7.90)

where ν = m∗g/2m. Also, it is evident that the density of states is given by

g(E, Bz) = 1

V

∑
N k±

δ[EN k± − E]

=
(

2m∗

�2

)1/2 1

(2πl)2

∑
N ,±

[
E −

(
N + 1

2
± ν

2

)
�ωc

]−1/2

. (7.91)

Here, V = L3 is the crystal volume and l = (�/eB)1/2 = (�/m∗ωc)
1/2 is defined

by (2.108), which corresponds to the classical cyclotron radius. In general we may
express the density of states g(d) for a d-dimensional band as

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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g(d) = 2

V

∑
k

δ[Ek − E] = 2

(2π)d

∫
ddk (7.92)

and for a three-dimensional band we have

g(3)(E) = 2

(2π)3

∫
d3k = 2

(2π)3

∫
4πk2dk = 1

2π2

(
2m∗

�2

)3/2

E1/2. (7.93)

The one-dimensional density of states in a magnetic field is evaluated by using the
Poisson summation formula:

∞∑
m=0

Φ

(
m + 1

2

)
=

+∞∑
−∞

(−1)r
∫ ∞

0
Φ(x)e2πir xdx (7.94)

and the following relation is obtained in the limit of �ωc � 1 using the three-
dimensional density of states, g(3):

g(E, Bz)

= g(3)

[
1 +

(
�ωc

2E
)1/2 ∞∑

r=1

(−1)r

r1/2
cos

(
2πE
�ωc

r − π

4

)
cos(πνr)

]
. (7.95)

From these results we find that the density of states oscillates periodically with inverse
magnetic field 1/Bz . This oscillatory feature is reflected in the magnetoresistance
oscillations.

The one-electron density matrix, ρT(t), satisfies (see Appendix F for the density
matrix)

i�
dρT

dt
= [

H0 + H ′ + F, ρT
]

, (7.96)

where H ′ is the scattering potential, and F represents the interaction with an electric
filed E given by

F = eE · r . (7.97)

The current density J is evaluated from

J = − e

V
Tr(ρTv) , (7.98)

where V is the crystal volume, and v = ( p + eA)/m∗ is the velocity operator stated
in Sect. 2.5 and given by

v = 1

m∗
(
px , �ky + eBx, �kz

)
. (7.99)

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Since the total number of electrons is conserved, we have for the electron density n

1

V
Tr(ρT) = n . (7.100)

Rewriting the density matrix as

ρT = ρ0 + ρ(t) , (7.101)

ρ0 is written using the Fermi–Dirac distribution function as

ρ0 = 1

e(E−EF)/kBT + 1
. (7.102)

Using these results (7.96) is rewritten as

i�
dρ(t)

dt
= [H0 + H ′, ρ(t)] + [F, f (H0 + H ′)] ; ρ(0) = 0 , (7.103)

where f is the Fermi–Dirac distribution function. Solving the above equation for the
one-electron density matrix for the electron-phonon interaction, the current density
is evaluated from (7.98) and so we derive the magnetoconductivity.

7.3.2 Longitudinal Magnetoresistance Configuration

The case where the magnetic and electric fields are applied in the same direction,
the z direction, is called the longitudinal configuration and the magnetoresistance is
called the longitudinalmagnetoresistance. For simplicity we define a new subscript
μ instead of the subscripts N k±. Then the equation of motion for the diagonal element
of the density matrix ρμ is written as the following [6]:

∑
ν

{
wμνρμ(1 − ρν) − wνμρν(1 − ρμ)

} = eEzv
z
μ

d f (Eμ)

dEμ
, (7.104)

where vz
μ is the z component of the velocity operator vμ for the Landau state |μ〉 =

|N k±〉 and wμν is the scattering rate of an electron between the Landau states |μ〉
and |ν〉 which is given by

wμν = wνμ = 2π

�
|H ′

μν |2δ[Eμ − Eν] . (7.105)

Measurements of the Shubnikov–de Haas effect in semiconductors have been carried
out at low temperatures to achieve the condition ωcτ � 1, where impurity scatter-
ing and acoustic phonon scattering are dominant. The scattering probabilities are
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obtained from the method described in Sect. 6.2. It should be noted that electron spin
is conserved in the scattering. For impurity scattering we have

wμν = 2π

�

NI

V

∑
q

|H ′(q)|2 ∣∣〈μ ∣∣eiq·r ∣∣ ν
〉∣∣2

δ[Eμ − Eν] , (7.106)

and for acoustic phonon scattering we obtain

wμν = 2π

�

∑
q

|C(q)|2 ∣∣〈μ ∣∣eiq·r ∣∣ ν
〉∣∣2

× {
(nq + 1)δ[Eμ − Eν − �ωq ] + nqδ[Eμ − Eν + �ωq ]

}
, (7.107)

which are shown in Chap. 6. Here, q = ( j, q) represents mode j and wave vector
q for an acoustic phonon with energy �ωq , and nq is the Bose–Einstein distribution
function given by nq = 1/[exp(�ωq/kBT )−1]. The matrix element 〈μ| exp(iq ·r)|ν〉
appearing in both impurity and acoustic phonon scattering is evaluated from the
eigenfunctions of (2.120). The detail of the evaluation is given by Kubo et al. [2].

We expand the diagonal element of the density matrix as

ρμ = f (Eμ) + ϕμ
d f (Eμ)

dEμ
, (7.108)

where f (E) = 1/[exp{(E − EF)/kBT } − 1] is the Fermi–Dirac distribution function
and d f/dE is given by (6.103). Impurity scattering is known to be elastic scattering.
Assuming that the acoustic phonon scattering is elastic, we find that f (Eμ) before
scattering is equal to f (Eν) after scattering. Therefore, the left-hand side of (7.104)
is rewritten as

∑
ν wμν(ρμ − ρν), and (7.104) reduces to

∑
ν

wμν(ϕμ − ϕν) = eEzv
z
μ . (7.109)

When we adopt the relaxation time approximation as in Sect. 6.2, which is used for
solving the classical Boltzmann transport equation, it is possible to express the above
relation as

∑
ν

wμν(ϕμ − ϕν) = ϕμ

τμ
, (7.110)

where the following relation holds between the relaxation time τμ and scattering
probability wμν :

1

τN k±
=

∑
N ′k′

wN k±,N ′k′±
(

1 − k ′
z

kz

)
. (7.111)

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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As described in Sect. 6.4, the inverse of the relaxation time is equivalent to the
scattering rate in the case of isotropic and elastic scattering and therefore we have

ϕμ = eEzτμv
z
μ . (7.112)

Inserting this into (7.108) and using the result to evaluate (7.98), we obtain the
longitudinal magnetoresistance given by

ρ−1
‖ = σzz = −e2

V

∑
N k±

d f

dEN k±
τ± (EN k)

(
vz
N k

)2
. (7.113)

The Fermi energy of electron in the presence of a magnetic field is determined
from (7.91) as

n =
∫ ∞

0
f (E)g(E, Bz)dE . (7.114)

Assuming that the electron density is conserved, the Fermi energy in a magnetic
field EF differs from the Fermi energy for zero magnetic field E0

F and depends on the
magnetic field. In general, we may expand the Fermi energy in a magnetic field as

EF = E (0)
F + E (1)

F B2
z + Eosc

F , (7.115)

where Eosc
F is is a sum of quasiperiodic functions in 1/Bz , whose amplitude is pro-

portional to (�ωc/E (0)
F )3/2E (0)

F and is small compared to E (0)
F . In general, neglecting

the terms beyond the first term on the right-hand side of (7.115), the Fermi energy
is often approximated as EF = E (0)

F . As discussed in Sect. 6.2.2, d f/dE in (7.113) is
given by −(1/kBT ) f (1 − f ), which behaves like a δ-function, and thus in the limit
of kBT � �ωc we obtain

ρ−1
‖ = ρ−1

0

4
√
E (0)

F

n�ωc

∑
±

n±∑
N

[EF − (N + 1
2 ± 1

2ν)�ωc
]−1/2 , (7.116)

where ρ0 = m∗/ne2τ0(E (0)
F ) is the resistivity for Bz = 0, τ0(E (0)

F ) is the relaxation
time for electrons with Fermi energy at Bz = 0, n± are the electron densities for
electron spins ±, and n = n+ + n−. In the case of EF � �ωc, the longitudinal
magnetoresistance for an arbitrary value of kBT/�ωc is written as

ρ‖ ∼= ρ0

[
1 +

∞∑
r=1

br cos

(
2πEF

�ωc
r − π

4

)]
, (7.117)

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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where

br = (−1)r

r1/2

(
�ωc

2EF

)1/2 2π2rkBT/�ωc

sinh(2π2rkBT/�ωc)
cos(πνr)e−2πrΓ/�ωc , (7.118)

and the broadening of the density of states for electrons (broadening energy Γ ) is
taken into account. We find from this equation that the longitudinal magnetoresistance
oscillates periodically when plotted versus 1/Bz , as stated earlier.

7.3.3 Transverse Magnetoresistance Configuration

In the transverse magnetoresistance configuration, the electric field is applied per-
pendicular to the magnetic field and the observed magnetoresistance is called the
transverse magnetoresistance. Calculations of the transverse magnetoresistance
is complicated compared to the longitudinal magnetoresistance. This is understood
from the following. In a magnetic field in the z direction, the application of an elec-
tric field in the x direction, for example, causes an electron quantized in the x, y
plane to move in the y direction with a constant velocity Ex/Bz in the absence of
electron scattering and thus to no current flow in the x direction. The electron current
is induced by scattering, which gives rise to a change of the cyclotron center in the
x direction, and results in the current in the x direction and in σxx �= 0.

In the transverse magnetoresistance configuration, Kubo et al. derived the solution
of (7.96) for the elastic scattering case [2, 7]:

σxx = πe2

�V

∫ ∞

−∞
dE d f

dE Tr
{
δ(E − H)[H ′, X ]δ(E − H)[H ′, X ]} , (7.119)

where H = H0 + H ′ and X is the operator for the x component of the cyclotron
center coordinate. From the above equation the following relation is obtained by
taking in account the broadening effect due to collisions [1]:

ρ⊥ = ρ0

[
1 + 5

2

∞∑
r=1

br cos

(
2πEF

�ωc
r − π

4

)
+ R

]
, (7.120a)

R = 3

4

�ωc

2EF

{ ∞∑
r=1

br

[
αr cos

(
2πEF

�ωc
r

)
+ βr sin

(
2πEF

�ωc
r

)]

−log
(
1 − e4πΓ/�ωc

)}
. (7.120b)
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Here, br is given by (7.118), and coefficients αr and βr are given by

αr = 2r1/2
∞∑
s=1

1

[s(r + s)]1/2
e−4πsΓ/�ωc , (7.121a)

βr = r1/2
r−1∑
s=1

1

[s(r − s)]1/2
. (7.121b)

These results mean that the transverse magnetoresistance oscillates periodically in
the plot versus 1/Bz as in the case of longitudinal magnetoresistance. The second
term on the right-hand side in (7.120a) is the oscillatory component due to the
transition induced by a change in the quantum number N , whereas R is due to
the transition without changing the quantum number N and diverges when Γ is
zero. This divergence arises from the fact that the integral with respect to the one-
dimensional density of states appears twice in the integral containing the scattering
rate and distribution function, resulting in a logarithmic divergence for N = N ′.
The contribution from each component depends on the magnitude of Γ/EF and
the contribution from R becomes smaller for r > 1 (higher harmonic oscillatory
component). Usually, therefore, the analysis has been carried out by neglecting the
contribution from R.

The amplitude of the oscillatory component of both the longitudinal and transverse
magnetoresistance depends on the magnetic field and the temperature through the
term

T

B1/2
z

exp{−2π2kB(T + TD)/�ωc} ,

where

TD = Γ

πkB
(7.122)

is called the Dingle temperature. On the other hand, the phase of the oscillatory
component is −π/4 for both longitudinal and transverse configurations, but we have
to note that the spin g factor is not included in the above calculations and that a
comparison with experiment may be difficult.

Next, a comparison of the theory with experiment is described. In experiments we
have to apply electrodes to measure the resistivity in addition to the electrodes for
current supply. Measurements of the Shubnikov–de Haas effect are strongly affected
by the sample uniformity and thus require many electrode contacts for the resistivity
measurement. Applying a constant current, the voltage drops between the pairs of
contacts are measured and we choose the pair which shows the largest oscillation.
The Shubnikov–de Haas effect is normally observed at low temperatures and mea-
surements of the temperature dependence of the oscillations are required to estimate
the effective mass. It is expected from the theory given above that the oscillation
amplitude decreases exponentially with temperature, and thus the magnetic field
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modulation technique is often adopted in order to observe such a weak oscillatory
behavior, where the second derivative magnetoresitance is detected. Recently it has
been shown that the second-derivative signals directly obtained by computer analy-
sis provides a good signal-to-noise ratio and a good quality of oscillatory structure.
As an example, we show in Fig. 7.2 the experimental results on the Shubnikov–de
Haas effect in n-GaSb [8], where the longitudinal and transverse magnetoresistance
is plotted as a function of the inverse magnetic field and periodic oscillations in the
inverse magnetic field 1/B are clearly observed, showing good agreement with the
theoretical prediction stated above. From the period 2.75 T−1 and with the help of
(7.83), the electron density n = 1.3 × 1018 cm−3 is obtained.

Here we will discuss how to deduce the effective mass from the analysis of the
Shubnikov–de Haas effect. When we put

χ = 2π2kBT

�ωc
,

the temperature dependence of the oscillation amplitude is written as

χ sinh χ = 2π2kBT/�ωc

sinh(2π2kBT/�ωc)
. (7.123)

Inserting the relation ωc = eB/m∗ into the above equation, it is easily seen that the
effective mass m∗ is estimated from the temperature dependence of the amplitude.
The electron effective obtained by this method in n-GaSb is m∗ = 0.05 m and the
effective mass is found to depend on the electron density, probably due to the non-
parabolicity of the conduction band. In general, the amplitude of the oscillatory
magnetoresistance decays exponentially as the inverse magnetic field 1/B. This
decay is due to the collision broadening of the Landau levels. The amplitude of
the oscillatory components of the magnetoresistance due to the Shubnikov–de Haas
effect depends on the magnetic field as(

�ωc

EF

)1/2 χ

sinh χ
e−2πΓ/�ωc =

(
�ωc

EF

)1/2 2π2kBT/�ωc

sinh(2π2kBT/�ωc)

× e−2π2kBTD/�ωc , (7.124)

where TD = Γ/πkB is the Dingle temperature defined before. Therefore, when
the amplitude of the oscillatory components divided by [(�ωc/EF)

1/2 (χ/ sinh χ)]
is plotted against 1/B, it will result in a straight line. From the slope of the plot
we may estimate the Dingle temperature and thus the strength of the broadening.
In Fig. 7.3 such a plot is shown for different electron densities in n-GaSb estimated
from the Hall coefficient RH for n-GaSb at T = 4.2 K [8], where we find good
agreement with the prediction of the theory. From the analysis the Dingle temperature
TD = 6.6 K is obtained for an electron density n = 1.3 × 1018 cm−3. We have define
the Dingle temperature to express the Landau broadening and shown how to estimate
it from experimental data. Another parameter to give the collision broadening may
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Fig. 7.2 Shubnikov–de
Haas effect in n-GaSb
(n = 1.3 × 1018 cm−3),
where the longitudinal and
transverse magnetoresistance
is plotted as a function of
inverse magnetic field 1/B
(After Becker and Fan [8])

Δ ρ
ρ

Fig. 7.3 The oscillation
amplitude of the longitudinal
magnetoresistance in n-GaSb
plotted as a function of the
inverse magnetic field 1/B,
where we find the
exponential decay (Dingle
temperature) depends on the
electron density estimated
from the Hall coefficient RH
(After Becker and Fan [8])

Δ ρ ρ
χ

χ
ω

= −

= −
= −

be estimated from the electron mobility; it is called the mobility temperature. The
mobility temperature is defined by the relation Tm = �/2πkBτm, where the relaxation
time τm is estimated from the electron mobility. Becker and Fan have deduced the
mobility temperature Tm = 4.9 K for n-GaSb with n = 1.3 × 1018 cm−3.

7.4 Magnetophonon Resonance

7.4.1 Experiments and Theory of Magnetophonon
Resonance

In the previous section we discussed the Shubnikov–de Haas effect, where elec-
trons quantized into Landau levels in the presence of a magnetic field are scattered
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elastically in the Landau levels and result in a periodic oscillation of the magne-
toresistance with the inverse magnetic field 1/B. On the other hand, we will now
consider the oscillatory magnetoresistance induced by inelastic electron scattering,
which is known as magnetophonon resonance. The magnetophonon resonance is
caused by the scattering of electrons between the Landau levels induced by optical
phonon absorption and emission, and therefore magnetoresistance maxima appear
when the multiple of the Landau level spacing is equal to the optical phonon energy.
Strong resonance has been observed in III–V compound semiconductors, where the
electron-LO phonon interaction is dominant. The resonance condition is then given
by the following relation:

N�ωc = �ωLO , N = 1, 2, 3, . . . (7.125)

where �LO is the LO phonon energy and ωc = eB/m∗ is the cyclotron frequency of
an electron with effective mass m∗. Observation of the magnetophonon resonance
requires excitation of a sufficient number of LO phonons involved with the scattering.
Since the excitation number of phonons is given by the Bose–Einstein distribution
function

nLO = 1

e�ωLO/kBT − 1
, (7.126)

the number of phonons is very small at such low temperatures that �ωLO > kBT .
At such low temperatures the broadening of the Landau levels is quite small and
thus the quantum effect is clearly observed. But the number of excited phonons is
limited, resulting in difficulty in observing the magnetophonon resonance at such
low temperatures. On the other hand, at higher temperatures, there exist enough
phonons to interact with electrons, but the Landau level broadening is quite large,
and thus the quantization effect (magnetophonon resonance) is smeared out. Up to
now magnetophonon resonance has been observed in most III–V semiconductors
in which the electron-LO phonon interaction is strong, and the amplitude of the
magnetophonon oscillations exhibits a maximum at the temperature T ∼= 150 K for
the reason stated above. It is well known that the observation of magnetophonon
resonance is very difficult at temperatures below 40 K and above 350 K. However,
at temperatures T ≤ 40 K, hot electrons produced by a high applied electric field
application make transitions between the Landau levels by emitting LO phonons
and exhibit magnetophonon resonance, which is called hot electron magnetophonon
resonance.

Magnetophonon resonance was first predicted theoretically in 1961 by Gurevich
and Firsov [9], and then in 1963 Puri and Geballe [10] succeeded in observing the
oscillatory behavior of the thermoelectric power in InSb in a magnetic field, which is
caused by the magnetophonon effect. Magnetophonon resonance in the magnetore-
sistance in n-InSb was subsequently observed in 1964 by Firsov et al. [11]. When the
LO phonon energy involved with the resonance is known, the effective mass of the
electron is determined from (7.125) by analyzing the period of oscillation in the plot
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versus the inverse magnetic field. In addition magnetophonon resonance is observed
at temperatures around T = 150 K; it provides information about the temperature
dependence of the effective mass and about various electron-phonon interactions,
as will be mentioned later. For this reason the study of magnetophonon resonance
provided very important information in the period 1960–1970 and established its
position for semiconductor research, especially in the field of quantum transport.
The most important contribution to the study of magnetophonon resonance is the
discovery of the empirical formula by Stradling and Wood [3], who obtained the
following relation to express the oscillatory component from a series of experiments
in III–V compound semiconductors:

ρosc
xx ∝ exp

(
−γ̄

ωLO

ωc

)
cos

(
2π

ωLO

ωc

)
. (7.127)

This relation is called the empirical formula of Stradling and Wood. In (7.127) γ̄
represents the exponential decay of the oscillatory component in the plot versus the
inverse magnetic field which arises from the Landau level broadening and corre-
sponds to the Dingle temperature for the Shubnikov–de Haas effect.

Magnetoresistance in the presence of magnetophonon resonance consists of
monotonic increase with the magnetic field and an oscillatory component which
is periodic with the inverse magnetic field. Clear signals are obtained by remov-
ing the monotonic component, and several methods have been proposed to observe
the oscillatory components accurately. Stradling and Wood adopted the following
method to detect the oscillatory component of the magnetoresistance by removing
the monotonic component. The Hall voltage, proportional to σ−1

xy , was subtracted
from the voltage drop between the sample electrodes. Here the voltage drop is pro-
portional to the magnetoresistance ρxx and the Hall voltage is proportional to the
magnetic field which contains no oscillatory component in it, Later, magnetic field
modulation and second-harmonic detection by a lock-in amplifier were successfully
used for magnetophonon resonance measurements, where the second-harmonic com-
ponent is proportional to the second derivative of the magnetoresistance with respect
to the magnetic field. Recently, however, the numerical derivative of the magnetore-
sistance calculated by using a personal computer has provided an excellent method
for such purposes.

The magnetic field modulation technique is based on a superposition of a weak
ac magnetic field B1 cos(ωt) with modulation frequency ω upon a dc magnetic field
B and on the detection of the second-harmonic signals (2ω). In general, the magne-
toresistance under the application of such a magnetic field is written as

ρ[B + B1 cos(ωt)]
= ρ(B) + dρ

dB
B1 cos(ωt) + 1

2

d2ρ

dB2
[B1 cos(ωt)]2 + · · · , (7.128)
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Fig. 7.4 Magnetophonon
resonance observed in
n-GaAs at T = 77 K. ρ(B) is
the transverse
magnetoresistance as a
function of magnetic field,
dρ/dB is the first derivative
of the magnetoresistance
measured by magnetic field
modulation technique and
−d2ρ/dB2 is the
second-derivative of the
magnetoresistance. The
second derivative signals
reveal magnetophonon
resonance very clearly (After
Hazama et al. [12]) 0 2 4 6 8
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where the third term of the right-hand side contains the component oscillating as
cos(2ωt). Therefore, when the second-harmonic component is detected by a lock-in
amplifier, the signal is proportional to the second derivative of the magnetoresistance.
This method discriminate the monotonic component from the magnetoresistance and
gives −d2ρ/dB2, or the signals very close to the oscillatory component given by
(7.127). We have to note here that the second derivative of (7.127) has a contribution
from the exponential term and thus the experimentally observed second derivative
will not give (7.127). However, a correction is possible to estimate all the parameters
required for the analysis of magnetophonon resonance such as ωLO and γ̄.

As an example, Fig. 7.4 shows the experimental results for magnetophonon res-
onance in n-GaAs at T = 160 K [12]. In Fig. 7.4 three curves are compared: the
transverse magnetoresistance and it first derivative and second derivative signals.
ρ(B) is the measured transverse magnetoresistance in which slight oscillations are
observed as the magnetic field is increased. dρ/dB is the first derivative of the mag-
netoresistance observed by detecting the fundamental frequency component by a
lock-in amplifier and shows clear oscillations, but the signals are 90◦ out of phase
compared to the oscillations of the magnetoresistance. On the other hand, the second-
derivative signals −d2ρ/dB2 exhibit very clear oscillations that are in phase with the
original transverse magnetoresistance. Using the magnetic field modulation tech-
nique, magnetophonon resonance has been observed for up to N = 18 ∼ 20 peaks
of (7.125), and thus it has provided a very accurate determination of the effective
mass. Although cyclotron resonance is well known as the most suitable method to
determine the effective mass, only one peak is observed. On the other hand, magne-
tophonon resonance measurements will provide many peaks and thus it is possible
to discuss the non-parabolicity of the conduction band in addition to the accurate
determination of the effective mass. When the inverse magnetic field of the reso-
nance peak is plotted as a function of N (Landau plot), the electron has a scalar



394 7 Magnetotransport Phenomena

effective mass and the plot exhibit a straight line. However, when the conduction
band is nonparabolic, the Landau plot deviates from a straight line and the analysis
provides information about the non-parabolicity of the conduction band.

Since magnetophonon resonance is observed under the condition ωcτ > 1, the
relation |σxy | > σxx is satisfied and we may approximate as

ρxx
∼= σxx

σ2
xy

. (7.129)

In the explanation of the Shubnikov–de Haas effect we have shown that (7.87),
σyx

∼= ne/B, holds in a high magnetic field. This relation is valid in the second
order of scattering potential V [13]. Therefore we may conclude that the oscillatory
component of magnetophonon resonance arises from the oscillatory component of
σxx . As mentioned earlier, in the absence of scattering, an electron moves in the y
direction with a constant velocity E/B, and thus we have no current flow in the x
direction, giving rise to σxx = 0. The current component along the x direction is
caused by a change in the cyclotron center induced by electron scattering, resulting
in σxx �= 0. This fact means that the conductivity σxx is proportional to the electron
scattering rate. A detailed treatment of the magnetoconductivity will be given later,
the above considerations yield the following qualitative conclusions. The electron-
LO phonon scattering rate is proportional to the strength of the electron-LO phonon
interaction given by (6.239) and to the excitation number of phonons, nLO + 1 for
phonon emission and nLO for phonon absorption. The scattering rate for the electron-
LO phonon interaction is given by the sum of the two terms, absorption and emission.
For simplicity, we assume that the scattering rate is proportional to nLO. Expressing
the Landau level broadening by Γ and following the treatment of the Shubnikov–de
Haas effect, the oscillatory component of the magnetophonon resonance is written
as (usually we may put r = 1 in the following equations)

σxx ∼ nLO

∞∑
r=1

exp

(
−2πr

Γ

�ωc

)
cos

(
2πr

ωLO

ωc

)

= 1

exp(�ωLO/kBT ) − 1

∞∑
r=1

exp

(
−γ̄r

ωLO

ωc

)
cos

(
2πr

ωLO

ωc

)
, (7.130)

where γ̄ = 2πΓ/�ωLO. This simplified estimate of the magnetophonon resonance
amplitude is found to agree with the empirical formula of Stradling and Wood for
r = 1, and the exponential decay of the oscillatory component is well explained
in terms of the Landau level broadening (Γ ) at low magnetic fields. In addition,
the relation explains the temperature dependence of the magnetophonon resonance
amplitude. At low temperatures the broadening is small but the number of phonon
excitations is low, and thus the oscillations are very weak. At high temperatures, the
number of phonon excitations is high but the increase in the broadening constant Γ

due to various scattering mechanisms results in an exponential decay of the mag-
netophonon oscillations. It may be explained also that the oscillation amplitude of
magnetophonon resonance exhibits a maximum at around T = 150 K, decreasing

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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Fig. 7.5 Temperature
dependence of the N = 3
magnetophonon resonance
peak for several n-GaAs
samples (After Stradling and
Wood [3])
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below and above this temperature. The feature is shown in Fig. 7.5, which is obtained
from magnetophonon experiments in n-GaAs.

Now we discuss the theory of magnetophonon resonance. According to the Kubo
formula [2, 4], the conductance σxx is given by

σxx

= e2

kBT

∫ +∞

−∞
dE

∑
q

2π

�

(
l2qy

)2
nLO (1 + nLO) [ f (E) − f (E + �ωLO)]

× δ(E + �ωLO − Eν)δ(E − Eν ′)
∣∣〈ν ′|C(q)e−iq·r |ν〉∣∣2

, (7.131)

where l = (�/eB)1/2 and C(q) represents the strength of the electron-LO phonon
interaction defined by (6.239). Converting the summation over q into an integral and
using (2.120) for the electron wave functions in a magnetic field, the above equation
reduces to

σxx = e2

kBT

1

(2π)3

∫
dqxdqydqz

∫ +∞

−∞
dE nLO(nLO + 1)(l2qy)

2 2π

�
|C(q)|2

×
∑
N ,M

∑
X,pz

[ f (E − �ωLO) − f (E)] δ(E − �ωLO − EN ,pz )

× δ(E − EM,pz−�qz )
∣∣JNM(X, qx , X − l2qy)

∣∣2
, (7.132)

where JNM(X, qx , X − l2qy) is defined by the following equation by using (2.120):

〈N , X, pz |eiq·r |M, X ′, p′
z〉 = JNM(X, qx , X − l2qy)

× δpz−�qz ,p′
z
δX−l2qy ,X ′ . (7.133)

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2


396 7 Magnetotransport Phenomena

In the case of a scalar electron effective mass, we find

∣∣JNM(X, qx , X − l2qy)
∣∣2 = N !

M !ζ
M−Ne−ζ

[
LM−N
N (ζ)

]2
, (7.134)

where LM
N (ζ) is the Laguerre polynomial and ζ = l2(q2

x + q2
y )/2 [4]. The integral in

(7.132) is evaluated to give [4]

σxx = σ1

∑
N ,M

exp

{
−2ᾱ

(
N + 1

2

)}
exp

{−ᾱ(M − N − P − δP)
}

× K0(ᾱ|N + P − M + δP |) , (7.135a)

σ1 = ne2

m∗
α√
πωc

nLO

(
�ωLO

kBT

)3/2

sinh ᾱ , (7.135b)

where ᾱ = �ωc/2kBT and α is defined by (6.240) which is a dimensionless quantity
to give the strength of the electron-LO phonon interaction. δP = ωLO/ωc − P and P
is the largest integer contained in ωLO/ωc. The function K0(x) is the modified Bessel
function of order of zero. The function K0(x) in (7.135b) exhibits a logarithmic
divergence in the limit x → 0. Therefore, (7.135b) diverges when P = N − M
and δP = 0, or when P = M − N − 1 and δP = 1. This divergence has been
already mentioned for the case of the Shubnikov–de Haas effect and arises from the
singularity of the density of states. In order to avoid this divergence for evaluation
of the equation, the broadening effect of the Landau levels is taken into account and
Barker has derived the oscillatory component of the magnetophonon resonance [4]
written as

σosc ∼
∞∑
r=1

1

r
exp(−2πrΓ/�ωc) cos

(
2πr

ωLO

ωc

)
, (7.136)

which is called Barker’s formula. When we keep the term for r = 1 only in (7.136),
it gives the empirical formula of Stradling and Wood. Barker has calculated the
broadening constant for various scattering mechanisms. Here we note that we have
the following relation between γ, Γ and γ̄:

2πγ = 2π
Γ

�ωc
= γ̄

ωLO

ωc
. (7.137)

The values of γ̄ for various types of scattering are summarized below. For longitudinal
optical phonon scattering

γ̄ = 2π
[α

2
(1 + nLO)

]2/3
(

ωc

ωLO

)2/3

, (7.138)

http://dx.doi.org/10.1007/978-3-319-66860-4_6


7.4 Magnetophonon Resonance 397

for acoustic phonon scattering

γ̄ = 2π

[
D2

ac

8πρv2
s

(
2m∗kBT

�2

)3/2

(�ωckBT )−1/2

]2/3(
ωc

ωLO

)2/3

, (7.139)

and for a single impurity, where an electron does not feel two or more impurities at
the same time,

γ̄ = 2π

�ωLO

[
e4

4π(κε0)2

(
�

2

2m∗

)1/2]2/5

N 2/5
I , (7.140)

where NI is the density of impurities. In a semiconductor with a higher density of
impurities, an electron is scattered at the same time by two or more impurities and
this phenomenon is called the band-tailing effect. For the band-tailing effect

γ̄ =
√

πe3/2

�ωLO
(κε0)

3/4

(
kBT

4

)1/4 (
N 2

I

n

)1/4

, (7.141)

where n is the electron density.
At the beginning of this section we mentioned that the electron effective mass is

evaluated from (7.125) when we know the LO phonon energy. Since the LO phonon
energy has been accurately determined from Raman scattering, magnetophonon
resonance experiments provide information about effective mass, non-parabolicity,
energy band parameters and so on [3, 5]. In many compound semiconductors, their
conduction band minima are located at k = 0 (at the Γ point) and the effective
mass is given by (2.82) as discussed in Sect. 2.4. When we use this relation, we may
estimate the momentum matrix element P . A more accurate expression for the con-
duction band non-parabolicity is derived by Herman and Weisbuch by the following
relation by taking account of contributions from higher-lying conduction bands [14],
which is given by (2.238a) and (2.238b)

m

m∗ − 1 = P2
0

3

(
2

E0
+ 1

E0 + Δ0

)
+ P2

1

3

(
2

E(Γ c
8 ) − E0

+ 1

E(Γ c
7 ) − E0

)

+C , (7.142)

where E0 is the energy gap between the Γ c
6 conduction band and the Γ v

8 valence
band, Δ0 is the spin-orbit splitting energy of the valence bands, E(Γ c

8 ) and (Γ c
7 ) are

the energies of the conduction bands located above the Γ c
6 conduction band, and P0,

(P1) is the momentum matrix element between the conduction band (higher-lying
conduction band) and the valence bands. The constant C represents a contribution
from the other higher-lying conduction bands and is determined to be C = 2. We
have to note here that (7.142) is valid for diamond type crystals and not for III–
V compound semiconductors which have no inversion symmetry, and that another
consideration is required to validate the similar equation for III–V semiconductors.
From the analysis of magnetophonon resonance experiments, Shantharama et al. [15]

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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has reported that P2
1 and C are much smaller that the values predicted by Herman,

Weisbuch [14]. Hazama et al. [16] have derived a similar expression for zinc blende
crystals and evaluated P0 and P1 of (7.142) from the k · p theory for GaAs, InSb
and InP, where they found that P2

0 = 23.55 eV and P2
1 = 0.13 eV for GaAs and C

is −0.8, whereas for InSb and InP they obtained C = 0. These values show a good
agreement with the values experimentally determined by Shantharama et al.

7.4.2 Various Types of Magnetophonon Resonance

The magnetophonon resonance effect discussed above has been theoretically pre-
dicted and experimentally observed in various semiconductors, mainly at tempera-
tures T > 77 K. In addition to this magnetophonon resonance (usually referred to
as ordinal magnetophonon resonance), various types of magnetophonon resonance
have been observed as discussed below.

7.4.2.1 (a) Impurity Series

At low temperatures T < 40 K a high electric field applied to a semiconductor
produces hot electrons whose average energy is higher than the lattice temperature.
Such a hot electron will make a transition from a Landau level to a donor state
of an impurity by emitting an LO phonon, resulting in oscillatory behavior of the
magnetoresistance. This oscillatory magnetoresistance is called the impurity series
of magnetophonon resonance [17–19]. The resonance condition is given by

N ′
�ωc + EI(B) = �ωLO , N ′ = 1, 2, 3, . . . , (7.143)

where EI(B) is the ionization energy of a donor in a magnetic field B. From the
analysis of the impurities series, information about impurities, especially the mag-
netic field dependence of impurity states, has been investigated. An example of
the impurity series in the longitudinal magnetoresistance configuration is shown in
Fig. 7.6 [19].

7.4.2.2 (b) Two-TA-Phonon Series

In experiments on impurity series other magnetophonon resonance peaks have been
often observed by changing the magnitude of the applied electric field, this series
is well understood in term of the simultaneous emission of transverse acoustic (TA)
phonons. This kind of magnetophonon resonance was first observed by Stradling and
Wood [18] and they named it 2 TA magnetophonon series. Such TA phonons have a
high density of states, sometimes at the edge of the Brillouin zone, and the transition
probability of the simultaneous emission of the TA phonons is high, enabling us
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Fig. 7.6 Magnetophonon resonance in the longitudinal magnetoresistance configuration in n-GaAs
at T = 12 K, where the second derivative of the magnetoresistance is plotted as a function of
magnetic field. At low electric fields, the 2TA phonon series, indicated by 3T, 4T, . . ., are observed;
they are caused by a hot electron transition between Landau levels accompanied by simultaneous
two transverse acoustic phonon emission. At higher electric fields, the 2TA series disappears and
instead the impurity series, indicated by N ′, is observed which is caused by an electron transition
from a Landau level to the impurity state by emitting an LO phonon (After [19])

to observe the 2 TA series of magnetophonon. The resonance condition of the 2 TA
series is given by (see [18])

M�ωc = 2�ωTA, M = 1, 2, 3, . . . , (7.144)

here �ωTA is the TA phonon energy.
The 2 TA series is well observed in Fig. 7.6, where the second derivative of the

longitudinal magnetoresistance is obtained by means of magnetic field modulation
and the results for n-GaAs at T = 12 K are plotted as a function of the magnetic field.
Hot electrons are produced by applying an electric field from 1.6 to 8.1 V/cm. At
lower electric fields the 2 TA series indicated by 3 T, 4 T, . . ., is clearly seen. At higher
electric fields, the 2 TA series disappears and the impurity series is observed. From the
2 TA series and from (7.144), the phonon energy �ωTA(X) = 9.8 meV is determined
and this value agrees well with the neutron scattering data, �ωTA(X) = 9.7 meV [20].

7.4.2.3 (c) Inter-valley Phonon Series

We have already shown from the energy band calculations in Chap. 1 and from the
analysis of cyclotron resonance in Chap. 2 that the conduction band minima in Si
and Ge are not located at the Γ point but on the Δ axes of the 〈100〉 direction and the
L point in the 〈111〉 direction of Brillouin zone, respectively. Therefore, there are
six equivalent valleys in Si and four equivalent valleys in Ge. As stated previously,
such conduction bands are called many-valley structures. In a semiconductor with
such a many-valley conduction band structure, the electrons are scattered between

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. 7.7 Magnetophonon resonance due to inter-valley phonon scattering (inter-valley phonon
series) in n-Si at 77 K, where the second-derivative signals of longitudinal magnetoresistance, J ‖
B〈100〉, are obtained by the magnetic field modulation technique. Several difference series are
recognized in the oscillations. The series due to the fundamental magnetic field 84.7 T obtained
from the Fourier transform analysis shown in Fig. 7.8 are indicated by 12–28 and the fundamental
magnetic field 21.4 T by 8’–11’. Experimental data are obtained at electric fields 35 V/cm and
141 V/cm

the equivalent valleys by absorbing or emitting phonons, which is called inter-valley
phonon scattering. There are several types of phonons with specific energies involved
in the inter-valley scattering, resulting in the magnetophonon resonance. We have
shown in Chap. 6 that the electron mobility in Si is determined by acoustic phonon
scattering at low temperatures and by inter-valley phonon scattering at higher tem-
peratures. Magnetophonon resonance due to inter-valley phonon scattering has been
reported by Portal et al. [21], Eaves et al. [22] and Hamaguchi et al. [23]. From the
analysis of electron mobility in Ge, the inter-valley scattering is found to be very
weak, but the magnetophonon resonance in Ge reveals very clearly the inter-valley
phonon series [22, 24]. Figure 7.7 shows a typical example of magnetophonon reso-
nance in Si at 77 K due to inter-valley phonon scattering, where the second-derivative
signals obtained by the magnetic field modulation technique are plotted against the
magnetic field and a clear resonance is seen.

The resonance condition for magnetophonon resonance due to inter-valley phonon
scattering is given by the following relation, taking into account the anisotropy of
the effective mass:

(
M + 1

2

)
�ωc1 −

(
N + 1

2

)
�ωc2 = ±�ωint, M, N = 0, 1, 2, . . . , (7.145)

where ωci = �eB/mci is cyclotron frequency for the effective mass mci (in the plane
perpendicular to the magnetic field) of the i th valley, and �ωint is the inter-valley
phonon energy. From (7.145) two different series of magnetophonon resonance are
expected, which are obtained by keeping M or N constant as shown below. The
resonance condition for the electron transition from a fixed Landau number N of the

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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valley (2) to Landau levels M of the valley (1) gives the resonance magnetic field
BM

1

BM
= 1

B f M
(M + γN ) , (7.146)

where

1

B f M
= Δ

(
1

B

)
1

= e

mc1ωint
, (7.147a)

γN = 1

2
−

(
N + 1

2

)
mc1

mc2
. (7.147b)

On the other hand, for the case of a fixed Landau level M we have

1

BN
= 1

B f N
(N + γM) , (7.148)

where

1

B f N
= Δ

(
1

B

)
2

= e

mc2ωint
, (7.149a)

γM = 1

2
−

(
M + 1

2

)
mc2

mc1
. (7.149b)

As stated above, inter-valley magnetophonon resonance involves two different
valleys with the Landau level indices M and N , and therefore the magnetophonon
resonance series are expected to arise from the inter-valley scattering in which the
Landau index M or N is changed. In addition there are various kinds of inter-valley
phonons; in Si, for example, f - and g-types of acoustic phonons and optical phonons
are involved, resulting in many series of magnetophonon resonance and in a very
complicated structure of the magnetophonon oscillations. Therefore, it is very diffi-
cult to identify the phonon types and the Landau indices from the experimental data.
One of the most popular methods to analyze such complicated data is to produce about
200–400 magnetoresistance data points equally spaced with respect to the inverse
magnetic field and to obtain the fundamental frequencies (fundamental magnetic
fields B f M and B f N ) from the Fourier transform. As an example, the magnetophonon
resonance data for n-Si in Fig. 7.7 are Fourier transformed and the Fourier spectra are
shown in Fig. 7.8. From the Fourier analysis, we obtain the fundamental magnetic
field B f = 21.4 and 84.7 T, and at lower electric fields peaks at 70 T and 106 T. The
peak at 170 T is due to the second harmonic of the fundamental magnetic field 84.7 T.
These fundamental fields are used to assign the magnetophonon resonance series as
shown in Fig. 7.7. Using B f = 21.4 [T] we obtain �ωiv = 13.04 [meV] formc1 = m t

and 2.53 [meV] for mc1 = m l (too small and thus no involved phonons for this),
and the former energy gives g–TA phonon scattering. For B f = 84.7 [T], we find
f–LA ( or f–TO) phonon energy �ωiv = 51.6 [meV] for mc1 = m t and g–TA phonon
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Fig. 7.8 Fourier transform of the data shown in Fig. 7.7. The peaks give the fundamental mag-
netic fields for the magnetophonon resonance and their higher harmonic components. The types
and energies of the inter-valley phonons are elucidated from the fundamental field and the series
scattering. The fundamental magnetic fields 84.7 and 21.4 T give rise to the magnetophonon series
12–28 and 8’–11’, respectively, in Fig. 7.8

energy 10.0 [meV] for mc1 = m l, respectively. These value are listed in Table 6.4 of
Chap. 6.

Let us discuss the inter-valley magnetophonon resonance in n-Si in more detail.
As stated in Sect. 6.3.7, g- and f -type inter-valley phonons are involved in the mag-
netophonon processes, where g-type phonons result in the inter-valley scattering
between the valleys along the same principal axis, and f -type phonons are associated
with the inter-valley scattering between the valleys whose principal axes are perpen-
dicular. When a magnetic field is applied in the 〈100〉 direction, two different series
of g-type magnetophonon resonance are expected. One is the inter-valley scattering
between the valleys along the 〈100〉 valleys and the other is inter-valley scattering
between the valleys in the 〈010〉 (and 〈001〉) axis whose cyclotron frequency is differ-
ent from that of the 〈100〉 valleys. In g-type magnetophonon resonance, the cyclotron
resonance condition reduces to (7.125) derived for magnetophonon resonance due
to LO phonon scattering in GaAs. On the other hand, f -type inter-valley phonon
scattering involves initial and final Landau levels whose cyclotron masses are dif-
ferent in the case of the transition from the 〈100〉 valley to the other valleys along
the different axis. However, for a transition between the 〈010〉 and 〈001〉 valleys,
the cyclotron masses of the initial and final states are the same. Therefore, f -type
inter-valley magnetophonon gives rise to different series. Since the conduction band
minima in Si are located at 0.85 × k100 from the Brillouin zone edge k100 on the Δ

axis, the wave vector of the g-type inter-valley phonon is given by qg = 0.3 × k100

in the 〈100〉 direction. On the other hand, defining the band-edge wave vector along
� by k110 (= 3/2

√
2 × 2π/a), the f -type inter-valley phonon wave vector is given

by qf = 0.85
√

2 × 2π/a and thus we have qf = 0.92 × k110. It may be possible
to estimate the inter-valley phonon energy from the dispersion curves determined
from neutron scattering experiments. Since the effective masses of Si are determined

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6


7.4 Magnetophonon Resonance 403

very accurately from the cyclotron experiments, the inter-valley phonon energies
are estimated from magnetophonon resonance experiments. The analysis of mag-
netophonon resonance provides various types of phonon modes and their energies,
and the assignment is made with the help of neutron scattering data [23]. However,
the assignment is ambiguous and will not produce a definite conclusion. We have
to note here that the magnetophonon resonance in n-Si has been obtained in very
pure single crystals and thus the electrons are not degenerate. In such a case we may
expect that the magnetophonon resonance arises from electrons in initial states with
a low Landau index (0 or 1).

7.4.3 Magnetophonon Resonance Under High Electric and
High Magnetic Fields

The magnetophonon resonance described above is observed under low electric fields
and high magnetic fields, and the magnetophonon resonance due to hot electrons is
observed at low temperatures in electric fields of up to several 100 V/cm. Several
attempts have been made to investigate the high electric field effect in bulk semicon-
ductors where it is not easy to apply a high electric field. In order to overcome this
difficulty Eaves et al. [25] proposed to use an n+nn+ structure of epitaxially grown
GaAs. They succeeded in observing magnetophonon resonance at high electric and
high magnetic fields by applying the current in the direction perpendicular to the
layers (x direction) and the magnetic field perpendicular to the current (z direction).
Figure 7.9 shows the experimental results of Eaves et al., where at low electric fields
(low current flow) the ordinal magnetophonon resonance due to LO phonon scattering
is observed, whereas at high electric fields (high current flow) the ordinal magne-
tophonon resonance peaks seem to be depressed and to decay. Eaves et al. interpreted
this phenomenon as showing that elastic or quasi-elastic scattering such as impurity
scattering and acoustic phonon scattering dominate the transitions between the Lan-
dau levels. This process is more clearly explained with the help of Fig. 7.10 as follows.
The spatial superposition of the wave functions between the adjacent Landau levels,
which is small at low electric fields, increases at higher electric fields, and quasi-
inelastic scattering therefore dominates the other scattering mechanisms. As a result,
the ordinal magnetophonon resonance due to LO phonon scattering is weakened,
causing depression of the magnetophonon peaks. This process is called QUILLS
(QUasi-elastic Inter-Landau-Level Scattering). In contrast to this model, Mori et al.
[26, 27] proposed the different model named IILLS (Inelastic Inter-Landau-Level
Scattering) shown in Fig. 7.11. In this model, two facts are taken into account: (1)
Landau levels incline in the presence of a magnetic field, and (2) current (conductiv-
ity σxx ) is induced by a change in the electron cyclotron center along the electric field
by electron scattering. These two facts are shown schematically in Fig. 7.11, where
two different resonances due to LO phonon emission or absorption appear at lower
and higher magnetic fields compared to the ordinal magnetophonon resonance. The
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Fig. 7.9 Magnetophonon resonance in an epitaxially grown n +nn+ GaAs structure for a transverse
magnetoresistance configuration ( J ⊥ B), and high electric and magnetic fields (T = 300 K). The
high applied electric field is achieved by a high current flow perpendicular to the epitaxial layers.
At low electric fields (low current) the ordinal magnetophonon resonance is observed, whereas at
higher electric fields, increasing the current, the peaks are depressed (see [25]). The effect was
first explained by Eaves et al. in terms of quasi-elastic inter-Landau-level scattering, and later Mori
et al. [26] explained it in terms of inelastic inter-Landau-level scattering, resulting in a double-peak
structure due to inelastic LO phonon scattering

IILLS model is based on the fact that σxx is proportional to (ΔX)2 = (l2qy)2 accord-
ing to (7.131). Therefore a vertical transition gives ΔX = 0 and will not contribute
to σxx .

We have described theory of magnetophonon resonance due to LO phonon scat-
tering and the theory of Barker given by (7.131), which is derived from the Kubo
formula. Here we will consider the IILLS theory based on the magnetophonon the-
ory. As is well known, the Kubo formula is a kind of linear response theory and
the following calculations of σxx are assumed to be approximated by a linear the-
ory although the Landau levels are changed by the application of an electric field.
Equation (7.131) is rewritten as

σxx = e2β

2

∑
i

∑
f

∑
q

(
l2qy)

2(Pem
i→ f + Pab

i→ f

)
, (7.150)

where β = 1/kBT , the second terms on the right-hand side are respectively the
probabilities of LO phonon emission and absorption, and i and f represent the
initial and final electronic states, respectively. The rates of LO phonon emission and
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Fig. 7.10 Landau levels
(adjacent 3 Landau levels for
fixed kz) a at a low electric
field and b at a high electric
field. At a high electric field
the wave functions of the two
adjacent levels overlap,
resulting in the increase in
transition probability
between the (n + 1)th and
nth Landau levels at the
same energy (QUILLS)

Fig. 7.11 In-elastic
inter-Landau-level scattering
(IILLS), where three
adjacent Landau levels for
fixed kz and classical Landau
orbits (N = 0, 1, 2) are
shown. a at low electric
fields, a vertical transition
will not contribute to σxx . b
at a high electric field, a
non-vertical transition (i) the
high magnetic field side and
(ii) the low magnetic field
side satisfies the
magnetophonon resonance
condition, resulting in a
double-peak structure. In the
figure the separation between
the Landau levels of N = 0
and N = 2 is equal to the LO
phonon energy �ω0
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absorption are written as

Pem
i→ f = 2π

�
(nLO + 1)

∣∣〈 f |C∗(q)e−iq·r |i 〉∣∣2

× f (Ei ) [1 − f (Ei − �ωLO)] δ[E f − (Ei − �ωLO] , (7.151)

Pab
i→ f = 2π

�
nLO

∣∣〈 f |C(q)eiq·r |i 〉∣∣2

× f (Ei ) [1 − f (Ei + �ωLO)] δ[E f − (Ei + �ωLO)] , (7.152)
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where nLO is the Bose–Einstein distribution function of the LO phonons and f (E)

is the Fermi–Dirac distribution function of the electrons, which is approximated by
the Maxwell–Boltzmann distribution function in the types of semiconductor we are
concerned with. Ei and E f are the electron energies of the initial and final states. The
two terms of the above equation contribute to σxx in a similar way and we take into
account the absorption term only for simplicity.

In the presence of an electric field (E ‖ x) and magnetic field (B ‖ z), and
defining the vector potential by A = B(0, x, 0), the Hamiltonian is written as

H = 1

2m∗ ( p + eA)2 + exE . (7.153)

The eigenfunctions and eigenvalues for the Hamiltonian are given by

ψn = exp(iky y) exp(ikzz)φn(x − X) , (7.154)

Eν =
(
n + 1

2

)
�ω0 + �

2k2
z

2m∗ + eEXν + 1

2
m∗

(
E

B

)2

, (7.155)

where φn(x) is the solutions for a simple harmonic oscillator and n = 0, 1, 2, . . ..
In the y direction the cyclic boundary condition is satisfied and ky = 0, ±2π/L ,
±4π/L , . . ., and kz is the electron wave vector in the direction parallel to the electric
field. The center coordinate of the cyclotron motion Xν is given by

X = −
(
l2
Bky + E

ωcB

)
, (7.156)

and L is the sample length in the y direction. Considering these results and following
the treatment of Barker [4] to derive magnetophonon resonance theory, we obtain
the following relations (see N. Mori et al. [26]):

σosc ∼
∞∑
r=1

1

r
exp(−2πrγ)

[
cos 2πr

(
ω̄0 +

√
3

2
ē
√

ω̄0 + 1

)

+ cos 2πr

(
ω̄0 −

√
3

2
ē
√

ω̄0 + 1

)]
, (7.157)

where

ē =
√

2eElB
�ωc

,

ω̄0 = ω0

ωc
(7.158)

and in the limit of low electric field ē = 0, which gives rise to Barker’s formula
(7.136). In addition, from (7.157) the resonance condition is given by

ω̄0 ±
√

3

2
ē
√

ω̄0 + 1 = N , (7.159)
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and thus the resonance magnetic field is given by

B±
N ∼ B0

N
±

√
3

2

m∗

el0B0
E . (7.160)

Here, B0/N = BN is the resonance magnetic field for ordinal magnetophonon reso-
nance at low electric fields. At high fields, it is seen from (7.157) and (7.160) that the
electric field-induced magnetophonon resonance due to inelastic LO phonon scatter-
ing appears at both sides of the ordinal low electric field magnetophonon resonance
peak. The oscillatory magnetoconductance σosc in GaAs in the IILLS model is cal-
culated from (7.157) for electric fields of 0–3.5 kV/cm, and the second derivative of
the magnetoconductance with respect to the magnetic field B is plotted in Fig. 7.12
in the magnetic field region near the N = 2 ordinal magnetophonon resonance. We
find in Fig. 7.12 that the low electric magnetophonon peak at 11 T splits into two
peaks on the lower and higher magnetic field sides of the ordinal magnetophonon
peak as shown by the arrows. Figure 7.13 shows a plot of the peak positions as a
function of the magnetic field, where the experimental data points � are compared
with the theoretical calculation (solid curves) and a good agreement is seen. We have
to note here that the QUILLS model is disproved by these considerations and that
the IILLS model is based on the linear theory and its validity has not yet been con-
firmed. In addition the IILLS model is derived by taking only LO phonon absorption
into account and the contribution of LO phonon emission is not considered. Taking
account of these factors, Wakahara and Ando [28] adopted a more elaborate theory to
understand the magnetophonon resonance at high electric and high magnetic fields,
and found that the most important mechanism for the peak splitting is due to the
IILLS process.

7.4.4 Polaron Effect

In magnetophonon resonance the electrons and phonons are strongly coupled, the
electrons being coupled strongly with the phonons by emitting or absorbing LO
phonons. Under such conditions an electron is thought of as moving with phonon
cloud around it and such a state is called a polaron. Once a polaron is formed, the
electron moves with the phonons and thus the band-edge effective mass is increased.
This feature is explained with the help of the diagrams shown in Fig. 7.14. In gen-
eral, electron-phonon interaction is represented by two processes shown in Fig. 7.14,
where (a) is the process where an electron of state |k〉 emits a phonon of wave vector
q and is transferred to a state |k − q〉 and (b) is the process where an electron of
|k − q〉 absorbs a phonon of wave vector q and is transferred to a state |k〉. These
two processes are independent. On the other hand, in a system where electrons are
strongly coupled with phonons, an electron of |k〉 emits a phonon of wave vector
q and subsequently absorbs the phonon and returns to the initial state |k〉. This is a
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results of Eaves et al. [25] are compared with the theoretical calculations (solid curves). The peak
splitting is near the N = 2 ordinal magnetophonon resonance

9 10 11 12 13 14

3.5

3.0

2.5

2.0
1.5
1.0
0.5
0.0

E [kV/cm]

Magnetic field B [T]


d2

os
c 
/d

B
2  [a

rb
it.

 u
ni

ts
]

Fig. 7.13 Calculated result of electric-field induced magnetophonon resonance due to inelastic
inter-Landau-level scattering (IILLS), where the second derivative of the oscillatory magnetocon-
ductivity ∂2σosc/∂B2 in GaAs is plotted as a function of magnetic field B near the N = 2 resonance.
The peak of 11 T due to ordinal magnetophonon resonance due to LO phonon scattering at zero
electric field splits into two peaks with increasing electric field

kind of composite state, the polaron state, as shown in Fig. 7.14c. It is evident from
Fig. 7.14c that the polaron state is calculated by second-order perturbation theory.

In the following analysis we assume the very simplified case of a conduction band
represented by a parabolic approximation with scalar effective mass; we also assume
T = 0 and B = 0. The Hamiltonian of electron-phonon system under interaction is
written as

H = H0 + H ′ , (7.161)
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Fig. 7.14 Diagrams for the electron-LO phonon interaction. a An electron |k〉 emits a phonon of
wave vector q and is scattered to a state |k − q〉. b an electron |k − q〉 absorbs a phonon of wave
vector q and is scattered to a state |k〉. c When the electron-phonon interaction is strong, an electron
|k〉 subsequently emits and absorbs a phonon of wave vector q, and returns to the initial state |k〉.
This is a kind of composite state and the electron moves accompanied by the phonon cloud, and a
polaron state is formed

where H0 is the Hamiltonian for a non-interacting electron and phonon and is given
by

H0 = p2

2m∗ +
∑

q

�ωLO

(
a†

qaq + 1

2

)
. (7.162)

The term H ′ is the Hamiltonian for the electron-phonon interaction and for the
Fröhlich-type interaction it may be written as

H ′ =
∑

q

Vq
(
aqeiq·r + a†

qe−iq·r)
, (7.163)

where the term Vq is expressed by using (6.239) and (6.240) as

Vq = i�ωLO

q

(
�

2m∗ωLO

)1/4

(4πα)1/2 , (7.164)

α = e2

�ε0

(
1

κ∞
− 1

κ0

) (
m∗

2�ωLO

)1/2

. (7.165)

The eigenstate for H0 is specified by the electron wave vector k and the phonon
number nq of phonon wave vector q and is expressed as |k, nq〉, and its eigenenergy
is given by

E(k, nq) = �
2k2

2m∗ +
∑

q

�ωLO

(
nq + 1

2

)
. (7.166)

Since we are concerned with a state at T = 0, the phonon system is in the vacuum
state and the eigenstate for the unperturbed system is given by |k, 0〉. Then the
perturbing energy is obtained as

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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ΔE = 〈k, 0|H ′|k, 0〉
+

∑
nq �=0,k′

〈k, 0|H ′|k′, nq〉〈k′, nq |H ′|k, 0〉
E(k, 0) − E(k′, nq)

. (7.167)

It is apparent that the second term on the right-hand side of the above equation
corresponds to the diagram shown in Fig. 7.14c. The first-order perturbation given
by the first term on the right-hand side becomes zero because H ′ contains the creation
and annihilation operators of the phonon. The second term on the right-hand side
of (7.167) vanishes except for the term for nq = 1, and the matrix element of the
numerator reduces to

〈k′, 1q |H ′|k, 0〉 = Vqδ(k − k′ − q) , (7.168)

〈k, 0|H ′|k′, 1q〉 = Vqδ(−k + k′ + q) , (7.169)

where (7.168) and (7.169) represent phonon emission and absorption, respectively,
and correspond to the diagram of Fig. 7.14c. From the δ-function we obtain the
electron wave vector of the virtual state, k′ = k − q.

The energies of the initial and final states are

E(k, 0) = E(k) = �
2k2

2m∗ , (7.170)

and the energy of the intermediate state |k−q〉, where a single phonon of q is excited,
is given by

E(k′, nq) = E(k − q, 1q) = �
2

2m∗ (k − q)2 + �ωLO . (7.171)

Inserting these results into (7.167) we obtain the following relation:

ΔE(k) =
∑

q

|Vq |2
E(k) − E(k − q) − �ωLO

. (7.172)

Converting the summation over k′ into a summation over q with the use of the
momentum conservation rule and the summation into an integral by using the relation∑

q = (L3/8π3)
∫

d3q, the following result is obtained:

ΔE(k) = α�ωLOu

2π2

∫
1

k2 − (k − q)2 − u2q2
· d3q
q2

= α�ωLOu

2πk

∫ ∞

0

1

q
log

[
2kq − q2 − u2

2kq + q2 + u2

]
dq . (7.173)

The derivation of this equation may be done by following the treatment given by
(6.296)–(6.299) shown in Sect. 6.3.10. Here, u = √

2m∗ωLO/� and the upper limit

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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of the integral is set to qmax → ∞. When the integration is carried out, we obtain1

ΔE(k) = −α�ωLO
sin−1(k/u)

k/u
. (7.174)

Putting u = k, we have �
2 k2/2m∗ = �ωLO. In the region where the electron

energy is less than the LO phonon energy, k < u, we may use the asymptotic form
sin−1 x = x + 1

6 x
3 + · · · , and so the electron energy is approximated as

E = �
2k2

2m∗ + ΔE = −α�ωLO + �
2k2

2m∗
(

1 − α

6

)
+ O(k4) . (7.175)

Such an energy in which the perturbation energy is included in the electron energy is
called the self-energy of the polaron. The effective mass of the polaron, m∗

pol is then
given by

m∗
pol = m∗

1 − α/6
, (7.176)

or it may be expressed as

m∗
pol =

(
1 + α

6

)
m∗ . (7.177)

The effective mass observed by magnetophonon resonance is affected by the
polaron effect and thus the band edge effective mass should be corrected by (7.177).
In addition (7.175) shows that the polaron state is lower than the bottom of the
conduction band by α�ωLO and that the polaron can be excited by incident light with
photon energy lower than the band gap.

7.5 Problems

(7.1) In order to understand Hall effect, analyze Hall measurement carried out
using a device shown in Fig. 7.15. The dimensions of the sample are thickness
t = 1 mm, width w = 4 mm, and length l = 10 mm. When magnetic field
Bz = 0.4 T and current Ix = 1.0 mA are applied, Hall voltage VH = 1.0 mV.
Hall field is Ey < 0. Observed voltage difference Vx between the voltage
probes (distance lx ) is 25 mV without the magnetic field. Answer the follow-
ing questions:
(1) Which is the type of carriers, electrons (n-type) or holes (p-type)?

1In order to carry out the integration, we assume that the term to be integrated is a function of k
and q. We then differentiate it with respect to k and integrate the result with respect to q, and then
integrate it with respect to k.
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Fig. 7.15 Schematic
illustration of Hall effect
measurement for a typical
sample. Application of
magnetic field Bz and
current flow Ix , produces
Hall voltage VH

(2) Calculate the density of the carriers.
(3) Calculate the conductivity σ of this sample.
(4) Calculate Hall mobility μH of the carriers.

(7.2) Derive (7.51b) for a parabolic band with isotropic effective mass.
(7.3) Derive (7.51c) for a parabolic band with isotropic effective mass..
(7.4) Shubnikov–de Haas oscillations appear periodically with respect to the applied

magnetic field B. Consider a material with electron density n = 2 × 1018

[cm−3] and assume the electrons with effective mass m∗ = 0.0135 m (for
InSb) are degenerate.
(1) Calculate Fermi energy EF of this material.
(2) Calculate the period of the Shubnikov–de Haas oscillations (1/B).
(3) Calculate EF and (1/B) for GaSb shown in Fig. 7.2, where the electron
effective mass at the Γ point is known m∗ = 0.039

(7.5) Calculate oscillatory term for r = 1 of magnetophonon resonance given
by (7.136) and plot it as a function of magnetic field. Use the parameters
2πrΓ/ωc = 0.5ωLO/ωc, m∗ = 0.067 m, �ωLO = 35.4 [meV] (for GaAs).

(7.6) Estimate polaron masses in GaAs and InAs using material parameters in
Table 6.3 and describe the effective mass correction.
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Chapter 8
Quantum Structures

Abstract In this chapter we deal with semiconductor quantum structures. First,
two–dimensional electron gas (2DEG) inMOSFET and single heterostructure (High
Electron Mobility Transistor: HEMT) are discussed by solving Schrödinder equa-
tion, and then transport properties are described by evaluating scattering rate and
mobility. Basic idea of superlattices is given by showing Kronig-Penney model and
Brillouin zone folding effect. In order to explain the optical properties of superlat-
tices, energy band structures are calculated by using the tight–binding theory, and
compared with the photoreflectance experiments. Mesoscopic phenomena observed
in a semiconductor structure of the scale in between micro– and macro–structure
is discussed by Landauer and Landauer B”uttiker formulas. Aharonov–Bohm effect
and ballistic transport are discussed. Quantum Hall effect has attracted many sci-
entists from the reasons due to the development in new physics of semiconductors
in addition to the resistance standard, von Klitzing constant. Integral and fractional
quantumHall effects are discussed in different models. In the last part of this chapter,
quantum dot (artificial atom) with several electrons is analyzed by employing Slater
determinant where Coulomb interaction is exactly taken account, and the analysis of
addition energy reveals very interesting features of the shell model and Hund’s rule
in quantum dots.

8.1 Historical Background

The words “quantum structures” or “quantum effect devices” have been cited very
often since the 1980s [1–7]. Early work on the quantization of electrons was initiated
in the 1960s, when electrons in the inversion layer of the MOSFET (Metal-Oxide-
Semiconductor Field Effect Transistor) [8]were found to be quantized at the interface
and to exhibit two-dimensional properties. Then the Quantum Hall effect was dis-
covered in 1980 by van Klitzing et al. [14] by using a Si-MOSFET and thereafter
the transport properties of a two-dimensional electron gas has received a great deal
of attention.

Another attempt to fabricate quantum structures, which has led to the most impor-
tant applications in semiconductor physics and devices,was initiated in 1960 byEsaki
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and Tsu [15], who introduced the molecular beam epitaxial (MBE) technology to
grow layered structures, named superlattices, and succeeded in observing Bloch
oscillations. Since then MBE growth techniques have been used by many people
to tailor various types of quantum structure and the electron transport and optical
properties arising from the quantization effect have been observed. For example, the
two-dimensional transport, the quasi-one-dimensional structure (quantum wire), the
zero-dimensional structure (quantum dot), and superlattices have been extensively
investigated. This research is still in progress and it is very difficult for the author
to review them as a chapter of the present textbook. Therefore, in this chapter we
will deal with several important phenomena of quantum structures and introduce the
basic physics which is required for readers who want to investigate in more detail.

It is best to understand the physics of the two-dimensional electrongas in theMOS-
FETfirst and then to investigate the physics of the quantumeffects of heterostructures.
Therefore, we will study the two-dimensional electron gas in the MOSFET in detail
and then look at several important quantum effects in heterostructures. Readers who
are interested in more detail are recommended to read the references.

8.2 Two-Dimensional Electron Gas Systems

8.2.1 Two-Dimensional Electron Gas in MOS Inversion
Layer

The two-dimensional characteristics of electrons were first observed in MOSFETs
and various properties of quantum effects have been investigated in MOSFETs. It
is best to study the two-dimensional properties of electrons in the MOSFET for a
detailed understanding of the quantum effects in quantum structures fabricated from
heterostructures. Therefore in this section we will deal with the two-dimensional
electron gas in the MOFSFET.

The structure of the MOSFET is shown in Fig. 8.1, and consists of an insulating
SiO2 film, a metal gate, a source and a drain formed on a p-Si substrate. The gate
electrode controls the electron density in the inversion layer (channel) induced below
the insulating SiO2 film by applying a bias, and it thus controls the current flow
through the channel. The FET characteristics are similar to those of a triode vacuum
tube, which are well described in the textbook of Sze [8]. The energy diagram for
the device is shown in Fig. 8.2 for a positive bias applied to the gate electrode. The
application of the gate bias lowers the energy of the gate electrode and bends the
energy of the semiconductor surface at the interface between the semiconductor and
the insulating layer. As a result electrons are induced at the interface of the p-Si,
and the layer (or channel) of the electrons is called the inversion layer. The valence
band is also bent so that the valence band is filled by electrons, depleting holes in
this region, and negatively charged acceptors are left. This layer is therefore called
the depletion layer, which is indicated by the depth zd. Beyond the depletion layer
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Fig. 8.1 Structure of MOS field effect transistor (MOSFET). The MOSFET is fabricated on a p-Si
substrate, with a SiO2 thin film (insulating film) on the p-Si and a metal gate electrode on the SiO2.
The source and drain electrodes are formed by diffusing p-Si n+ impurities into the p-Si substrate
and then putting metal contacts on the diffused surfaces. Application of a positive voltage bias to
the gate electrode induces an n-channel of electrons under the gate electrode, resulting in electron
current flow between the source and the drain

≈ ≈

ε
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Fig. 8.2 Energy diagram of the MOSFET of Fig. 8.1. It is shown for a positive gate bias, where
an inversion layer of electrons is formed near the surface of the p-Si at the interface between the
semiconductor (p-Si) and the insulator (SiO2). The induced electrons are confined in a narrow region
at the interface and move only parallel to the interface, exhibiting two-dimensional characteristics.
In the region near the interface of the p-Si substrate, the bands bend and holes are depleted leaving
ionized acceptors in the region from the surface to zd. Charge neutrality is achieved by holes and
acceptors in the region beyond the depletion layer

(zd ≤ z ≤ ∞) charge neutrality is preserved by the holes and ionized acceptors,
where the Fermi energy is given by the bulk Fermi energy EF. The electrons in the
inversion layer confined at the interface are quantized in the z direction and canmove
only in the direction x and y (parallel to the interface). From this the electrons in
the inversion layer form a two-dimensional state and are called a two-dimensional
electron gas.
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8.2.1.1 (a) Triangular Potential Approximation

It is seen in Fig. 8.2 that electrons in the inversion layer are confined within a narrow
region of the interface and that the confining potential looks like a triangular potential.
Let the electric field at the interface be Es and the direction of the confinement be z.
The confining potential is then approximated as

φ(z) = −Esz . (8.1)

Assuming that the ionized acceptors NA and donors ND (NA � ND) are distributed
uniformly along the direction of z from the interface to the position zd, the potential
distribution is obtained by solving Poisson’s equation:

φd(z) = e(NA − ND)

2κsε0
z2 , (8.2)

where κs is the dielectric constant of Si. Analysis of the potential distribution in this
section is carried out by neglecting the contribution of the charge in the depletion
region and by taking the contribution of the electrons themselves. The electrons are
confined in the z direction and are mobile only in the x, y plane. Letting the area
of the x, y plane be A and writing the wave function of an electron in the inversion
layer as

ψ(x, y, z) = A−1/2 exp(ikx x + iky y)ζi (z) , (8.3)

The Schrödinger equation in the z direction reduces to

− �
2

2m3

d2

dz2
ζi (z) − eφ(z)ζi (z) = Eiζi (z) , (8.4)

where m3 is the electron effective mass in the z direction. Inserting the triangular
potential given by (8.1) into the potential energy of (8.4), we obtain the following
relation:

d2

dz2
ζi (z) + 2m3eEs

�2

[ Ei
eEs

− z

]
ζi (z) = 0 . (8.5)

We have to note here that (8.5) is exactly the same as (5.3a) used to describe the
Franz–Keldysh effect in Sect. 5.1.2. Defining

z′ =
(
2m3eEs

�2

)1/3 [
z − Ei

eEs

]
, (8.6)

(8.5) reduces to

d2ζi (z′)
dz′2 − z′ζi (z′) = 0 . (8.7)

http://dx.doi.org/10.1007/978-3-319-66860-4_5
http://dx.doi.org/10.1007/978-3-319-66860-4_5
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The solution of this equation is given by the Airy function as described in Sect. 5.1.2,
and is written as

ζi (z
′) = Ci · Ai(z′) . (8.8)

This is rewritten as

ζi (z) = Ci · Ai ([2m3eEs/�
2]1/3[z − Ei/eEs]

)
. (8.9)

The constant Ci is determined by the normalization condition of (8.9) and given by 1

Ci = 1√
λAi′(xi )

=
[
2m3eEs

�2

]1/6 1

Ai′(xi )
(8.10)

The potential barrier at the interface of the insulating SiO2 film and the p-Si surface
is very high and may be approximated an infinite barrier height, enabling us to put
ζ(z = 0) = 0. This assumption gives rise to the solution (see [16])

Ei ≈
(

�
2

2m3

)1/3 [
3

2
πeEs

(
i + 3

4

)]2/3

. (8.11)

This solution gives a good approximation for a large value of i , and also a reasonably
good result for small i . For i = 0, for example, the solution is obtained by putting
i + 3/4 = 0.75, whereas the exact solution is given by inserting 0.7587. The other
approximate solutions are closer to the exact solutions. It is concluded from the above
results that the energy levels of a confined electron in the z direction are given by

1The normalization constant (5.8) is evaluated by integrating the squaredwave function in thewhole
region, −∞ ∼ +∞, whereas the normalization in MOSFET should be carried out in the region
0 < z < ∞. Introducing variables, λ = [2m3eEs/�

2]−1/3 and xi = −E/(λeEs), where xi is i–th
solution of Ai(xi ) = 0, (i = 0, 1, 2, . . .). Then (8.9) is rewritten as

ζi (z) = Ci · Ai
( z

λ
+ xi

)
.

Normalization of the wave function (8.9) in the region 0 < z < ∞ is given by

1 =
∫ ∞

0
|ζi (z)|2dz = C2

i

∫ ∞

0
Ai2

( z

λ
+ zi

)
dz

Here we change the variable as x = z/λ, and then

1 = C2
i λ

∫ ∞

0
Ai2(x + xi )dx = C2

i λ

∫ ∞

xi
Ai2(x)dx

= C2
i λ

[
−{Ai′(x)}2 + xAi2(x)

]∞
xi

= C2
i λ{Ai′(xi )}2 .

From this we find the normalization constant Ci given by (8.10).

http://dx.doi.org/10.1007/978-3-319-66860-4_5
http://dx.doi.org/10.1007/978-3-319-66860-4_5
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discrete values due to the quantization. Adding the electron energies of the x and y
directions, the total energy of the electron, in the two-dimensional electron gas, is
given by

E = Ei + �
2k2x
2m1

+ �
2k2y
2m2

. (8.12)

Next we will discuss the density of states for a two-dimensional electron gas and
the potential acting on the electrons. The density of states for a two-dimensional
electron gas is derived as follows. When the cyclic boundary condition is introduced
to a semiconductor of the volume L3, the number of states in the region between
(kx , ky) and (kx + dkx , ky + dky) is given by

2L2

(2π)2
dkxdky .

Therefore, the density of states per unit area is given by

2

(2π)2
dkxdky , (8.13)

where the factor 2 in the above equation arises from the spin degeneracy. When we
convert the variables by kx/

√
m1/m = k ′

x and ky/
√
m2/m = k ′

y , (8.12) is reduced
to

E = Ei + �
2

2m
(k ′2

x + k ′2
y ) = Ei + �

2

2m
k ′2 .

Taking account of the relations, dkxdky = (
√
m1m2/m)dk ′

xdk
′
y and 2π k ′dk ′ =

πd(k ′2) = π(2m/�
2)d(E − Ei ), the following relation is obtained:

2

(2π)2
dkxdky = 2

(2π)2

md

m
2πk ′dk ′ = md

π�2
d(E − Ei ) ,

where the density-of-statesmass defined bymd = √
m1m2 is used. This relation gives

the density of states for a two-dimensional electron gas,which is shown schematically
in Fig. 8.3. As shown in Fig. 8.3, the three-dimensional density of states is expressed
by a parabolic curve (dashed curve) but the two-dimensional density-of-states curve
(solid curve) is given by step functions. Each step function is called a subband and
Ei is the energy of the bottom of the subband and is called the subband energy.

As shown in Fig. 2.9, the conduction bands of Si consist of six equivalent valleys,
and thus the density of states should be calculated by taking account of the valley
degeneracy nv. For example, in the Si-MOSFET, where the insulating SiO2 is grown
on the (001) surface of Si, we obtain two different series of subbands which are the

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. 8.3 Density of states (solid curve) for a two-dimensional electron gas is shown by the solid
curve, a combination of step functions. The step function is called a subband. The energy of the
bottom of the subband is given by Ei and each subband has the step md/π�

2. The density of states
for three-dimensional electrons (dashed curve) is proportional to

√
E and thus given by a parabolic

curve. In the limit of narrow subband spacing, the two-dimensional density of states approaches the
three-dimensional density of states

two equivalent valleys with their principal axis in the direction perpendicular to the
interface and four equivalent valleyswith the valley axes parallel to the interface; their
effective masses in the quantization directions are, respectively, m3 = m l (nv = 2)
and m3 = m t (nv = 4). Letting the valley degeneracy be nvi for the subband series
Ei , the density of states for a two-dimensional electron gas is written as

J i2D(E)d(E − Ei ) = nvimdi

π�2
d(E − Ei ) . (8.14)

Since electrons obey Fermi–Dirac statistics, the sheet density of the two-dimensional
electron gas Ni of the subband Ei is calculated as

Ni =
∫ ∞

Ei

J i2D(E)
1

exp [(E − EF)/kBT ] + 1
dE ,

= nvimdi kBT

π�2
F0 [(EF − Ei )/kBT ] , (8.15)

F0(x) = log(1 + ex ) , (8.16)

where EF is the Fermi energy. Then the sheet density of electrons in the inversion
layer Ninv is given by

Ninv =
∑
i

Ni . (8.17)

Since the charge density in the depletion layer is given by

ρdepl(z) =
{ −e(NA − ND), 0 < z ≤ zd
0, z > zd

(8.18)
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the corresponding sheet density of the ionized impurities in the depletion layer Ndepl

is defined by

Ndepl = (NA − ND)zd , (8.19)

and the depth of the depletion layer zd is estimated from the curvature of the potential
φd in (8.2) [17]. As seen in Fig. 8.2, the potential curvature is given by the following
relation assuming the energy at z → ∞ (the bulk region of the semiconductor) as
(Ec − EF)bulk and neglecting the contribution from the inversion electrons. At T = 0
and at zero bias between the source and drain, the potential curvature is determined
as

φd = (Ec − EF)bulk + EF − eNinvzav
κsε0

, (8.20)

where EF is the Fermi energy measured from the bottom of the conduction band at
the Si–SiO2 interface, and the following parameters are used

zav =
∑

i Ni zi
Ninv

, (8.21)

zi =
∫

z|ζi (z)|2dz
/ ∫

|ζi (z)|2dz . (8.22)

The electric field at the Si surface is determined by the total sheet density of the
charges. When we define it by −Es, it is given by

Es = e(Ninv + Ndepl)

κsε0
, (8.23)

where Ndepl = zd(NA − ND). The potential distribution φ(z) is determined by Pois-
son’s equation

d2φ(z)

dz2
= − 1

κsε0

[
ρdepl(z) − e

∑
i

Niζ
2
i (z)

]
. (8.24)

8.2.1.2 (b) Solutions by the Variational Method

More accurate solutions may be obtained by using the variational principle. The
variational principle is based on the assumption of a trial wave function and on
determination of the wave function to minimize the energy. The most popular trial
function is the Fang–Howard function [18] ζ0(z) for the ground state given by the
following equation, where ζ(z = 0) = 0 at z = 0 and ζ(z = ∞) = 0 at z → ∞:

ζ0(z) =
√
1

2
b3 ze−bz/2 . (8.25)
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This assumption gives a good result when the electron density in the inversion layer
is low and the electrons occupy the lowest subband. The variational parameter b of
the trial function is determined to minimize the subband energy. Inserting (8.25) into
the one-dimensional Schrödinger Equation (8.4), the expectation value of the energy
is evaluated as

E0 = �
2b2

8m3
+ 3e2

κsε0b

[
Ndepl + 11

16
Ninv − 2

b
(NA − ND)

]
. (8.26)

Various parameters are determined to minimize the energy E0 and are given below:

b0 =
(
12m3e2N ∗

κsε0�2

)1/3

, (8.27a)

z0 =
(

9κsε0�
2

4m3e2N ∗

)1/3

, (8.27b)

E0 =
(
3

2

)5/3( e2�

m1/2
3 κsε0

)2/3(
Ndepl + 55

96
Ninv

)
1

N ∗1/3 , (8.27c)

where N ∗ = Ndepl + 11
32Ninv. It has been shown by Stern [17] that the subband

energy E0 in Si calculated by this method shows good agreement with the result of
self-consistent calculations.

8.2.1.3 (c) Solutions by the Self-Consistent Method

The Schrödinger equation, Poisson’s equation and the electron sheet density are
written as[

− �
2

2m3

d2

dz2
+ [Ei − eφ(z)]

]
ζi (z) = 0 , (8.28)

d2φ(z)

dz2
= − 1

κsε0

[
ρdepl − e

∑
i

Ni |ζi (z)|2
]

, (8.29)

Ni = nvmdkBT

π�2
log

(
1 + exp

[
EF − Ei
kBT

])
. (8.30)

The simultaneous equations may be solved self-consistently by using numerical
analysis as follows. Let the Si/SiO2 interface be at the origin z = 0, and choose a
distance z = L where the wave function converges (for example, 20nm). The region
[0, L] is discretized into 200 meshes and we define h = L/200. The following
calculations are usually solved by introducing dimensionless values for energy and
distance. Here we show how to solve by the difference method. Differentiation of a
function f (z) is expressed as
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d f

dz
→ f( j+1) − f( j)

h
, (8.31)

d2 f

dz2
→ f( j+1) − 2 f( j) + f( j−1)

h2
. (8.32)

The Schrödinger equation (8.28) and Poisson’s equation (8.29) are then expressed
as 200 × 200 matrix equations. Since both equations are second-order differential
equations, the corresponding matrices have diagonal elements and adjacent compo-
nents, or in other words the matrices are tridiagonal, and thus the solutions are easily
obtained by diagonalization. From those procedures we obtain 200 eigenvalues and
200 eigenfunctions from the Schrödinger equation because we have discretized the
equation into 200meshes. Therefore, this differencemethod gives the solutions of the
Schrödinger equation with the accuracy of the 200 mesh discretization. This proce-
dure provides smooth solutions for lower eigenstates.2 On the other hand, Poisson’s
equation is solved easily by the iteration method when the initial value Es is known.
Another method to solve Poisson’s equation is to diagonalize the tridiagonal matrix
using the values at z = 0 and z = L .

The simultaneous equations, (8.28) and (8.29), contain the wave function ζi (z)
and potential φ(z) and they are not independent. Here we will show a method to
obtain self-consistent solutions for the simultaneous equations.

1. Determine the surface of Si. In the case of the (001) surface of Si, we have to
solve two Schrödinger equations for m3 = m l, nv = 2 and m3 = m t , nv = 4.

2. Determine the initial values of Ninv and NA − ND.
3. The total sheet electrondensity Ninv is assumed tooccupy theground state subband

E0, and parameters such as zav, zd,φd, Ndepl, and Es are determined using the Fang–
Howard trial function. In the next iteration these parameters are replaced by new
values.

4. Using these initial parameters, solve Poisson equation, (8.29), and obtain an
approximate solution of the potential φ(z).3

5. Inserting the potential into the Schrödinger equation, (8.28), obtain the wave
function ζi (z) and eigenvalue Ei .

6. Calculate the electron sheet density of each subband from (8.30).
7. Replace the data of (3) by new data, and repeat the processes (3–6). This iteration

is continued till the energy Ei converges.
Self-consistent solutions for the electronic states in Si-MOSFET fabricated on

the (100) surface are shown in Fig. 8.4, where the electron sheet density Ninv =
1.0× 1013 cm−2, NA = 5.0× 1017 cm−3 and the parameters used are m l = 0.916m,

2Although the Schrödinger equation is a continuous function, the method discretizes the wave func-
tion into 200meshes, giving rise to a 200×200matrix equation. The eigenvalues and eigenfunctions
are obtained by diagonalizing the matrix. In general we are interested in the lower energy states and
some of the lowest values of the energies and wave functions. Details of the calculations are found
in textbooks of numerical analysis.
3Neglecting the contribution from Ndepl and assuming−Es = eNinv/κsε0 and a triangular potential,
the Schrödinger equation may be solved by the iteration method to give converged solutions.
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Fig. 8.4 Self-consistent solutions for inversion electrons in the Si (001) surface. The potential
energy V (z), wave function |ζi (z)|2, subband energy Ei and Fermi energy (horizontal dot-dashed
line) are shown. The subband energies of the Ei series are indicated by the horizontal solid lines
and the Ei ′ series by the horizontal dashed lines, and the corresponding wave functions are shown
by the solid and dashed curves. Ninv = 1.0× 1013 cm−2, NA = 5.0× 1017 cm−3, and T = 300K.
The Fermi energy is determined to be EF = 292meV

Table 8.1 Self-consistent
solutions for the electronic
states in the inversion layer of
the (001) surface of
Si-MOSFET.
Ninv = 1.0 × 1013 cm−2,
NA = 5.0 × 1017 cm−3, and
T = 300K

Notation Subband
energy (meV)

Subband
occupation
(%)

Average
distance zav
(nm)

E0 245.3 79.9 1.11

E1 355.4 3.4 2.39

E2 424.5 0.2 3.44

E0′ 352.5 16.4 2.28

E1′ 488.3 0.1 4.46

E2′ 590.2 0.0 6.19

E3′ 676.7 0.0 7.75

m t = 0.190m and κs = 11.7. In the case of the Si (001) surface, we have a subband
series of E0, E1, E2, . . . for m3 = m l and nv = 2, and series of E0′ , E1′ , E2′ , . . . for
m3 = m t and nv = 4. The solid curve in Fig. 8.4 is the conduction band profile
V (z), where the conduction band energy at the Si/SiO2 interface is set to be zero.
The horizontal solid lines are Ei (i = 0, 1, 2) and the horizontal dashed lines are Ei ′
(i ′ = 0, 1), and the Fermi energy is shown by the dot-dashed line. The squared wave
functions for the Ei series are plotted by solid curves and those for the Ei ′ series by
dashed curves. It is very interesting to point out that the subband energies E1 and
E0′ are very close. In Table8.1 the self-consistent solutions for the subband energies,
electron occupation and the average extension (distance) of the wave function zav
are summarized. The Fermi energy is EF = 292meV.
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From these results it is clear that electrons in the inversion layer of Si-MOSFETare
quantized to form a two-dimensional electron gas. Experiments on the Shubnikov–de
Haas effect and so on have been reported so far. The most prominent work has been
the discovery of the quantum Hall effect in 1980, which will be discussed in detail
later.

8.2.2 Quantum Wells and HEMT

The semiconductors which exist in nature are elements and compound materials
with periodic structures such as Si, Ge, and GaAs. In the late 1960s to early 1970s,
however, Esaki and Tsu proposed a completely new idea for growing new materials
called superlattices,which donot exist in nature,which is based on the crystal growth
technique, molecular beam epitaxy. They fabricated a new structure, called the
superlattice, where n layers of GaAs andm layers of AlAs were grown periodically
in a very high vacuum. Since then various types of quantum structures have been
proposed and investigated experimentally. The purpose of Esaki and Tsu was to
observe Bloch oscillations in superlattices. Bloch oscillations are achieved when
electrons are accelerated from the bottom of a conduction band to the Brillouin zone
edge without any scattering, and thus a very high field is required. In such a high
electric field electrical breakdown readily occurs in a bulk semiconductor. On the
other hand, in a superlattice, where the Brillouin zone is folded as stated later and
mini-bands are formed, it may become possible to observe Bloch oscillations.

Here we have to note that there exist several restrictions in order to grow a differ-
ent semiconductor on a substrate. When different materials A and B are grown on a
same substrate, the structure is called a heterostructure, and the characteristics of
the heterostructure depend strongly on the physical and chemical properties of both
materials. In order to get a good structure it is essential that the lattice constants of both
materials are equal or, in other words, the two materials are lattice matched. Under
the lattice-matched condition, controlled crystal growth provides lattice-matched
crystal growth, pseudomorphic growth. Lattice mismatch of crystal A with lattice
constant aA andBwith lattice constant aB is defined by η = 2|aA−aB|/(aA+aB). For
a heterostructure with a small lattice mismatch, pseudomorphic growth is achieved,
while for a heterostructure with a large lattice mismatch lattice defects (misfit dis-
location) are introduced in order to relax the strain due to the lattice mismatch. In
order to avoid the defects, thin layer superlattices are grown alternately by limiting
the number of the layers to less than the critical layer thickness. Such a superlat-
tice grown without strain relaxation is called a strained-layer superlattice. From
these considerations we find that the growth of superlattices and quantum structures
without strain effects is achieved by choosing materials with small lattice mismatch,
or lattice-matched materials. In Fig. 8.5 the energy gaps versus the lattice constants
are plotted for typical III–V compound semiconductors (cubic zinc blende crystals),
where the solid and open circles represent direct and indirect band gaps, respec-
tively. For example, the lattice constants of GaAs and AlAs are 5.653Å and 5.660Å,
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Fig. 8.5 Energy band gaps
plotted as a function of the
lattice constant for typical
III–V compound
semiconductors, where the
solid and open circles
represent direct and indirect
gaps, respectively

respectively, and the lattice mismatch is η = 0.12%. In the case of such a small
lattice mismatch, pseudomorphic crystal growth is possible. From this reason early
studies of quantum structures have been carried out intensively in heterostructures
with GaAs and AlxGa1−xAs (x = 0 ∼ 1). In materials of large lattice mismatch, it
is possible to achieve lattice-matched crystal growth by using ternary alloys, such as
a combination of GaInAs and InP. Compounds of four elements will provide a wide
variety of pseudomorphic crystal growth.

The energy band diagrams of heterostructures with latticematch are classified into
three cases, as shown in Fig. 8.6, which are type I, type II and type II after the notation

Fig. 8.6 Three types of
heterostructure. a type I:
electrons and holes are
confined in the same space.
b type II (staggered):
Confinement of electrons and
holes are spatially different,
resulting in spatially indirect
transition. c type III
(misaligned): zero-gap
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of Esaki et al. In type I the conduction band of semiconductor B with the smaller
band gap becomes a minimum and the valence band a maximum, and therefore
electrons and holes are excited in this region. In type II (staggered) the minimum of
the conduction band of semiconductor A and the maximum of the valence band of
semiconductor B are spatially different, resulting in a spatially indirect band gap. In
type III (misaligned) the heterostructures behave as a zero-gap material (semimetal)
or as a narrow gap material. Of these three types the type I heterostructures have
been most intensively investigated.

Here we will consider the quantum wells of type I heterostructures. The regions
of the conduction bandminimumandmaximumare called the well layer and barrier
layer, respectively. When the barrier layer is thick, electrons are not able to pene-
trate and are confined in the quantum well region, resulting in quantization of the
electron motion perpendicular to the heterointerface, forming a subband structure.
Since electrons are able to move in the plane parallel to the heterointerface, the elec-
trons exhibit two-dimensional characteristics. These features are shown in Fig. 8.7.
Figure8.7a is the case for a non-doped heterostructure and both the well and barrier
regions are electronically neutral, giving rise to zero electric field. Figure8.7b is the
uniformly doped case in which donors and electrons excited from the donors are con-
fined in the well region, giving rise to two-dimensional electron gas formation in the

(b) uniform doped

(c) modulation doped

(a) non-doped

conduction band

valence band

εF

Δεc

εF

donors

2DEG

2DEG

conduction band

conduction band

valence band

valence band

Fig. 8.7 Modulation doping in heterostructures. a non-doped case, where no electric field exists.
When low densities of electrons and holes are excited by photon absorption, they occupy the
subbands in the conduction band and the valence band, respectively, and they recombine to end
up at the initial states. b is the case where impurity donors are uniformly doped in both the well
and barrier regions. The electrons confined in the well regions form two-dimensional states and are
subject to impurity scattering in the well region, resulting in reduction of the electron mobility at
low temperatures. c is the case called modulation doped, where donor impurities are doped only
in the barrier regions, and electrons confined in the well regions are separated from the ionized
impurities. Therefore, the high mobility of two-dimensional electron gas is achieved
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well region. The electron mobility in such a structure is affected by ionized impurity
scattering due to the donors in the well region and is reduced at low temperatures. To
avoid this decrease in mobility a new idea was proposed, which is shown in Fig. 8.7c,
where electrons in the well regions are supplied from donors in the barrier regions
and confined in the well regions, resulting in a reduction of the impurity scattering
and an increase of the mobility at low temperatures. Note that impurity potential is a
long-range force and thus electrons are affected by the ionized donors in the barrier
region. A more dramatic reduction of impurity scattering is achieved by putting a
non-doped spacer region near the well region. This method is called modulation
doping [19].

In such structures, electrons are confined in the well region by the potential walls
of the conduction band discontinuity ΔEc at the interface and are quantized in the
direction perpendicular to the barriers, whereas the electrons can move in the plane
parallel to the interface. Therefore, a two-dimensional electron gas is formed in
the well regions. For simplicity, we assume that the potential wall is infinity and
that the well region is from z = 0 to z = L (well width L). Then the electron
wave functions (called envelope functions) ζn(z) are obtained by solving the one-
dimensional Schrödinger equation

− �
2

2m∗
d2

dz2
ζn(z) = Enζn(z) ,

which will give solutions

ζn(z) = A sin
( π

L
nz

)
, (8.33)

where A is the normalization constant, A = √
2/L . The corresponding eigenvalues

are

En = �
2

2m∗
( π

L
n

)2
(8.34)

and the total electron energy is given by

E = �
2

2m∗
(
k2x + k2y

) + �
2

2m∗
( π

L
n

)2 ≡ �
2

2m∗
(
k2x + k2y

) + En . (8.35)

The eigenfunctions ζn(z) are orthogonal for different n. The ground state is given by
n = 1 and the number of nodes of the function is n − 1. In other words, the greater
is the number of nodes (n − 1), the higher is the energy. This relation holds for the
self-consistent solutions described next.

Now, we will deal with self-consistent calculations of the two-dimensional elec-
tron gas in heterostructures. We adopt the effective mass approximation to obtain
the states of the two-dimensional electron gas. In general the electron effective mass
and dielectric constant depend on the materials. Assuming that the particle velocity
and electric field are along the direction perpendicular to the heterointerface, the
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Fig. 8.8 Self-consistent solutions for a two-dimensional electron gas in an Al0.3Ga0.7As/GaAs
modulation-doped quantum well with well width 20nm. The results are at T = 4.2K for electron
sheet density Ns = 1012 cm−2 and spacer layer of 10nm in the AlGaAs barriers. The subband
energies and Fermi energy are indicated by the horizontal lines and the square of the wave function
|ζn(z)|2 is plotted

simultaneous equations to be solved are as the following. The Schrödinger equation
is given by

−�
2

2

d

dz

1

m∗(z)
d

dz
ζn(z) + V (z)ζn(z) = Enζn(z) , (8.36)

and Poisson’s equation for the potential φ(z) = −(1/e)V (z) is written as

d

dz
κ(z)

d

dz
φ(z) = − 1

ε0

(
ρ(z) + e

∑
n

Nn|ζn(z)|2
)

, (8.37)

where the spatial dependence of the effective mass m∗(z) and the dielectric constant
ε(z) are taken into account. The simultaneous equations are solved in a similar fashion
to the self-consistent calculations for theMOSFET. Here we will show the results for
quantum wells of well width L = 20 nm and 50nm in Figs. 8.8 and 8.9, respectively.
In the calculations, the effective mass m∗ = 0.068m and the dielectric constant
κ = 12.9 are assumed to be spatially uniform, for simplicity. The barrier height and
electron sheet density are set to be ΔEc = 0.3eV and Ns = 1012 cm−2, respectively
and the solutions are obtained for T = 4.2K. The subband energy En , Fermi energy
EF and electron sheet density Nn in each subband obtained from the self-consistent
calculations are summarized in Table8.2.

We have already mentioned that the modulation doping will improve the electron
mobility. Mimura has been involved with the development of the high frequency
GaAs MESFET (Metal Semiconductor Field Effect Transistor) and arrived at the
conclusion that the surface states of GaAs play the most important role in its per-
formance. During the process to find a method for improvement, he got the idea



8.2 Two-Dimensional Electron Gas Systems 431

ς
ς

ς
ς

ε ε
ε ε

ε

Fig. 8.9 Self-consistent solutions for a two-dimensional electron gas in an Al0.3Ga0.7As/GaAs
modulation-doped quantum well with well width 50nm. The results are at T = 4.2K for electron
sheet density Ns = 1012 cm−2 and spacer layer of 10nm in the AlGaAs barriers. The subband
energies and Fermi energy are indicated by the horizontal lines and the square of the wave function
|ζn(z)|2 is plotted

Table 8.2 Fermi energy, subband energies and electron sheet density in each subband obtained
from self-consistent calculations for Al0.3Ga0.7As/GaAs quantum wells with well width 20nm and
50nm. The parameters used are m∗ = 0.068m, ε = 12.9, Ns = 1012 cm−2, and T = 4.2K

L = 20 nm L = 50 nm

n En (eV) Nn (1011cm−2) En (eV) Nn (1011cm−2)

0 0.042 8.3 0.049 4.8

1 0.065 1.7 0.050 4.7

2 0.116 0.0 0.064 0.55

EF 0.071 0.066

of using an AlGaAs/GaAs heterostructure. With the help of Hiyamizu, they grew a
heterostructure FET and confirmed its FET characteristics in 1980 [20]. They named
the device the High Electron Mobility Transistor (HEMT). The structure of the
HEMT is shown in Fig. 8.10a. High purity GaAs is grown on a GaAs substrate, and
an AlxGa1−xAs (x ∼= 0.3) layer of 60–100Å thickness is then grown, followed by
the growth of an AlxGa1−xAs layer with Si donors. Usually a cap layer of the GaAs
is grown on the surface of AlGaAs in order to avoid oxidation of the AlGaAs. Metals
such as AuGeNi are deposited on the GaAs surface and the ohmic contacts of the
source and drain are formed by thermal diffusion. The gate electrode is fabricated by
the deposition of Al metal between the source and drain contacts, which controls the
sheet density of the two-dimensional electron gas by the gate voltage. The energy
band diagram near the region of the AlGaAs/GaAs interface is shown in Fig. 8.10b,
where the ionized donors in the AlGaAs layer and the two-dimensional electron gas
in the GaAs layer are separated. The electron mobility and sheet electron density of
such aHEMT structure are plotted as a function of temperature in Fig. 8.11. The elec-
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Fig. 8.10 a Structure of HEMT, and b its energy band diagram (see [21])

Fig. 8.11 Temperature
dependence of the electron
sheet density and electron
mobility in a HEMT, where
� and © are the electron
sheet density and electron
mobility under illumination,
respectively. (After [21])

tron sheet density is almost constant in the temperature region shown, whereas the
electron mobility becomes very high at low temperature because of the reduction of
impurity scattering [21]. Later, improvements in the crystal growth and the structure
led to a high electron mobility greater than 1× 107 cm−2/Vs. In Fig. 8.11, the effect
of light illumination on the electronic characteristics is shown, causing an increase
in the electron sheet density and electron mobility as indicated by the symbols � and
©, respectively [21].

An example of a self-consistent calculation of the two-dimensional electron gas
in a HEMT at T = 4.2K is shown in Fig. 8.12, where we have assumed Ns = 6 ×
1011 cm−2 andΔt = 10nm. The Fermi energy is EF = 0.085eV and all the electrons
occupy only the lowest subband below the Fermi energy, resulting in a degenerate
condition. These electrons are confined in a narrow region about 15nm thickness
at the interface and thus the reason for the two-dimensionality of the electrons is
clear. In addition, the electrons are well separated from the ionized donors in the
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Fig. 8.12 Self-consistent solutions for a two-dimensional electron gas in a HEMT fabricated from
AlxGa1−xAs/GaAs (x = 0.3), where Ns = 6× 1011 cm−2, T = 4.2K, ΔEc = 0.3eV, spacer layer
thickness Δt = 10nm, and m∗ = 0.068m. The bottom of the conduction band is plotted by the
solid curve and the squared wave functions for each subband are shown. The values obtained are
EF = 0.085, E0 = 0.064, E1 = 0.095, E2 = 0.115eV, N0 = 6 × 1011 cm−2, and N1, N2 ≈ 0

AlGaAs layer and the impurity scattering is reduced. We have to note that impurity
scattering is a long-range force interaction and thus remote impurity scattering plays
an important role in the mobility at low temperatures.

8.3 Transport Phenomena of Two-Dimensional
Electron Gas

8.3.1 Fundamental Equations

In this section we will consider transport phenomena in a two-dimensional electron
gas; the theoretical calculations are based on references [2–5]. After these original
works many papers have been published, and more detailed calculations are found in
[22, 23] (see also references therein). The electrons in the conduction bands of GaAs
and AlAs are treated by the effective mass approximation and the wave function of
the bulk state is expressed as

Ψ = V−1/2
∑

k

Ck exp(ik · r) , (8.38)

where Ψ is normalized by the volume V and
∑ |Ck|2 = 1. The band-edge energy

is given by
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E(k) = �
2k2

2m∗ . (8.39)

In the following we assume that the effective mass approximation is valid for het-
erostructures. When electrons are confined in the z direction, the wave function of
the two-dimensional electron gas is given by (8.3) and written as

Ψ = ζ(z)A−1/2 exp(ik‖ · r‖) , (8.40)

where A is the area of the x, y plane, L is the width of the z direction, and the volume
is given by V = AL . The normalization condition is written as

∫
|ζ(z)|2dz = 1 . (8.41)

Writing the subband energy as En , we have shown that the electron energy in the
quantum well of the heterostructure is defined by

E(k) = En + E(k‖) , (8.42)

where k‖ is the wave vector parallel to the heterointerface given by

k2‖ = k2x + k2y (8.43)

and the energy in the plane parallel to the heterointerface is given by

E(k‖) = �
2

2m∗ (k2x + k2y) . (8.44)

Next, we assume infinite barriers and a well width ofW for simplicity. Under this
assumption, the wave function and energy are given by the following relations as
shown in Sect. 8.2.2:

ζn(z) =
√

2

W
sin

(nπ

W
z
)

, (8.45)

En = �
2

2m∗
( π

W

)2
n2 . (8.46)

In the following we show the calculations based on (8.45). It is very easy to perform
numerical calculations with the use of self-consistent solutions. First, we present the
fundamental equations derived by Price [2].

Phonons are assumed to be three dimensional and their wave vector is defined by
q2 = q2

‖ + q2
z for the purpose of the calculations. The wave vector of an electron

is changed by q‖ after phonon emission or absorption, but such a conservation rule
does not hold in the z direction. Instead, the following integral results from thematrix
element:
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Imn(qz) =
∫ W

0
ζm(z)∗ζn(z) exp(iqzz)dz , (8.47)

where m = n corresponds to an intra-subband transition and m �= n corresponds to
an inter-subband transition. From the conditions of normalization and orthogonality,
the integral has the property of a δ-function, i.e.

Imn(0) =
{
1 (for m = n)

0 (for m �= n) .
(8.48)

Next, we will present some important relations for the calculations of the scattering
probability and the numerical results.

∫ ∞

−∞
|Imn(qz)|2 dqz = 2π

∫ W

0
Φ2

mndz , (8.49)

where

Φmn(z) = ζ∗
m(z)ζn(z) . (8.50)

It is very convenient to introduce the following coefficient:

1

bmn
= 2

∫ W

0
Φ2

mndz . (8.51)

Using this relation we may obtain the following relation

∫ ∞

−∞
|Inn|2 dqz = π

bnn
. (8.52)

In a similar fashion
∫ ∞

−∞
|Imn|2 dqz = π

bmn
. (8.53)

Using (8.45) for the wave function ζn(z), we find

bnn = W

3
, (8.54)

bmn = W

2
, (n �= m) (8.55)

which are independent of the subband indices m and n. The above results indicate
that the coefficient bmn is different for intra-subband transitions (m = n) and inter-
subband transitions (m �= n). It may be understood that the value 1/b gives ameasure
of the decay of |I |2 with q. When we use the wave function given by (8.45), Imn(q)

is written as
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Inn(q) = sin( 12Wq)

1
2Wq

n2

n2 − (Wq/2π)2
P , (8.56)

Imn(q) =
sin
cos(

1
2Wq)

1
2Wq

4mn(Wq/π)2

4m2n2 − [
m2 + n2 − (Wq/π)2

]2 P , (8.57)

where sin() in the symbol sin
cos() appearing on the right-hand side of Imn(q) is for the

case that both m and n are even or odd, and cos() is for the case that one of the m
and n is even and the other is odd, and P is the phase factor such that |P| = 1 with
phase angle ± 1

2Wq.

8.3.2 Scattering Rate

8.3.2.1 (a) Acoustic Phonon Scattering and Non-polar Optical Phonon
Scattering

Detailed discussion has been given of the matrix elements of electron scattering
in the case of three-dimensional (bulk) semiconductors in Sect. 6.3. Here, we will
calculate the scattering rates for a two-dimensional electron gas using the result for
the three-dimensional case. Therefore, we first summarize the results for the three-
dimensional case. Letting the electron–phonon interaction Hamiltonian be H1 and
using (6.156), the scattering matrix element is written as

〈k′|H±
1 |k〉 =

(
n(q) + 1

2
± 1

2

)1/2

δ±
k,k′±qCq , (8.58)

where the upper (lower) symbol of ± corresponds to phonon emission (absorption)
of a phonon with wave vector q and energy �ω, k and k′ represent the electron initial
and final states, respectively, and n(q) is the excitation number of phonons, which is
given by the Bose–Einstein distribution function. The wave vector q is expressed as

±q = k − k′ . (8.59)

The scattering rate is derived as follows from the results stated in Sect. 6.4:

wIII(k, k′) = w+
III + w−

III

= 2π

�

∑
k′

∣∣Cq

∣∣2 {
n(q)δ

[E(k) − E(k′) + �ω
]

+ [
(n(q) + 1)

]
δ

[E(k) − E(k′) − �ω
]}

. (8.60)

Noting that electron spin is conserved in scattering, and using (8.59) and replacing
the summation of the final states with an integral, we find

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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∑
k′

= 1

(2π)3

∫
d3k′ = 1

(2π)3

∫
d3q . (8.61)

When the excitation number of phonons is approximated as n(q) ∼ n(q) + 1 ∼
kBT/�ω, the scattering rate reduces to

wIII = 2π

�

2

(2π)3
SIII

∫
d3k′δ

(E(k) − E(k′)
)

, (8.62)

where

SIII = kBT

�ω
|C |2 = kBT D2

ac

2ρv2
s

(8.63)

and the integral, which includes the δ-function, gives rise to the three-dimensional
density of states

gIII = 1

(2π)3

∫
δ

(E(k) − E(k′)
)
d3k′ = 1

(2π)3
4πk2

dk

dE
= 1

(2π)3

[
2π(2m∗)3/2

�3

]
E1/2 . (8.64)

The result means that the number of states in the energy range E and E +dE per unit
volume is given by gIIIdE , where the spin flip transition is disregarded and the spin
degeneracy is set to be 1.

In scattering in a two-dimensional electron gas, the spatial integration of the
Bloch function (8.40) is divided into integrals for the perpendicular direction dz to
the heterointerface and for the parallel direction dr‖. Therefore, two terms, Imn(qz)
defined in Sect. 8.3.1 and

∑
k′ δ[E(k‖) + Em − E(k′

‖) − En ± �ω], appear in the
matrix element, where k‖ (q‖) and k′

‖ (q ′
‖) represent the wave vectors parallel to the

heterointerface. Replacing the summation of the final states by (1/(2π)3)d2q‖dqz
and integral with respect to q‖ by d2k‖ using the property of the δ-function, we
obtain the following results:

wII = 2π

�

1

(2π)3

∫
|Imn(qz)|2dqz

×
∫

|C |2 {
n(q)δ

[E(k‖) − E(k′
‖) + ΔEmn + �ω

]
+ [

(n(q) + 1)
]
δ

[E(k‖) − E(k′
‖) + ΔEmn − �ω

]}
d2k′

‖ , (8.65)

where

ΔEmn = Em − En = −ΔEnm . (8.66)
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Adopting the same assumption as for the three-dimensional case, it may be evident
that we have the result

SII =
∫

SIII |Imn(qz)|2 dqz . (8.67)

Since the two-dimensional density of states is given by

gIIdE =
∫

δ
[E(k‖) − E(k′

‖)
]
d2k′

‖ = 2

(2π)2
2πk‖dk‖ = m∗

π�2
dE , (8.68)

we have

wII = 1

b

m∗

�3

kBT D2
ac

2ρv2
s

u(E(k‖) − ΔEnm) , (8.69)

where u(x) is the step functionwhich satisfies u(x ≥ 0) = 1 and u(x < 0) = 0. Here
we discuss b in detail. In the case of intra-subband scattering within the nth subband,
1/bmay be written as 1/b = 3/W , and thus this relation is used for scattering within
the ground-state subband. In the case of inter-subband scattering, on the other hand,
we have 1/b = 2/W , and thus the effective value of b is given by the following
relation when the electron with energy E in the range En < En+1 is scattered into the
mth subband by acoustic phonons:

gII · π

b
= gII

[
π

bmm
+

∑
j

π

bmj

]
= gII

[
3π

W
+ (n − 1)

2π

W

]
, (8.70)

wherem ≤ n. For a large value of n, the prefactor of gII in the above equation reduces
to ∼= (2m∗E)1/22/� = gIII/gII and (8.70) is approximated as ∼= gIII, giving rise to
three-dimensional scattering.

A similar treatment is possible for non-polar optical phonon scattering and the
scattering rate for a two-dimensional electron gas is written as

wop = 1

b

D2
opm

∗

4ρ�2ω0

[
n(ω0) + 1

2
± 1

2

]
u(E(k‖) ∓ �ω0 − ΔEnm) . (8.71)

Here we introduce new parameter

x0 = �ω0

kBT
, n(x0) = 1

ex0 − 1
, (8.72)
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and we find that

Nopnm =
[
n(x0) + 1

2
± 1

2

]
u(E ∓ �ω0 − ΔEnm)

= 1

ex0 − 1

[
1 + ex0u(x − x0 − xnm)

]
, (8.73)

and for intra–subband transitions, putting ΔEnm = 0 we obtain

Nop = 1

ex0 − 1

[
1 + ex0u(x − x0)

]
, (8.74)

where we used xmn = ΔEnm/�ω0. Therefore (8.71) is rewritten as

wop = 1

b

D2
opm

∗

4ρ�2ω0
Nopmn , wop = 1

b

D2
opm

∗

4ρ�2ω0
Nop (for xnm = 0) . (8.75)

See evaluation of the electron mobility for Problems and Answers of this Chapter.

8.3.2.2 (b) Inter-Valley Phonon Scattering

In many-valley conduction bands such as in Si, electrons are scattered between the
valleys, absorbing or emitting a large wave vector phonon. This inter-valley phonon
scattering is described in detail in Sect. 6.3.7 for the case of bulk semiconductors and
is well interpreted in terms of deformation potential theory. Defining the involved
phonon angular frequency as ωi j and the deformation potential as Di j , the scattering
ratewint = 1/τint from the initial state of an electron in valley i , subbandm and wave
vector k‖ to the final sate in valley j , subband n and wave vector k′

‖ is calculated as
follows.

The strength of the interaction for inter-valley phonon scatteringmay be expressed
as

Cq =
√

�

2ρωi j
Di j . (8.76)

The energies of the initial and final states of the electron are respectively written as

Eim(k‖) = �
2k2

‖
2m∗

i

+ Eim , (8.77)

E jn(k‖) = �
2k

′2
‖

2m∗
j

+ E jn , (8.78)

where m∗
i and m∗

j are the isotropic effective masses of the valley i and j , and in the
presence of anisotropy the final results may be obtained by replacing the effective

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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masses with the density of states masses. Note that Eim and E jn are the energies of the
bottom of the subbands m and n. Using these results the scattering rate is calculated
as

wint = 2π

�

�D2
i j

2ρωi j

ν j

(2π)2

∫
k

′
‖

1

2π

∫
qz

|Imn(qz)|2

×δ
[E jn(k′

‖) − Eim(k‖) ± �ωi j
] (

nq + 1

2
∓ 1

2

)
dqzd

2k
′
‖ , (8.79)

where ν j is the valley degeneracy of the final state. When we put

D = m∗
j

m∗
i

k2
‖ + 2m∗

j

�2

(Eim − E jn ∓ �ωi j
)

, (8.80)

the integral of (8.79) with the δ-function reduces to

∫
k′

‖
δ

[
�
2

2m∗
j

(k
′2
‖ − D)

]
d2k′

‖ =
∫ ∞

0
δ

[
�
2

2m∗
j

(k
′2
‖ − D)

]
2πk ′

‖dk
′
‖

= 2πm∗
j

�2
u(D) . (8.81)

Since the integral with respect to qz is the same as for the case of acoustic phonon
scattering, the inter-valley phonon scattering rate is given by

wint = ν j D2
i jm

∗
j

2ρ�2ωi j
· 1

2bmn

(
nq + 1

2
∓ 1

2

)
· u(E(k‖) ∓ �ωi j − ΔEnm)

= ν j D2
i jm

∗
j

2ρ�2ωi j
· 1

2bmn
Ni j . (8.82)

where Ni j is the excited number of the intervalley phonons and given by (8.73)
replacing ωop with ωi j .

8.3.2.3 (c) Polar Optical Phonon Scattering

Next, we will discuss polar optical phonon scattering. Since the matrix element for
polar optical phonon scattering is proportional to the inverse of the phonon wave
vector, q−1, the previous treatments cannot be applied. From (6.239) derived in
Sect. 6.3.6, we obtain the electron–polar optical phonon interaction

|Cpop(q)|2 = α(�ωLO)3/2
1

L3

(
�
2

2m∗

)1/2 1

q2
, (8.83)

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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where α is dimensionless quantity and is given by (6.240) and L3 = V is the volume
of the three-dimensional crystal. In the present case we are using the normalized
wave function given by (8.40), and thus we can disregard the factor L3. Therefore
we rewrite it as

|Cpop(q)|2 = α(�ωLO)3/2
(

�
2

2m∗

)1/21

q2

= e2�ω0

2ε0

(
1

κ∞
− 1

κ0

)
1

q2
, (8.84)

and calculate the scattering rate as follows. Separating the phonon wave vector q into
the component perpendicular to the heterointerface, qz , and the component parallel
to the interface, Q = ±(k‖ − k′

‖), we obtain

Jmn(Q) ≡
∫ +∞

−∞
|Imn(qz)|2
q2
z + Q2

dqz . (8.85)

Then the scattering rate for a two-dimensional electron gas for polar optical phonon
scattering is given by

wpop =
∫

e2ω0

2(2π)2ε0

(
1

κ∞
− 1

κ0

)
Jmn(Q)d2k′

‖

×
{(

n(ω0) + 1

2
± 1

2

)
δ

[E(k‖) − E(k′
‖) ∓ �ω0 − ΔEnm

]}
. (8.86)

Equation (8.85) may be rewritten as the following by using (8.50):

Jmn(Q) = π

Q

∫ ∫
dz1dz2Φmn(z1)Φmn(z2) exp(−Q|z1 − z2|) . (8.87)

Following the treatment of Price [2], we discuss the following two extreme cases.
As stated before, |Imn|2 decreases rapidly with increasing q. When the parameter Q
is smaller than the critical value of q, |Inn(qz)|2 may be replaced with the value at
qz = 0 and put outside the integral, giving rise to the approximate result

Jnn(0) � π

Q
(for small Q) . (8.88)

The value of Jmn(0) may be approximated by expanding the exponential term as
1 − Q|z1 − z2| + · · · to give

Jmn(0) � 2W

π

m2 + n2

(m2 − n2)2
(for small Q) , (8.89)

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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where the wave function derived for a quantum well with infinite barrier height,
(8.45), is used.

On the other hand, for large values of Q, sin(Wqz/2)/(Wqz/2) in Imn(qz) behaves
like a δ-function and it may be approximated as

Jmn � π

bmnQ2
(for large Q) . (8.90)

Using these results, |Inn(qz)|2 and Jnn(Q) which determine the strength of intra-
subband scattering and |Imn(qz)|2 and Jmn(Q) (m �= n) which determine the strength
of inter-subband scattering are calculated and plotted in Figs. 8.13 and 8.14 for sev-
eral parameters, respectively. For the intra-subband scattering, J11(Q) and J22(Q) are
almost the same inmagnitude and therefore the former values are plotted in Fig. 8.13.
The curves of |Imn(qz)|2 represent intra-subband (m = n) and inter-subband scatter-
ing (m �= n) for acoustic phonon scattering and non-polar optical phonon scattering.
The curves of Jmn(Q) represent the strength of the polar optical phonon scattering.

Here we will estimate the scattering rate for polar optical phonon following the
treatment of Price [2]. It is evident from (8.86) that the scattering rate depends on
Q = |k‖ − k′

‖|. We will consider the case where the inter-subband transition plays
an important role and we will consider the temperature range

T <
�ω0

kB
≡ T0 . (8.91)
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Fig. 8.13 Scattering strength plotted as a function of qz and Q. The scattering strength for acoustic
phonon scattering and non-polar optical phonon scattering is shown for the intra-subband in the
ground subband |I11(qz)|2 and in the second subband |I22(qz)|2 as a function of Wqz . For polar
optical phonon scattering the scattering strength for the intra-subband scattering in the ground
subband J11(Q)/WQ is shown as a function of WQ. The intra-subband scattering strength in the
second subband J22(Q)/WQ is almost the same as J11(Q)/WQ and thus omitted in the figure
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Fig. 8.14 Scattering strength for the inter-subband transition plotted as a function of qz and Q. The
scattering strength for the inter-subband transition between the ground subband and the second or
the third subband for acoustic phonon scattering and non-polar optical phonon scattering, |I12(qz)|2
and |I13(qz)|2, are plotted as a function of Wqz . The scattering strength for polar optical phonons
is shown for the inter-subband transitions between the ground subband and the second or the third
subband. See the plots of J12(Q)/WQ and J13(Q)/WQ versus WQ

Then the value of Q for the inter-subband transition is expected to be very close to
the wave vector to satisfy the relation E(k0) = �ω0 and thus to the value

k0 =
(
2m∗ω0

�

)1/2

. (8.92)

When ΔE12 is larger than �ω0 by a factor of several times kBT , the inter-subband
transitions can be ignored. Under such conditions, there are not enough electrons to
emit phonons and thus phonon absorption dominates. Therefore, it may be possible
to keep the term proportional to n(ω0) in (8.86) and to replace J11(Q) with J11(k0),
giving rise to the scattering rate

wpop � J11(k0)k0
e2

8π�ε0

(
1

κ∞
− 1

κ0

)

×
(
n(ω0) + 1

2
∓ 1

2

)
u(E(k‖) ∓ �ω0 − ΔEnm) (8.93)

= J11(k0)k0
e2

8π�ε0

(
1

κ∞
− 1

κ0

)
Npopnm , (8.94)

where Npopnm for inter–subband scattering and Npop for intra–subband scattering are
given by (8.73) and (8.74) by replacing the phonon energy with polar optical phonon
energy, respectively. From (8.46) and (8.92) we find the following relations:
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(
1

3
Wk0

)2

= π2

3

�ω0

ΔE12 . (8.95)

Since b11 = (1/3)W as shown before, k0 is replaced by Q and the left-hand side of
(8.95) may be replaced by (bQ)2. When the relation �ω0 < ΔE12 is satisfied, (8.95)
leads to the result thatbQ can take the values in the range from0 toπ/

√
3 = 1.814 and

the scattering rate givenby (8.94) depends onWk0 through J11(k0). Since k0 = 2.50×
106 cm−1 in the case ofGaAs, the scattering rate stronglydepends onwhichparameter
is larger, thewell width of the two-dimensional electron gasW or 1/k0. Since 1/k0 �
4nm and the well width of a typical two-dimensional electron device is 10–100nm
or more, we may expect the conditionWk0 > 1. Then using (8.90), (8.94) reduces to

wpop � π

b11

e2

8π�ε0

(
1

κ∞
− 1

κ0

)
Npop = 3

W

e2

8�ε0

(
1

κ∞
− 1

κ0

)
Npop

∼ 1.45 × 105 × 1

W
Npop

[
s−1

]
. (8.96)

For example, in a quantum well of 10nm well width, the phonon excitation num-
ber at T = 300K is n(ω0) = 0.342, which gives wpop = 4.95 × 1012 s−1, and
n(ω0) = 0.0168 at T = 100K, which gives wpop = 2.43 × 1011 s−1.

In a narrow quantum well, on the other hand, using (8.88), (8.94) reduces to

wpop = k0
e2

8�ε0

(
1

κ∞
− 1

κ0

)
Npop ∼ 1.20 × 1013 × Npop

[
s−1

]
. (8.97)

In a similar fashion to the wide well case,wpop may be estimated as 4.12×1012 s−1 at
T = 300K and 1.85 × 1011 s−1 at T = 100K. From these results we may conclude
that both approximations give almost the same magnitude for the scattering rate.

For deformation-potential type acoustic phonon scattering, the scattering rate in
a quantum well with well width W = 10nm is estimated from (8.69) to be 1.16 ×
1012 s−1 at T = 300K and 0.202×1012 s−1 at T = 100K. Optical phonon scattering,
polar and non-polar, is reduced very rapidly at lower temperatures because of the low
excitation number of phonons involved. Therefore, in the lower temperature range
(T < 100K), acoustic phonon scattering dominates, but at higher temperatures
optical phonon scattering plays an important role. See Problems and Answers of this
Chapter for evaluation of electron mobility of the respective model.

8.3.2.4 (d) Piezoelectric Potential Scattering

Many III–V compound semiconductors belong to the zinc blende crystal structure,
and piezoelectric fieldwaves are excited alongwith the acoustic phonon propagation.
These piezoelectric potential waves induce electron scattering and the scattering
processes in the three-dimensional case is described in detail in Sect. 6.3.4. Here the
lattice vibrations are dealt with as three-dimensional phonons to derive the scattering
rate in a two-dimensional electron gas for piezoelectric potential scattering. Using

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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(6.197) we may write

|Cpz(q)|2 =
(
e · e∗

pz

ε∗

)2
�

2MNωq
, (8.98)

where MN = ρ is the crystal density, e∗
pz is the effective piezoelectric constant, and

ε = κε0. Using the relation ωq = vs · q and approximating as n(ωq) = kBT/�ωq

(assumption of equipartition rule), and from the comparison with the deformation
potential type acoustic phonon scattering, we obtain the relation

D2
ac →

(e · e14
ε

)2 A

Q2 + q2
z

, (8.99)

where A( Q, qz) is a dimensionless parameter of anisotropy which depends on the
phonon propagation direction. In the case of acoustic phonon scattering for intra-
subband transitions, the associated phonon wave vector Q is small and all the terms
except |Inn|2 in the integral decrease rapidly, enabling us to approximate |Inn|2 = 1.
Then we have

D2
ac

π

b
→

(e · e14
ε

)2 π

W
B , (8.100)

where

B = Q

π

∫ ∞

∞
A

Q2 + q2
z

dqz . (8.101)

Since transverse and longitudinal acoustic waves contribute to the piezoelectric scat-
tering, defining the respective term as Bt and Bl, we may rewrite

SII = kBT

ε2Q

π

2

[
(e · el)2Bl

ρv2
l

+ 2
(e · et)2Bt

ρv2
t

]
, (8.102)

where el and et are the piezoelectric constants for longitudinal and transverse acoustic
waves, respectively, and in the case of GaAs, for example, et = e14 and el = 0. The
piezoelectric constant e14 of GaAs is known to be −0.160C/m2. According to the
calculations of Price [2] the coefficients Bl and Bt are

Bl = 9

32
, 2Bt = 13

32
. (8.103)

Subband transitions due to the piezoelectric potential may be treated as elastic
scattering and we have the following relation between Q and k‖:

Q2 = 2(1 − cos θ)k2‖ , (8.104)

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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where θ is the angle between the electron wave vectors k‖ of the initial and final
states. The scattering rate in a two-dimensional electron gas due to the piezoelectric
potential is given by

wpiez = m∗

π�3
〈SII〉 , (8.105)

where 〈 〉 is the average over the angle θ. The relaxation time which determines the
electron mobility is obtained from the scattering rate multiplied by (1 − cos θ) and
is averaged as shown in Sect. 6.2. Therefore, the relaxation time is given by

1

τ
= m∗

π�3
〈(1 − cos θ)SII〉 . (8.106)

As seen in (8.102), the scattering factor for the piezoelectric potential SII is pro-
portional to 1/Q. Using the relation of (8.104), the average of (8.106) results in

〈
k‖
Q

(1 − cos θ)

〉
= 2

π
. (8.107)

Therefore, the relaxation time of the electron in the subband Em is given by the
following relation:

1

τpiez
= m∗

π�3

2

π
(QSII)

1

k‖

=
√
m∗

√
2π�2ε2

[
(e · el)2Bl

ρv2
l

+ 2(e · et)2Bt

ρv2
t

]
kBT√E − Em

. (8.108)

8.3.2.5 (e) Ionized Impurity Scattering

Electrons are scattered by the Coulomb potential induced by ionized impurities [3,
24, 25]. Assuming that a point charge+e is located at the position (r0‖, z0), the static
potential induced by the charge φ(r‖, z) is written as

φ(r‖, z) = e

4πκε0

1√
(r‖ − r‖0)2 + (z − z0)2

, (8.109)

where κε0 is the dielectric constant of the semiconductor we are interested in. The
scattering Hamiltonian for this ionized impurity is written as

Hion = −eφ , (8.110)

and the scattering matrix element of an electron from a state in subband m and wave
vector k‖ into a state in subband n and wave vector k′

‖ is given by

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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〈n, k′
‖ |Hion|m, k‖〉 = − e2

4πκε0A

∫
ζ∗
n (z)ζm(z)dz

×
∫ exp[i(k‖ − k′

‖) · r‖]√
(r‖ − r‖0)2 + (z − z0)2

d2k‖ , (8.111)

where A is the area of normalization. Putting Q = k‖ − k′
‖, the squared matrix

element is

∣∣〈n, k′
‖ |Hion|m, k‖〉

∣∣2 =
(

e2

2πκε0

)2 1

A2Q2
|Imn(Q, z0)|2 , (8.112)

where

Imn(Q, z0) =
∫

ζ∗
m(z)ζn(z) exp(−Q|z − z0|)dz . (8.113)

The scattering rate for a two-dimensional electron from a state |m, k‖〉 to a state
|n, k′

‖〉 scattered by a point charge +e located at (r‖0, z0) is then given by

P(m, k‖ → n, k′
‖; z0)

= 2π

�

∣∣〈n, k′
‖|Hion|m, k‖〉

∣∣2 δ
[E(k′

‖) − E(k‖)
]

, (8.114)

where

E(k‖) = �
2k2‖
2m∗ + Em , (8.115)

E(k′
‖) = �

2k ′2
‖

2m∗ + En . (8.116)

When the ionized impurities are distributed uniformly in the x, y plane and the
volume density in the z direction is given by gion(z), the scattering probability of
(8.114) reduces to

P(m, k‖ → n, k′
‖) = A

∫
P(m, k‖ → n, k′

‖; z0)gion(z0)dz0 (8.117)

= 2π

�

(
e2

2πκε0

)2 1

Q2A
J ion
mn (Q)δ

[E(k′
‖) − E(k‖)

]
,

where gion(z0) is the density of ions per unit volume and Nion = ∫
gion(z0)dz0 is the

ion density per unit area. J ion
mn (Q) is given by

J ion
mn (Q) =

∫ W

0
|Imn(Q, z0)|2 gion(z0)dz0 . (8.118)
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When impurity ions are uniformly distributed and gion(z0) = nion, the above integra-
tion leads to (assuming Q = 0, Jnn = 1)

J ion
nn (Q) �= AnionW . (8.119)

Since the impurity scattering in a two-dimensional electron gas can be treated as
elastic scattering, the relaxation time is given by

1

τion
=

∑
n

∑
k′

‖

P(m, k‖ → n, k′
‖)

(
1 − k ′

x

kx

)
. (8.120)

Replacing the summation with respect to k′
‖ by an integral and defining the scattering

angle by k ′
x/kx = cos θ, we obtain

1

τion
=

∑
n

∫
2π

�

(
e2

2πκε0

)2 1

AQ2
J ion
mn (Q)δ

[
En − Em + �

2k ′2
‖

2m∗ − �
2k2‖
2m∗

]

×(1 − cos θ)d2k′
‖ . (8.121)

When we define

D = k2 − 2m∗

�2
(En − Em) , (8.122)

Q =
√
k2 + D − 2k

√
D cos θ , (8.123)

the property of the δ-function gives rise to the following result:

1

τion
=

∑
n

(
e4

2π�(κε0)2

) ∫
J ion
mn (Q)

A[Q(θ)]2 (1 − cos θ)dθ · u(D) . (8.124)

As will be discussed later, the screening by a two-dimensional electron gas of sheet
density Ns modifies the relaxation time as

1

τion
=

∑
n

(
e4

2π�(κε0)2

) ∫
J ion
mn (Q(θ)) (1 − cos θ)

A [Q(θ) + PHmn (Q(θ))]2
dθ · u(D) , (8.125)

where the screening parameters P and Hmn are given by

P = e2Ns

2κε0kBT
, (8.126)

Hmn (Q(θ)) =
∫ ∫

ζm(z1)ζm(z2)ζn(z1)ζn(z2)

× exp [−Q(θ)|z1 − z2|] dz1dz2 . (8.127)
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8.3.2.6 (f) Surface Roughness Scattering

A two-dimensional electron gas is confined by potential barriers, which are the
interface of SiO2 and Si in the case of a Si-MOSFET and are the GaAs/AlGaAs
interfaces in the case of heterostructures. It is almost impossible to grow such surfaces
with flatness of atomic order and thus the electrons are subject to scattering due
to the surface roughness. The surface roughness scattering has been investigated
theoretically by Ando and Matsumoto [1, 26, 27].

Let the plane parallel to the interface be the x, y plane and the perpendicular
direction be the z axis. When the interface has an irregular fluctuation Δ(x, y) in
the z direction, the fluctuation results in a fluctuation in the potential V (z), which
induces electron scattering. Assuming that the fluctuationΔ(x, y) is small and varies
very slowly, then the expansion of Δ(x, y) may be approximated to the first order,
which gives the perturbation Hamiltonian for surface roughness Hsr as

Hsr = −dV

dz
Δ(x, y) . (8.128)

In the following we will consider intra-subband transitions for simplicity. The matrix
element between the initial state of wave vector k‖ and the final state k′

‖ is written as

〈k′
‖|Hsr|k‖〉 = −

∫ ∞

−∞
ζ∗(z)

dV

dz
ζ(z)dz

1

A

∫
A
Δ(x, y)ei(k‖−k′

‖)·r‖d2r‖

= −FeffΔ(k‖ − k′
‖) , (8.129)

where

Feff =
∫ ∞

−∞
ζ∗(z)

dV

dz
ζ(z)dz , (8.130)

Δ( Q) = 1

A

∫
A
Δ(r‖)eiQ·r‖d2r‖ . (8.131)

Here, Q = k‖−k′
‖, r‖ is the position vector in the x, y plane, A is the area of normal-

ization and ζ(z) is the envelope function obtained by solving the one-dimensional
Schrödinger equation in the effective mass approximation. Feff/e is expressed by the
effective electric field at the interface Eeff as follows [26]:

Feff = e2

κε0

(
1

2
Ns + Ndepl

)
= eEeff , (8.132)

where Ns is the sheet electron density and Ndepl is the space charge density in the
depletion layer. Note that this relation is derived for electrons in the inversion layer
of a Si-MOSFET. Usually the correlation of the surface roughness is expressed by
using a Gaussian function, which leads to the result
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〈
Δ(r)Δ(r ′)

〉 = Δ2 exp

[
(r − r ′)2

Λ2

]
, (8.133)

where Δ is the average height of the roughness in the z direction and Λ is the spatial
extent of the roughness in the direction parallel to the interface. The Fourier transform
of (8.133) reduces to

〈|Δ( Q)|2〉 = πΔ2Λ2

A
exp

[
−Q2Λ2

4

]
. (8.134)

With this approximation the scattering rate or the relaxation time τsr due to surface
roughness scattering is derived as

1

τsr
= 2π

�

∑
k′

‖

∣∣〈k′
‖|Hsr|k‖〉

∣∣2 δ
[E(k′

‖) − E(k‖)
] (

1 − k ′
x

kx

)
. (8.135)

Replacing (1 − k ′
x/kx ) in (8.135) with (1 − cos θ), taking account of the screening

effect, and replacing the summation with respect to k′
‖ by an integral with respect to

Q, we obtain

1

τsr
= 2π

�

∑
Q

π

A

[
ΔΛe2N ∗

ε(Q)

]2

exp

[
−Q2Λ2

4

]

×δ
[E(k‖ − Q) − E(k‖)

]
(1 − cos θ) , (8.136)

where N ∗ = (Ns/2+ Ndepl) and ε(Q) is the dielectric constant with screening effect
given by

ε(Q) = κε0

[
1 + 1

κε0

1

Q

e2m∗

2π�2
F(Q)

]
, (8.137)

and κε0 is the dielectric constant of the semiconductor without the screening effect.4

F(Q) is defined by

F(Q) =
∫

dz1

∫
dz2 |ζ(z1)|2 |ζ(z2)|2 exp(−Q|z1 − z2|) . (8.138)

Approximation of (8.136) leads to the following relation:

1

τsr(Q)
� πm∗Δ2Λ2e4N ∗2

�3 [ε(Q)]2
exp

(
−Q2Λ2

4

)
. (8.139)

4In the case of a Si-MOSFET the dielectric constant should be estimated by taking contributions
from the semiconductor and the insulator (SiO2). See Reference [1].
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From these results we find that the surface roughness scattering results in an elec-
tronmobility proportional to 1/N ∗2 and therefore the electronmobility is expected to
decrease with the square of the electron density. This feature has been experimentally
confirmed in the Si-MOSFET. For example, Hartstein et al. [28] have reported that
the decrease in electron mobility is explained in terms of (Ns + Ndepl)

2 instead of
(Ns + 2Ndepl)

2 [1]. It has been pointed out that the surface roughness approximated
by an exponential function explains the experimental data better than the Gaussian
function approximation [29, 30].

8.3.2.7 (g) Screening Effect

Here we will discuss the effect of screening on the impurity potential. We assume
that a change in the potential δφ(r) is induced by an ionized impurity and that the
occupation of electrons is modified by the potential change. Then the subband energy
Ei of the subband i is changed by the amount

δEi (r‖) = −eφ̄(r‖) = −e
∫ ∞

−∞
δφ(r)|ζi (z)|2dz . (8.140)

Therefore, the charge density induced by the ionized impurity is given by

ρind(r) = −e
∑
i

δNi |ζ(z)|2 = −e
∑
i

∂Ni

∂Ei δEi |ζ(z)|2 (8.141)

= e2
∑
i

∂Ni

∂Ei φ̄i (r‖)|ζ(z)|2 = −e2
∑
i

∂Ni

∂EF φ̄i (r‖)|ζ(z)|2 ,

where the sheet electron density Ni of the subband i is given by (8.15) and thus we
have

∂Ni

∂EF = mdi nvi
π�2

1

1 + exp [(Ei − EF)/kBT ] . (8.142)

Inserting this relation into (8.142), the induced charge density is reduced to

ρind(r) = −2κε0
∑
i

Pi φ̄(r‖)|ζ(z)|2 , (8.143)

where Pi is defined by the following equation:

Pi = e2

2κε0

mdi nvi
π�2

1

1 + exp [(Ei − EF)/kBT ] . (8.144)

Using these results, Poisson’s equation under the influence of the screening effect is
obtained as
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∇2δφ(r) = − 1

κε0
[ρext(r) + ρind(r)] . (8.145)

Replacing the potential due to ionized impurity δφ(r)with φ̃(r) and inserting (8.143)
into (8.145), we obtain

∇2φ̃(r) − 2
∑
i

Pi |ζ(z)|2
∫ ∞

−∞
φ̃(r)|ζ(z)|2dz = − 1

κε0
ρext(r) . (8.146)

The positive charge at z = z0 is defined by

ρext(r) = e · δ(r‖)δ(z − z0) . (8.147)

Inserting this into (8.146) we find

∇2φ̃(r) − 2
∑
i

Pi |ζi (z)|2
∫ ∞

−∞
φ̃(r)|ζi (z)|2dz

= − e

κε0
δ(r‖)δ(z − z0) . (8.148)

We apply the Fourier transform

Φ̃( Q, z) =
∫

φ̃(r‖, z)eiQ·r‖d2r‖ (8.149)

to both sides of (8.148), and the result is

(
∂2

∂z2
− Q2

)
Φ̃( Q, z) − 2

∑
i

Pi |ζi (z)|2Φ̄( Q) = − e

κε0
δ(z − z0) , (8.150)

where

Φ̄i ( Q) =
∫ ∞

−∞
Φ̃( Q, z)|ζi (z)|2dz . (8.151)

Defining

f (z) = − e

κε0
δ(z − z0) + 2

∑
i

Pi |ζi (z)|2Φ̄i ( Q) , (8.152)

(8.150) reduces to

(
∂2

∂z2
− Q2

)
Φ̃( Q, z) = f (z) . (8.153)



8.3 Transport Phenomena of Two-Dimensional Electron Gas 453

Using the Fourier transform of the above equation

ψ̂( Q, qz) =
∫ ∞

−∞
Φ̃( Q, z)eiqz zdz , (8.154)

f̂ (qz) =
∫ ∞

−∞
Φ̃( Q, z)eiqz zdz , (8.155)

(8.153) is rewritten as

ψ̂( Q, qz) = − f̂ (qz)

q2
z + Q2

. (8.156)

The inverse Fourier transform of the above equation leads to the following relation:

Φ̃( Q, z) = 1

2π

∫ ∞

−∞
ψ̂( Q, qz)e

−iqz zdqz = − 1

2π

∫ ∞

−∞
f̂ (qz)e−iqz z

q2
z + Q2

dqz

= − 1

2π

∫ ∞

−∞
f (z′)dz′

∫ ∞

−∞
e−iqz z

q2
z + Q2

dqz = −
∫ ∞

−∞
e−Q|z−z′ |

2Q
f (z′)dz′

= −
∫ ∞

−∞
e−Q|z−z′ |

2Q

[
− e

κε0
δ(z′ − z0) + 2

∑
i

Pi |ζi (z′)|2Φ̄i ( Q)

]
dz′

= e

κε0

e−Q|z−z0|

2Q
−

∑
i

Pi Φ̄i ( Q)

∫ ∞

−∞
e−Q|z−z′ |

Q
|ζi (z′)|2dz′ . (8.157)

Let us consider the scattering rate due to ionized impurities with the screening
effect. The matrix element M̃ for impurity scattering from an initial state in subband
m and with wave vector k‖ to a final state in subband n and with wave vector k′

‖ is
given by

M̃ = 〈n, k′
‖|eφ̃|m, k‖〉 =

∫ ∞

−∞
ζ∗
n (z)ζm(z) · e

A

∫
A
φ̃(r)ei(k‖−k′

‖) · r‖d2r‖

= e

A

∫ ∞

−∞
ζ∗
n (z)ζm(z)Φ̃( Q, z)dz

= e2

2κε0QA

∫ ∞

−∞
ζ∗
n (z)ζm(z)e−Q|z−z0|dz

−
∑
i

e

A
Pi Φ̄( Q)

1

Q

∫ ∞

−∞
dz

∫ ∞

−∞
dz′ζ∗

n (z)ζm(z)|ζi (z′)|2e−Q|z−z′ |

= 〈n, k′
‖|eφ|m, k‖〉 −

∑
i

Pi 〈i, k′
‖|eφ̃|i, k‖〉

[
Hi

mn(Q)

Q

]
. (8.158)
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Now we define following relations

M = 〈n, k′
‖|eφ|m, k‖〉 , (8.159)

M̃ = 〈n, k′
‖|eφ̃|m, k‖〉 , (8.160)

Hi
mn(Q) =

∫ ∞

−∞
dz

∫ ∞

−∞
dz′ζ∗

n (z)ζm(z)|ζi (z′)|2e−Q|z−z′ | , (8.161)

where φ and M are the potential and matrix element without screening by the two-
dimensional electron gas. Therefore, the matrix element is rewritten as follows by
using the above relations and (8.158).

M̃ = M − Pi M̃
Hi

mn

Q
, (8.162)

M̃ = Q

Q + Pi Hi
mn

M . (8.163)

8.3.2.8 (h) Remote Ionized Impurity Scattering

The discovery of modulation doping by Dingle et al. [19] in 1978 has enabled to
improve the low-temperature mobility in AlGaAs/GaAs heterostructures. The most
important factor to achieve high electron mobility is to separate 2DEG from ionized
impurities in modulation-doped AlGaAs/GaAs heterostructures, where the 2DEG in
GaAs layer at the interface is supplied from the donors doped in the barrier layer
AlGaAs. This structure will reduce ionized impurity scattering because the GaAs
layer is not doped intentionally and thus very low density of acceptors is introduced
unintentionally. At low temperatures 2DEG is suffered from acoustic phonon scat-
tering and ionized impurity scattering. Therefore the ionized impurities introduced
in AlGaAs layer are the most important source of electron scattering. Interaction
potential of 2DEG with such remote ionized impurities in AlGaAs is long range and
expected to be the source of scattering potential for 2DEG in GaAs layer. It is well
known that the introduction of a spacer layer, non-doped layer in the barrier AlGaAs
at the interface, will increase the electron mobility quite a bit [21]. The first observa-
tion of electron mobility exceeding 106 cm2/Vs was made by Hiyamizu et al. [21].
In addition they reported an increase in the electron mobility after light exposure.
Improvement of molecular beam epitaxy has let to produce heterostructures with low
temperature mobility values exceeding 1× 107 cm2/Vs. Pfeiffer et al. [31] observed
Hall mobility of 1.17×107 cm2/Vs at carrier density of 2.4×1011 electrons/cm2 with
a spacer layer of 700Å after exposure to light at 0.35K. Saku et al. [32] reported elec-
tron mobility 1.05 × 107 cm2/Vs in modulation-doped AlGaAs/GaAs with a spacer
layer thickness 750 Å and with an electron sheet density of 3×1011 cm−2. Umansky
et al. [33] reported a maximum electron mobility of 1.44× 107 cm2/Vs at 0.1K with
a spacer thickness of 680Åand a sheet electron density of 2.4 × 1011 cm−2. All the
data reported so far have revealed the importance of the doping profile in the bar-
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rier layer AlGaAs and thus the electron mobility is affected strongly by the remote
ionized impurities.

Hess [24] was the first to calculate the remote impurity scattering, but the results
did not agreement with experimental observation. Ando et al. [1] reported a detailed
model how to deal with the remote ionized impurity scattering, but they did not show
any calculated results. Using the model Ando [34] reported an elaborate analysis of
Coulomb scattering in addition to interface-roughness scattering and alloy-disorder
scattering, and concluded that the Coulomb scattering due to remote impurities plays
an important role in determining the low-temperature mobility. In the calculations
two subbands are taken into account. Lee et al. [35] reported detailed analysis of
low field mobility of 2DEG in modulation doped AlGaAs/GaAs layer, where they
took into account of remote impurity scattering, scattering due to background impu-
rities, acoustic deformation potential scattering, polar optical phonon scattering and
piezoelectric scattering. They pointed out that the low temperature mobility is well
explained in terms of scattering by remote and background impurities. In addition
they point out the importance of acoustic phonon scattering. Gold [36] also has
reported theoretical analysis of the electron mobility of 2DEG in AlGaAs/GaAs
heterostructures and interpreted experimental data in terms of multiple scattering
mechanisms including remote impurity scattering. These reported analyses [31, 33,
35, 36] reveal that the scattering by background impurities plays an important role
in the low temperature mobility.

Here the scattering rate of 2DEG by ionized impurities is derived along the theo-
retical treatment made by Ando et al. [1]. For simplicity we assume that there exists
only one type of impurities with the electronic charge +Ze. The dimensions of the
sample are taken to be L for the length, A = L2 for the area and V = L3 for the
volume. An impurity located at (r i , zi ) will produce a potential energy given by the
following relation for zi < 0

V (r, z) =
∑
i

Vi (r − r i , z − zi ), (8.164)

Vi (r, z) = − Ze2

4πε
√

(r − r i )2 + (z − zi )2
, (8.165)

where ε = κε0 is the average dielectric constant of AlGaAs and GaAs layers and the
dielectric constants of the two materials are assumed to be the same for simplicity in
the following numerical calculations. Since we are interested in the electron mobility
at low temperatures, the electrons are assumed to occupy the lowest subband (the
electric quantum limit) with the wave function ζ0(z) and the subband energy E0, and
thus the effective potential for the 2DEG is given by

vi (r) =
∫ ∞

0
|ζ0(z)|2Vi (r, z) dz . (8.166)
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Fourier transform of the above equation with respect to two-dimensional directions
r = (x, y) will give the following relation

vi (r) =
∑

Q

vQ(zi )e
iQ·(r−r i ) . (8.167)

The inverse transform of the above equation results in

vQ(zi ) = − 1

L2

Ze2

2εQ
F(Q, zi ), (8.168)

F(Q, zi ) = e−Q|zi |
∫ ∞

0
e−Q|z||ζ0(z)|2dz . (8.169)

When the screening of the potential energy by the 2DEG is taken into account, Q in
the denominator of (8.168) should be replaced as follows [4] (and see Sect. 8.3.2.7(g))

Q → Q + PHmn ≡ Q + Qs , (8.170)

where

P = e2

2ε

∂Ns

∂EF = e2

2ε

m∗

π�2

1

1 + exp [(E0 − EF)/kBT ] , (8.171)

Hmn = Hmn (Q(θ))

=
∫ ∫

ζm(z1)ζm(z2)ζn(z1)ζn(z2) exp(−Q|z1 − z2|)dz1dz2 . (8.172)

Here we evaluate Hmn(m = n = 0) given by (8.172) using the Fang-Howard formula
(8.25) [18] for the ground state of the 2DEG and obtain the following relation:

H00 = 1 + (9/8)(Q/b) + (3/8)(Q/b)2

(1 + Q/b)3
. (8.173)

The result is shown in Fig. 8.15, where H00(Q) is plotted as a function of Q/b.
Now we evaluate the relaxation time due to remote ionized impurity scattering.

A schematic drawing of the modulation-doped heterostructure used in the present
calculations is shown in Fig. 8.10a, b, where we assume AlGaAs layer is uniformly
doped by Si donors (Ni [cm−3]) from z = −ds to z = −(dN + ds). The layer with
thickness ds is called the spacer layer. The relaxation time due to the remote ionized
impurity scattering is then written as

1

τrmt
= 2π

�

∑
k′

∫ −ds

−(ds+dN)

L2Ni(zi )dzi

×|vk−k′(zi )|2(1 − cos θkk′)δ
[E(k) − E(k′)

]
, (8.174)



8.3 Transport Phenomena of Two-Dimensional Electron Gas 457

Fig. 8.15 The screening
factor H00(Q) given by
(8.173) is plotted as a
function of Q/b

0.01 0.1 1.0 10

1.0

0.1

0.01

bQ /

)
(

00
Q

H

where θkk′ is the angle between the wave vectors of 2DEG k and k′, and the energy
of the 2DEG is given by E(k) = �

2k2/2m∗. Summation with respect to k′ in (8.174)
is expressed in an integral form shown below.

∑
k′

= L2

(2π)2

∫
d2k′ . (8.175)

When the distribution of the ionized impurities is uniformwith the density Ni, (8.174)
is reduced to

1

τrmt
= 2π

�

L2

(2π)2

∫
d2k′L2Ni

∫ −ds

−(ds+dN)

dzi

×|vk−k′(zi )|2(1 − cos θkk′)δ
[E(k′) − E(k)

]
, (8.176)

where we used the conservation laws for the wave vectors of 2DEG k′ = k ± Q and
the energy E(k′) = E(k). Using Fang-Howard formula (8.25) for the ground state
of 2DEG, (8.169) is written as

F(Q, zi ) = e−Q|zi | b3

(Q + b)3
. (8.177)

The average wave vector of 2DEG is given by k =
√
2m∗kBT/�2 (k < 108 [1/m],

T < 50) for non-degenerate case (Boltzmann statistics) and given by the Fermi wave
vector kF = √

2m∗EF/� = √
2πNs (Ns is the sheet density of 2DEG) for degenerate

case. Since b = 5.3 × 108[1/m] and kF ∼ 2.5 × 108 [1/m] for Ns = 1016 [1/m2],
the relation b > Q = 2k sin(θ/2) holds at low temperatures or for the sheet electron
density Ns < 2 × 1012[1/cm2], and thus we may approximate b3/(b + Q)3 � 1
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in (8.177) and H00(Q) � 1. Then, (8.176) reduces to the following relation with
Q = 2k cos θk′k, where we used θk′k = θ for simplicity.

1

τrmt
= 1

2π�

(
Ze2

2ε

)2 ∫
k ′dk ′

∫ 2π

0
dθ Ni

∫
dzi e

−4k sin(θ/2)|zi |

× (1 − cos θ)

(2k sin(θ/2) + Qs)
2 δ

[
�
2

2m∗
(|k ′| − |k|)(|k ′| + |k|))

]
. (8.178)

Using the property of the δ-function and integrating over zi , the above equation
reduces to

1

τrmt
= Nim∗

8π�3

(
Ze2

ε

)2 ∫ 2π

0
dθ

2 sin2(θ/2)

[2k sin(θ/2) + Qs]2

×
[
exp[−4dsk sin(θ/2)] − exp[−4(ds + dN)k sin(θ/2)]

4k sin(θ/2)

]

= Nim∗

64π�3

(
Ze2

ε

)2 2

k3

∫ 2π

0
d(θ/2)

sin(θ/2)

[sin(θ/2) + Qs/2k]2
×{exp[−4dsk sin(θ/2)] − exp[−4(ds + dN)k sin(θ/2)]} . (8.179)

Replacing θ/2 by θ and taking into account of the symmetry of the function and
changing the range of integration into [0,π/2], we obtain the following relation.

1

τrmt
= Nim∗

16π�3

(
Ze2

ε

)2 1

k3

∫ π/2

0
dθ

sin θ

[sin θ + Qs/2k]2
×{exp[−4dsk sin θ] − exp[−4(ds + dN)k sin θ]} . (8.180)

Equation (8.180) is shown to be equivalent to (6) of Hess [24] and to (6) of Lee
et al. [35]. Integral with respect to θ of the above equation will not give an analytical
solution and thus we carry out the integral numerically to evaluate the electron
mobility in two cases, degenerate and non-degenerate 2DEG.

(1) Degenerate Case:

When the 2DEG is degenerate (EF −E0 > 0) and occupies only the ground subband,
we obtain the following relations

Ns = m∗

π�2
(EF − E0) , (8.181)

P = e2

2ε

∂Ns

∂EF = e2

2ε

m∗

π�2
≡ Qs , (8.182)

where m∗/π�
2 is the density of states of 2DEG. The electron mobility of degenerate

2DEG is calculated by replacing k of τ (k) by Fermi wave vector kF as shown later
in (8.211). Since Fermi wave vector is defined by kF = [2m∗(EF − E0)/�

2]1/2,
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we obtain 〈k〉 = kF = √
2πNs from (8.181). The mobility is, then, evaluated by

numerical integration of (8.180). We introduce I1(Qs/2kF, d) defined by

I1(Qs/2kF, d) =
∫ π/2

0
dθ

sin θ

[sin θ + Qs/2kF]2 exp[−4d kF sin θ] , (8.183)

where d is ds or ds + dN. Inserting (8.180) and (8.183) into (8.211), the mobility of
degenerate 2DEG is given by

μrmt = eτ (kF)

m∗

= 16π�
3e

Nism∗2
( ε

Ze2

)2 k3F
I1(Qs/2kF, ds) − I1(Qs/2kF, ds + dN)

. (8.184)

As stated earlier higher electron mobility is achieved by introducing different
doping profile. Among them Pfeiffer et al. [31] reported that δ-doping in AlGaAs
layer results in a high electron mobility of 11.7 × 106 cm2/Vs at a carrier density
of 2.4 × 1011 electrons/cm2 with a spacer layer of 700Å after exposure to light at
0.35K. Electron mobility limited by δ-doped remote impurity scattering is easily
calculated. The integral with respect to zi in (8.178) is evaluated as

∫
dzi Ni e

−4k sin(θ/2)zi = Nise
−4k sin(θ/2)ds , (8.185)

where Nis is the sheet density of δ-doped impurities. Using this relation, (8.179) is
written as

1

τrmt
= Nism∗

8π�3

(
Ze2

ε

)2 1

k2

∫ 2π

0
d(θ/2)

sin2(θ/2)

[sin(θ/2) + Qs/2k]2
× exp[−4dsk sin(θ/2)] . (8.186)

The integral with respect to θ of (8.186) does not give any analytical expression
and thus we carry out integration for typical values of Qs, k = kF and ds, defining
I (Qs/2kF) by

I2(Qs/2kF) =
∫ π/2

0

sin2 θ

(sin θ + Qs/2kF)2
exp(−4dskF sin θ)dθ . (8.187)

Using (8.211) electron mobility due to a δ-doped heterostructure at low temperatures
is therefore given by

μrmt = eτ (kF)

m∗ = 4π�
3e

Nism∗2
( ε

Ze2

)2
k2F

1

I2(Qs/2kF)
. (8.188)
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(2) Non-degenerate Case:

In this case the Fermi energy is lower than the ground subband energy, (EF < E0),
and the Fermi–Dirac distribution function may be approximated as 1/[1+ exp{(E −
EF)/kBT }] � exp{−(E − EF)/kBT }. Since Hmn � 1 (m = n = 0) for b � Q, we
obtain PHmn ∼ P ≡ Qs and the following relations

Ns = m∗

π�2

∫ ∞

E0

exp

[
−E − EF

kBT

]
dE = m∗

π�2
kBT exp

[−(E0 − EF)
kBT

]
, (8.189)

P = e2

2ε

∂Ns

∂EF = e2Ns

2εkBT
≡ Qs , (8.190)

where m∗/π�
2 is the density of states for 2DEG as shown before for degenerate

2DEG. Here only the ground subband with its energy E0 is considered. Inserting
(8.180) into (8.208) and (8.209) we may evaluate the mobility. However, the integral
of (8.179) does not give an analytical solution we assume that k in the integrand is
given by using the average k-vector 〈k〉 = [2m ∗ kBT/�

2]1/2. Replacing kF by 〈k〉
in (8.183), the electron mobility is evaluated from (8.208) and (8.209) as

μrmt = 60
√
2 π3/2ε2(kBT )3/2

Ni
√
m∗e3

× 1

I1(Qs/2〈k〉, ds) − I1((Qs/2〈k〉, ds + dN)
. (8.191)

Nowwe evaluate the mobility numerically and compare with experimental results
shown in Fig. 8.11. For the purpose of comparison with the experimental data of
Hiyamizu et al. [21] as an example, we assume m∗ = 0.067m, ε = κε with κ = 13,
and the spacer layer thickness 200Å.When a perfect ionization of donors is assumed,
we obtain the thickness dN from the relation Ns = dNNi, which gives dN = 0.5×10−6

cm =50 Å for Ni = 1018 cm−3 and Ns = 5 × 1011 cm2 and dN = 30 Å for
Ns = 3×1011 cm−2. The former and latter cases of Ns correspond to the parameters
of Hiyamizu et al. [21] with and without exposure to light, respectively. Fermi energy
at low temperatures is EF − E0 = 3.55 meV for the 2DEG density Ns = 1011 cm−2

and 35.5 meV for Ns = 1012 cm−2 from (8.181). In such cases 2DEG is treated as
degenerate.

Themobility of 2DEG limited by the remote ionized impurity scattering calculated
from (8.184) is shown inFig. 8.16,where themobility is plotted as a function of 2DEG
sheet density Ns for three different spacer layer thickness ds = 200, 250, 300 Å
and for the impurity density Ni = 1018 cm18. For comparison calculated mobility
for Ni = 1.517 cm−3 and ds = 200Å is plotted by the dashed curve. The calculated
mobility increases with increasing the 2DEG sheet density, which is interpreted in
terms of screening effect. Higher the sheet density is, the screening becomes more
effective, resulting in higher electron mobility.
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Fig. 8.16 Calculated mobility μrmt of 2DEG limited by the remote ionized impurity scatter-
ing in modulation-doped AlGaAs/GaAs heterostructures (HEMT) is plotted as a function of
the electron sheet density Ns. Three curves are calculated for different spacer layer thickness
ds = 200, 250, 300Å. The donor density in AlGaAs layer is Ni = 1018 cm−3 and the mobil-
ity is calculated from (8.184) assuming that 2DEG is degenerate. The donors are assumed to be
completely ionized and the doped layer thickness is estimated by using the relation dN = Ns/Ni. The
mobility increases with increasing the spacer layer thickness ds. Experimental data of Hiyamizu
et al. [21] are plotted by black circles. The calculated mobility for Ni = 1.5 × 1018 cm−3 and
ds = 200Å is plotted by the dashed curve for comparison

Here we compare with the experimental data of Hiyamizu et al. [21]. Their data
are plotted by the solid circles in Fig. 8.16,whereμ = 1.25×106 (2.12×106) cm2/Vs
at T ∼ 5K for a sample with the impurity density Ni = 1.0 × 1018 cm−3, Ns =
3×1011 cm−2 (5.04×1011 cm−2 after light exposure) and the spacer layer thickness
ds = 200Å. The calculated mobility is μrmt = 0.55× 106 cm2/Vs for Ns = 3× 1011

cm−2 and 0.81×106 cm2/Vs for Ns = 5.04×1011 cm−2 when the ionized impurity
density is assumed to be the doped donor density Ni = 1018 cm−3. The calculated
mobility is very small compared with the experimental data. This discrepancy may
be understood when we take into account of the ionization rate of the donors. As
shown later the ionization of the donors is not perfect and expected to be 14 to 25%
in the case of δ-doped AlGaAs/GaAs. The dashed curve in Fig. 8.16 is calculated
assuming the ionized donor density of Ni = 1.5 × 1017 cm−3 in the sample of
Hiyamizu et al. [21]. The calculated electron mobility is μrmt = 1.1 × 106 cm2/Vs
for Ns = 3 × 1011 cm−2 and 2.09 × 106 cm2/Vs for Ns = 5.04 × 1011 cm−2

after exposure to light. These values are in good agreement with the experimental
observation of Hiyamizu et al. [21]. The present results show an importance of the
spacer layer to achieve high electron mobility in modulation-doped heterostructures.
We have to note here that the ionized donor density after exposure to light is higher
than 1.5 × 1017 cm−3, which will reduces the mobility a little bit.

As stated earlier Ando [34] reported the calculations of the mobility in AlGaAs/
GaAs heterostructure using trial functions of the electron ground state given by
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Fig. 8.17 Mobility calculated by Ando [34] including Coulomb scattering by impurities in GaAs
and AlGaAs layers. Wave function “Ando” takes account of penetration into AlGaAs layer (solid
curves) and “Fang-Howard” is given by (8.25) (dashed curves). In the calculations ionized impurities
in GaAs, depletion charge density Ndepl = 5 × 1010 cm−2 and compensated donors in AlGaAs,
N ′
D − N ′

A = 2 × 1017 cm−3 with the compensation rate K = 0.25 are assumed. Calculated
mobilities are plotted as a function of the electron sheet density Ns for different spacer layer
thickness ds = 200, 150, 100, 50, and 0 A. Experimental data of Hiyamizu et al. [21] and Tsui
et al. [37] are also plotted for comparison. After Ando [34]

Fang and Howard (8.25) and by the wave function with a nonvanishing amplitude
in AlGaAs, here referred to as “Ando”. The results are shown in Fig. 8.17. We find
there exists only a slight difference between the two approximations of thewave func-
tions “Ando” and “Fang-Howard”. The most important difference in the assumption
between the analysis shown in Figs. 8.16 and 8.17 is the acceptors impurities in
GaAs and AlGaAs layers. Ando takes account of the ionized acceptors of the deple-
tion region in the GaAs layer and the compensation in the AlGaAs layer. Therefore
the calculated mobility Fig. 8.17 is lower than the result shown in Fig. 8.16. However,
the overall features of the results are very similar and reveal the importance of the
screening effect in the Coulomb scattering. The solid and dashed curves in Fig. 8.17
are calculated for the wave functions of “Ando” and “Fang-Howard”, respectively.
Experimental data of Hiyamizu et al. [21] and Tsui et al. [37] are plotted along with
the calculated curves, where the black dot corresponds to the electron sheet density
under the equilibrium condition (in the dark) and the open circles are obtained under
exposure to light. The calculated curves by Ando [34] shows a reasonable agreement
with the experimental data, except the decrease in mobility at high electron density
observed by Hiyamizu et al.

Next we calculate electron mobility in δ-doped AlGaAs/GaAs. In the calculation
we have to estimate the ionized donor density in the δ-doped AlGaAs. Since the
2DEG in GaAs is supplied by the ionized donors, it is very reasonable to assume that
Nis = Ns. The calculated result is shown by the solid curve in Fig. 8.18 as a function
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Fig. 8.18 Calculated mobility μrmt of 2DEG limited by remote ionized impurity scattering in the
δ-dopedAlGaAs/GaAs heterostructures is plotted as a function of the electron sheet density Ns. The
solid curve is calculated for spacer layer thickness ds = 700Å. For comparison the experimental
data of Pfeiffer et al. [31] are plotted by the solid circles we assumed that the ionized donor density
is Nis = Ns (the δ-doped donors of 1.0× 1012 cm−2 are partially ionized). The calculated mobility
increases with increasing 2DEG density due to the screening effect

of the sheet density of 2DEG Ns, and the experimental date of Pfeiffer et al. [31] are
plotted by the solid circles, one in the dark and the other in the light exposure.We find
in Fig. 8.18 that the calculated mobility increases with increasing the sheet density
of 2DEG and that the calculated result agrees well with the experimental values.
The calculated mobility is μrmt = 12.5 × 106 cm2/Vs which is in good agreement
with the observed mobility 11.7 × 106 cm2/Vs of Pfeiffer [31]. The mobility of the
same sample in the dark is estimated to be 9.6 × 106 cm2/Vs at 0.35K which is
in reasonable agreement with the experimental mobility 6.3 × 106 cm2/Vs. We can
conclude here again that the spacer layer plays an important role in achieving high
electron mobility in modulation-doped heterostructures.

2DEG of AlGaAs/GaAs heterostructures is usually degenerate as shown above.
Here we will show the mobility of non-degenerate 2DEG limited by the remote
impurity scattering for comparison. The calculatedmobility of non-degenerate 2DEG
limited by remote impurity scattering using (8.191) is shown in Fig. 8.19, where the
doping density in AlGaAs layer is Ni = 1.0 × 1017 cm−3, spacer layer thickness
ds = 200Å and sheet density of 2DEG Ns = 1010, 5 × 1010 and 1011 cm−2. We
find in Fig. 8.19 that the mobility increases with increasing the 2DEG density Ns at
low temperatures due to screening effect. At high temperatures the screening effect
is weakened for lower 2DEG density and thus the mobility behaves like μrmt ∝ T 3/2

as in the case of 3D electrons.
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Fig. 8.19 Mobility μrmt of
non-degenerate 2DEG
limited by remote impurity
scattering in
modulation-doped
AlGaAs/GaAs
heterostructure (HEMT),
where the mobility is
evaluated from (8.191) for
Ni = 1017 cm−3, ds = 200Å
and electron sheet density
Ns = 1010, 5 × 1010 and
1011 cm−2
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8.3.3 Mobility of a Two-Dimensional Electron Gas

In general the electron mobility can be evaluated by solving the Boltzmann transport
equation. We have already presented the treatment of three-dimensional and bulk
semiconductors in Chap.6. A similar treatment is possible for the case of a two-
dimensional electron gas and the difference arises from the relaxation time τ and the
density of states of the two-dimensional electron gas. According to the treatment of
Sect. 6.2, we assume that the external electric field is weak and that the change in
the distribution function due to the external field is small compared to the thermal
equilibrium value f0. The distribution function is written as

f = f0 + f1 , ( f1 << f0) (8.192)

and the relaxation time τ is approximated in a similar fashion to (6.93) as

f1 = −τvx Fx
∂ f0
∂E . (8.193)

In the presence of an electric field Ex in the x direction, Fx = −eEx and we obtain

f (k‖) = f0(k‖) + eExτvx
∂ f0
∂E . (8.194)

Therefore, the current density in the x direction is given by

Jx = 2

(2π)2

∫
(−e)vx f (k‖)d2k‖

= − e

2π2

∫
vx f0(k‖)d2k‖ − e2Ex

2π2

∫
τv2

x

∂ f0
∂E d2k‖ , (8.195)

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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where the factor 2 represents the spin degeneracy. Since vx f0 in the first term on
the right-hand side of the second equation is an odd function with respect to kx ,
integration from −∞ to +∞ results in zero. Therefore, we obtain

Jx = −e2Ex

2π2

∫
τv2

x

∂ f0
∂E d2k‖ . (8.196)

The sheet density of the two-dimensional electron gas, N , where only the ground
subband is taken into consideration, is given by

N = 2

(2π)2

∫
f0d

2k‖ . (8.197)

Therefore, (8.196) for the current density reduces to

Jx = −e2NEx

∫ ∞

0
τv2

x

∂ f0
∂E d2k‖∫ ∞

0
f0d

2k‖
. (8.198)

The total energy of the two-dimensional electron gas in the i th subband is written as
follows when the electrons have isotropic effective mass m∗ in the (kx , ky) plane:

E = Ei + �
2

2m∗ k2
‖ = Ei + 1

2
m∗v2

‖ , (8.199)

where �k‖ = m∗v‖. When we write the squared average of v2
x as 〈v2

x 〉, we have
〈v2

x 〉 = 〈v2
y〉 and

〈v2
x 〉 = 1

2
〈v2

x + v2
y〉 = 1

2
〈v2

‖〉 = 1

m∗ 〈E − Ei 〉 . (8.200)

Inserting this relation into (8.198) and replacing the summation with respect to k‖
by an integral with respect to energy E , the following result is obtained:

Jx = −e2NEx

m∗

∫ ∞

Ei

τ (E − Ei )d f0(E)

dE dE
∫ ∞

Ei

f0(E)dE
. (8.201)

Putting E − Ei = E ′ and once again replacing E ′ by E , the above equation results in

Jx = −e2NEx

m∗

∫ ∞

0
τE d f0(E + Ei )

dE dE
∫ ∞

0
f0(E + Ei )dE

. (8.202)
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Now, we define the current density by

Jx = Ne2Ex

m∗ 〈τ 〉 , (8.203)

where

〈τ 〉 = −

∫ ∞

0
τE d f0(E + Ei )

dE dE
∫ ∞

0
f0(E + Ei )dE

=

∫ ∞

0
τE d f0(E + Ei )

dE dE
∫ ∞

0
E d f0(E + Ei )

dE dE
. (8.204)

It is evident that 〈τ 〉 represents the average of the relaxation time over the distribution
function.

When the two-dimensional electron gas is degenerate, the Fermi–Dirac distribu-
tion function should be used for f0:

f0(E) = 1

1 + exp

(E − EF
kBT

) , (8.205)

and (8.204) is reduced to

〈τ 〉 =

∫ ∞

0
Eτ f0(E + Ei ) [1 − f0(E + Ei )] dE∫ ∞

0
E f0(E + Ei ) [1 − f0(E + Ei )] dE

. (8.206)

On the other hand, in the case of a non-degenerate electron gas, the Maxwell–
Boltzmann distribution function is used for f0:

f0(E) = A exp

(
− E
kBT

)
, (8.207)

and then the average value of the relaxation time is given by

〈τ 〉 =

∫ ∞

0
Eτ f0dE∫ ∞

0
E f0dE

. (8.208)

The mobility μ of a two-dimensional electron gas is evaluated from the averaged
relaxation time 〈τ 〉 by

μ = e 〈τ 〉
m∗ , (8.209)
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where the relaxation time τ is determined by the various scattering processes and the
scattering rates are as discussed in the previous section. Expressing the relaxation
time as τi , the relaxation time due to all the scattering processes is given by the
following relation in the same way as in (6.370):

1

τ
=

∑
i

1

τi
. (8.210)

Inserting this relaxation time τ into (8.206) or (8.208), we may evaluate the average
value of the relaxation time and thus the electron mobility.

At low temperatures the average relaxation time is evaluated by replacing E with
EF, 〈τ 〉 = τ (EF), and thus the mobility is given by

μ = e τ (EF)
m∗ = e τ (kF)

m∗ . (8.211)

We will now compare the mobility of a two-dimensional electron gas deduced
from experiments and from theoretical calculations. As a typical example, we will
consider the electron mobility in the inversion layer of a Si-MOSFET. We have
already shown that positive gate voltage applied to an n-channel MOSFET formed
on a p-type substrate induces electrons at the Si/SiO2 interface, resulting in the
formation of an inversion layer, as discussed in Sect. 8.2.1. The MOSFET used for
the experiment has an acceptor density NA = 8 × 1016 cm−3. The sheet electron
density is evaluated from the relation

Ns = Cox

e
(Vg − Vth) , (8.212)

where Cox is the capacity of the gate oxide, Vg is the applied gate voltage and Vth

is the threshold voltage. The effective electric field Eeff induced at the interface is
evaluated from (8.132). The surface concentration of the depletion charge Ndepl is
determined from the following relations.

Ndepl =
(
4κε0φBNsub

e

)1/2

, (8.213a)

φB = kBT

e
log

(
Nsub

ni

)
, (8.213b)

where φB is the bulk Fermi energy, Nsub is the substrate impurity concentration
(Nsub = NA : acceptor density), ni is the intrinsic carrier concentration.

Figure8.20 shows themeasured electronmobilityμexp as a functionof the effective
electric field at T = 77K,which is comparedwith the theoretical calculations [38]. In
Fig. 8.20 are plotted the respective mobilities calculated as a function of the effective
electric field for ionized impurity scattering μion and the sum of three scattering
mechanisms: acoustic phonon scattering, inter-valley phonon scattering and surface

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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Fig. 8.20 Electron mobility in Si-MOSFET plotted as a function of the effective gate electric
field at T = 77K. Experimental data for the effective mobility μexp determined from conductance
measurements are shown by © and the solid curves of μ are theoretically calculated for proper
scattering processes and for a surface roughness parameter of ΔΛ = 25 × 10−20 m2, where μion
is the mobility due to ionized impurity scattering, μps is the mobility due to the sum of acoustic
phonon, inter-valley phonon and surface roughness scattering

roughness scattering, μps, where the parameter of the surface roughness is taken to
beΔΛ = 25×10−20 m2. The mobility μ calculated for all the scattering processes is
shown by the solid curve. It is very interesting to point out that theory and experiment
exhibit a E−2

eff dependence at higher effective electric fields Eeff .
Figure8.21 shows the temperature dependence of the electron mobility for sheet

electron density Ns = 3×1012 cm−2, where the experimental results and the theoret-
ical calculations are compared. The experimental data are shown by μexp. The elec-
tron mobilities for the respective scattering processes are shown by μion for ionized
impurity scattering, μint for inter-valley phonon scattering, μac for acoustic phonon
scattering and μsr for surface roughness scattering. In addition, the total mobility
calculated by taking all the scattering processes into account is shown by the curve
μtotal [39], where we find good agreement between the experimental data and the the-
oretical calculations. Also, we find that the surface roughness scattering dominates
over the other scattering mechanisms at high effective electric fields, resulting in a
E−2
eff dependence. Similar results have been reported by Takagi et al. [40, 41].
When the electron or hole mobility in inversion layer of MOSFET is measured as

a function of the electron sheet density, the mobility approaches to a universal curve
at higher electron density, independent of the doping density in the substrate. This
behavior is called the universality of themobility . Themost typical example has been
reported by Takagi et al. [40] as shown in Fig. 8.22, where the electron mobility of
n-channel MOSFET formed in the (100) plane of Si substrate is plotted as a function
of the effective electric field Eeff (equivalent to the electron sheet density Ns). Here,
the effective electric field Eeff is related to the inversion electron density Ns and to
the acceptor density in the depletion layer Ndepl according to (8.132). In Fig. 8.22
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Fig. 8.21 Temperature dependence of electron mobility in Si-MOSFET determined from con-
ductance measurements compared with the theoretical calculations for the sheet electron density
Ns = 3 × 1012 cm−2, where μexp is the experimental result. The calculated results are shown by
μion for ionized impurity scattering, μint for inter-valley phonon scattering, μac for acoustic phonon
scattering, μsr for surface roughness scattering and μtotal is calculated by taking all the scattering
processes into account

Fig. 8.22 Universality of
the electron mobility in
MOSFET. Electron mobility
of n-channel MOSFET
formed in the (100) surface
of Si substrate is plotted as a
function of the effective
electric field Eeff measure by
Takagi et al. [40] at 300K
and 77K. The effective field
is defined by (8.132) as
Eeff = e·(Ndepl+Ns/2)/κε0.
The parameter of the
experimental data is the
acceptor density in the
substrate. After Takagi et al.
[40]
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we find that the electron mobility at 77K approaches the curve μ ∝ E−2
eff at higher

electric filed and thus at higher electron density, and that the behavior is the similar for
different acceptor density. This behavior may be explained in terms that the surface
roughness scattering dominates the scattering, resulting in 1/τsr ∝ E2

eff from (8.139)
and giving rise to μsr ∝ E−2

eff . On the other hand, the mobility at 300K is found to be
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μ ∝ E−0.3
eff independent of the acceptor density and the mobility at higher effective

field approaches the mobility limited by surface roughness scattering μsr ∝ E−2
eff .

The universality given by the curve μ ∝ E−0.3
eff in the region Eeff < 0.5 MV/cm is

explained by Takagi et al. in terms of the two dominant scatterings, acoustic phonon
scattering and surface roughness scattering. The relation, however, is derived from
the assumption that the mobility limited by the surface roughness scattering is given
by μrs ∝ E−2.6

eff .
It is well known that in the development of extremely small MOSFETs the device

simulation is very important. Such a device simulator requires accurate determina-
tion of the electron mobility as a function of the electric field. Although several kinds
of models have been proposed for the field dependence of the mobility, here exper-
imentally determined relations will be presented. The universality of the mobility
observed by Takagi et al. [40] is not the drift mobility as a function of electric field
along the current channel. An accurate determination of the drift mobility in a MOS
structure was made by Cooper and Nelson [42]. They used a MOS structure with
doped poly silicon gate so that uniform electric field between the source and drain is
achieved along the channel. Drift mobility was measured by the time-of-flight of the
electrons excited by a short laser pulse near the surface of Si at the Si/SiO2 interface.
For this purpose two apertures of 10µm with a center-to-center spacing of 60µm
were prepared between the source and drain so that the discrete charge packets intro-
duced by a laser pulse drift in a region of uniform electric field along the channel.
The current through the drain contact was measured and the time difference between
the two current peaks give the transit time of electrons between the two apertures.
The measured low filed mobility μeff is plotted as a function of the effective normal
filed Eeff in Fig. 8.23 for Ns = 3.5× 1010 cm−2. The drift velocity vd was measured
as a function of the electric field along the channel Ech, which is plotted in Fig. 8.24
for the effective filed Eeff = 4, 9, 20, 30, 50 [×104 V/cm]. As shown in Fig. 8.23
the electron mobility is well expressed by the solid curve given by

μeff = μ0

1 + (Eeff/Ec)0.657
, (8.214)

where μ0 = 1105 cm2/Vs is the mobility at low effective field Eeff and Ec =
30.5 × 104 V/cm. This behavior of the mobility may be interpreted in terms of
acoustic phonon scattering and surface roughness scattering. On the other hand, the
empirical formula for the drift velocity is given by

vd = μeffEch

[1 + (μeffEch/vs)α]
1/α , (8.215)

where vs = 9.23×106 cm/s is the saturation velocity of electrons andα = 1.92. The
empirical formula is called Cooper–Nelson formula. The solid curves in Fig. 8.24 are
calculated from the empirical formula, where the saturation velocity is found to be
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Fig. 8.23 The electron drift
mobility is plotted as a
function of effective normal
field. The data are measured
in a Si-MOS structure by the
time-of-flight method and the
solid curve is calculated from
Cooper–Nelson formula
(8.214). T = 300K. After
Cooper and Nelson [42]
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Fig. 8.24 Electron drift
velocity is plotted as a
function of electric filed
along the channel for several
effective normal fields where
experiments were made by
the time-of-flight method in a
MOS structure and the fitted
curves by Cooper–Nelson
formula (8.215) are shown.
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9.2 × 106 cm/s independent of the effective normal field. The effective normal field
dependence of the drift velocity may be explained in terms of the surface roughness
scattering.

8.4 Superlattices

8.4.1 Kronig–Penney Model

Many review articles on superlattices have been published. Among them Chap.9 of
the textbook byY.Yu andM.Cardona [6] gives a very detailed discussion of quantum
confinement, energy band structures, lattice vibrations and so on. In this chapter we

http://dx.doi.org/10.1007/978-3-319-66860-4_9
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Fig. 8.25 Superlattice model with period a+b for the Kronig–Penney model.Well width a, barrier
width b and conduction band discontinuity 0.3eV are assumed. The calculation presented in the
text is obtained by assuming a = b and the same effective mass m∗ = 0.067m for the conduction
band edges in the well region and the barrier regions

will discuss the energy band structures of superlattices in detail, which are very
important for understanding the electronic and optical properties of superlattices. It
should be noted that there have been reported various types of theories to deal with
the energy band structures of superlattices and that to review all of them is beyond the
ability of the author. Instead, we will discuss here the tight binding approximation,
which we believe to be easy to understand and to provide a good interpretation of
the physical properties of superlattices. Then we will try to compare the theoretical
results with experiment.

In order to get an insight into the energy band structures of superlattices, we
discuss first the most common method, Kronig–Penney model. This is well known
as one of the methods to understand the quasi-one-dimensional band structure. Let
us consider a superlattice grown in the z direction in a semiconductor system with
very small lattice mismatch such as GaAs/AlxGa1−xAs. When we disregard electron
motion in the x, y plane (kx = ky = 0), the electronic properties are obtained from
the energy states in the z direction only. Consider a superlattice with a well width a,
barrierwidth b and superlattice period d = a+b as shown in Fig. 8.25. For simplicity,
we assume that the electronic properties of both semiconductors are almost the same
but that the difference in electron affinities results in a conduction band discontinuity,
U = 0.3eV. Expressing the effective masses of the conduction band edges in the
semiconductors as m∗

A and m∗
B, the Bloch wave vector as kz = k, and the energy as

E , the Kronig–Penney model leads to the following relations:

cos(kd) = cos(k1a) cos(k2b) − k21 + k22
2k1k2

sin(k1a) sin(k2b) for E > U , (8.216)

and

cos(kd) = cos(k1a) cosh(κb) − k21 − κ2

2k1κ
sin(k1a) sinh(κb) for E < U , (8.217)
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where k1, k2 and κ are defined by the following relations:

E = �
2k21

2m∗
A

, (8.218a)

E −U = �
2k22

2m∗
B

for E > U , (8.218b)

U − E = �
2κ2

2m∗
B

for E < U . (8.218c)

Equations (8.216) and (8.217) are easily solved numerically. For simplicity we
assume a = b, d = 2a and m∗

A = m∗
B = m∗ = 0.067m in Fig. 8.25 and the

calculated result is shown in Fig. 8.26, where the horizontal axis is the well width
or the barrier width a and the shaded areas represent the regions where energy
eigenvalues exist. When the barrier width a is large, the probability for electrons to
penetrate through the barrier decreases and electrons are confined in the well, giving
rise to discrete energy levels. In this case, therefore, electrons are confined in the well
regions and the electronic states are the same as the two-dimensional electron gas
we have already discussed. Even in the case of large a, electrons with high energy
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Fig. 8.26 Electronic states of superlattices calculated from the Kronig–Penney model plotted as a
function of the barrier width (well width), with the assumption of the same width for the well a and
the barrier b (a = b), a superlattice period d = a + a, the same effective mass of the conduction
band edges, m∗ = 0.067m, and a conduction band discontinuity U = 0.3eV. For large a, the
electrons are confined within the well layers, resulting in discrete energy levels, whereas for higher
energies or smaller a, the electrons penetrate into the barrier layers and form mini-bands
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feel effectively lower barrier height and such electrons can penetrate into the barrier,
resulting in the formation of energy bands (mini-bands). On the other hand, when
the barrier width a is thin, electrons can penetrate into the barrier and form energy
bands (mini-bands). Such bands are called mini-bands.

8.4.2 Effect of Brillouin Zone Folding

As seen in the discussion of the previous section, a superlattice consisting of mate-
rials with lattice constants a and b has a period a + b. Therefore, the first Brillouin
zone edge of such a superlattice is given by 2π/(a + b), indicating that a larger
unit cell results in a smaller Brillouin zone. In other words, Brillouin zones of bulk
materials, 2π/a and 2π/b, are folded into a smaller zone with 2π/(a+b) in a super-
lattice. As a result, many mini-bands are formed in a superlattice. This is a typical
feature for superlattices and is called the zone-folding effect. It is very interesting
to investigate the zone-folding effect of direct and indirect transition semiconduc-
tors. Figure8.27a,b shows the energy band structures of direct and indirect bad gap
semiconductors, respectively. Let us assume that we have two semiconductors with
similar electronic properties and that a superlattice withmono-atomic layers is grown
layer by layer. Therefore, the energy band structure is zone-folded at the point 2π/2a,
as shown by the dotted curves in Fig. 8.27a or b. As a result, the zone-folding of indi-
rect gap semiconductors causes the conduction band minimum of the superlattice
to be located at k = 0 and therefore to a quasi-direct transition. For example,
GaAs and AlAs have almost the same lattice constant and it is well known that GaAs
and AlAs are respectively direct and indirect gap semiconductors. From the above
considerations, therefore, we may expect a quasi-direct transition in the superlattice
(GaAs)1/(AlAs)1 due to the zone-folding effect in which the conduction band edge

Fig. 8.27 Brillouin
zone-folding effect in
superlattices, where the band
structures are illustrated for
the change in the lattice
constant from a to 2a, for a a
direct band gap
semiconductor and b an
indirect band gap
semiconductor, where the
dotted curves show
zone-folded bands
schematically
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at the X point of AlAs is folded to the Γ point. It has been pointed out that the use
of superlattices makes it possible to control energy band structures and to produce
materials with new properties. For this reason, this kind of technology is sometimes
called band gap engineering.

The crystal structure ofGaAs andAlAs is the zinc blende type as shown in Fig. 1.4,
where face-centered cubic lattices with different atoms are displaced by a distance of
a/4 from each other in the diagonal direction. The bulk crystals belong to the point
group Td (4̄3m) but the superlattices of the layer structures of these crystals have
lower symmetry. For example, the Bravais lattice of a superlattice (GaAs)n/(AlAs)m
with n layers of GaAs and m layers of AlAs depends on the total number of layers
in a period, n + m. If it even, the lattice is simple tetragonal, belonging to the space
group D5

2d (P 4̄m2); if it is odd, the lattice is body-centered tetragonal, belonging to
the space group D9

2d (I 4̄m2). In the following we assume that GaAs and AlAs are
lattice matched with the lattice constant a0. Figure8.28 shows the crystal structure
of the (GaAs)1/(AlAs)1 superlattice. We may show that the lattice constants of the
superlattice (GaAs)n/(AlAs)m are given by a = a0/

√
2 and c = (n + m)a0/2.

Therefore, the unit cell volume of the superlattice (GaAs)n/(AlAs)m is evaluated to
be a30/4 multiplied by n+m. The reciprocal lattice vectors are easily calculated from
this result.

Using the reciprocal lattice vectors, thefirstBrillouin zoneof the (GaAs)n /(AlAs)m
superlattice is calculated which is presented in Figs. 8.29 and 8.30. Figure8.29 shows
the first Brillouin zone for n + m = 2 (n = m = 1) and Fig. 8.30 is for n + m = 3,
where the points at the zone boundaries of the superlattice are marked by labels such
as Z and X in order to distinguish the critical points of the superlattice from those
of zinc-blende crystal. In the text, the notation without an underline is used for the
energy band structures shown later. The first Brillouin zone for other combinations,
n + m, of the (GaAs)n/(AlAs)m superlattice may be calculated in a similar fashion,
giving rise to a simple tetragonal the Bravais lattice for an even value of n+m and to
a body-centered tetragonal for an odd value of n + m. With these results the energy
band structures of superlattices are calculated.

Fig. 8.28 Crystal structure
of (GaAs)1/(AlAs)1
superlattice. Two zinc blende
crystals are layered along the
growth direction

http://dx.doi.org/10.1007/978-3-319-66860-4_1
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Fig. 8.29 The first Brillouin
zone of the (GaAs)n /(AlAs)m
superlattice for n + m = 2
along with the first Brillouin
zone of the zinc blende
crystal. In general, the first
Brillouin zone of a
superlattice with an even
value of n + m differs only
in the folding in the direction
Xz , resulting in a simple
tetragonal lattice
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Z
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Fig. 8.30 The first Brillouin
zone of the (GaAs)n /(AlAs)m
superlattice for n + m = 3
along with the first Brillouin
zone of the zinc blende
crystal. In general, the first
Brillouin zone of a
superlattice with an odd
value of n + m differs only
in the folding in the direction
Xz , resulting in a
body-centered tetragonal
lattice
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Here and in the following sections we will compare the theoretical calculations
with the experimental results for (GaAs)n/(AlAs)n superlattices as an example. There
have been published many papers on the theoretical calculations of superlattice
energy band structures and experiments so far, and it is not the aim of this text-
book to cover all of them. Therefore, we will present the theory of the tight binding
approximation and compare the calculations with the experimental results for the
photoreflectance and photoluminescence [43–45]. The bottom of the conduction
band of GaAs is located at the Γ point and that of AlAs is at the X point. Therefore,
if we change the layer number n of the (GaAs)n/(AlAs)n superlattice, we can expect
a crossing of the two conduction band edges, resulting in a crossing between type
I and type II superlattices. A typical experiment to show the crossing is the pho-
toluminescence method [46–57]. On the other hand, energy band calculations for
(GaAs)n/(AlAs)n superlattices have been carried out by the envelope function model
[58], tight binding approximation [59–66], empirical and self-consistent pseudopo-
tential methods [67–70], local density functional method [71–76] and augmented-
spherical-wave method [77].
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8.4.3 Tight Binding Approximation

The tight binding approximation is based on the linear combination of atomic orbitals,
where the chemical bonds of a few atomic orbitals are considered, and has been suc-
cessfully applied to calculation of the energy band structures of solids [78]. Although
an increase in the number of atomic orbitals gives better accuracy for the calculated
energy band structure, the time required for computation increases. Themost popular
tight binding method to calculate the energy band structure of semiconductors takes
account of four atomic orbitals of s, px , py and pz . In general a set of orthogonal
and normalized atomic orbitals is obtained by the method of Löwin [79].

The wave functions |ψ〉 of a system satisfy the following eigenvalue equation:

H |ψ〉 = E |ψ〉 , (8.219)

where E is the energy eigenvalue. When the wave function |ψ〉 is expanded in atomic
orbital functions |φ j (r)〉, we obtain

|ψ〉 =
∑
j

C j |φ j 〉 . (8.220)

According to the variational principle, the energy

E = 〈ψ|H |ψ〉
〈ψ|ψ〉 , (8.221)

is minimized by changing the expansion coefficient C j . From this we find

(
Hi j − Eδi j

)
C j = 0 . (8.222)

The condition for the above equation to have a reasonable solution is

det
∣∣Hi j − Eδi j

∣∣ = 0 , (8.223)

where

Hi j = 〈φi |H |φ j 〉 . (8.224)

When the basis functions |φ j 〉 consist of a limited number of atomic orbitals, the
functions do not satisfy the condition of normalization, orthogonality and complete-
ness. Therefore, a set of basis functionswhich satisfy normalization andorthogonality
should be chosen. Usually the energy band calculations are carried out for Löwdin
orbitals composed of atomic orbitals. The Löwdin orbital is defined by the following
relation:
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|φL
i 〉 =

∑
i j

S−1
i j |φ j 〉 , (8.225)

Si j = 〈φi |φ j 〉 . (8.226)

Using the Löwdin orbitals |φL
i 〉 for the basis functions, (8.223) reduces to

det
∣∣HL

i j − Eδi, j
∣∣ = 0 , (8.227)

where

HL
i j = 〈φL

i |H |φL
j 〉 . (8.228)

In the following tight binding approximation, the Löwdin orbitals are used as the
atomic orbitals.

Energy band calculations have been carried out utilizing the cyclic boundary
condition. Here we assume zinc blende crystals and define the Bloch sum (quasi-
atomic functions) defined by the following relation, which are composed of atomic
orbitals and satisfy the cyclic boundary condition:

|nbk) = 1√
N

∑
Ri

exp [ik · (Ri + vb)] |nbRi ) , (8.229)

where N is the number of unit cells, b represents a (anion) or c (cation), Ri is the
position of the anion, vb is δb,c(a0/4)(1, 1, 1), and n is the orbital function s, px , py
or pz . The Schrödinger equation for the Bloch function |kλ〉 is written as

[H − E(k,λ)] |kλ〉 = 0 , (8.230)

where λ is the band index. The above equation may be expressed by matrix repre-
sentation as

∑
n,b′

[
(nbk|H |n′b′k) − E(k,λ)δn,n′ , δb,b′

]
(n′b′k|kλ〉 = 0 . (8.231)

The Bloch function |kλ〉 is written as the following with the use of the Bloch sum
|nbk):

|λk〉 =
∑
n,b

|nbk)(nbk|kλ〉 . (8.232)

The matrix element (nbk|H |n′b′k) is written as

(nbk|H |n′b′k) = 1

N

∑
Ri ,R j

eik·(Ri−R j+vb−vb′ )(nbR j |H |n′b′ Ri ) . (8.233)
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Table 8.3 Inter-atomic matrix elements (nb0|H |n′b′ Rm). l, m and n are the direction cosines of
Rm and the notation in the right-hand column is the representation of Slater-Koster. (After [78])

Ess ≡ (sb0|H |sb′ Rm) (ssσ)

Esx ≡ (sb0|H |pxb′ Rm) l(spσ)

Exx ≡ (pxb0|H |pxb′ Rm) l2(ppσ) + (1 − l2)(ppπ)

Exy ≡ (pxb0|H |pyb′ Rm) lm(ppσ) − lm(ppπ)

Exz ≡ (pxb0|H |pzb′ Rm) ln(ppσ) − ln(ppπ)

Here, we assume that (nbR j |H |n′b′ Ri ) depends only on Rm = Ri − R j + vb − vb′ .
This assumption is called the two-center approximation [78].Using this assumption
(8.233) reduces to

(nbk|H |n′b′k) =
∑
Rm

exp(ik · Rm)(nb0|H |n′b′ Rm) , (8.234)

where (nb0|H |n′b′ Rm) is called the inter-atomic matrix element and is given by
Table8.3. (nn′σ) and (nn′π) are, respectively, the inter-atomic matrix elements for
theσ bonding andπ bonding between the atomic orbitals n and n′. These inter-atomic
matrix elements are determined empirically or semi-empirically and the accuracy of
the tight binding approximation is determinedby these values. It should bepointedout
here that the inter-atomic matrix elements are proportional to the square of the bond
length d (d−2) [9]. Chadi and Cohen [80] have calculated the energy band structures
of semiconductors by taking account of the atomic orbitals s, px , py and pz and the
nearest-neighbor interactions, but they failed to obtain the band structures of indirect
band gap semiconductors. Two differentmethods have been reported in order to solve
this inconsistency. One is to take account of the second nearest-neighbor interactions
of the atomic orbitals in addition to the nearest neighbor interaction [43]. The other
is to use the excited state s∗ in addition to the sp3 orbitals [10]. In the following
we will discuss the sp2s∗ tight binding approximation first and then the second
nearest-neighbor approximation in connection with the energy band calculation of
superlattices.

8.4.4 sp3s∗ Tight Binding Approximation

It has been pointed out that the tight binding approximation interprets the valence
band structure but fails in describing conduction bands with high energy [9]. The
reason for this disagreement is understood to be that the wave function of an elec-
tron in a conduction band, not localized in the crystal, cannot be described by the
wave functions localized around the atoms. This is also the reason why the sp3 tight
binding approximation fails in describing the conduction band in indirect gap semi-
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Fig. 8.31 Energy band
structure of GaAs calculated
by the sp3s∗ tight binding
approximation, which gives
the direct band gap at the Γ

point
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Fig. 8.32 Energy band
structure of AlAs calculated
by the sp3s∗ tight binding
approximation, which gives
the indirect band gap in
contrast to the sp3 tight
binding approximation
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conductors. Vogl et al. [10] have proposed a new method to describe the conduction
band by introducing an excited s state, the s∗ orbital, in addition to the s and p
orbitals for the tight binding basis functions. This method is called the sp3s∗ tight
binding approximation. First we will show the method proposed by Vogl et al. and
the energy band structures of III–V compound semiconductors.

In the calculation of the sp3s∗ tight binding approximation, the atomic orbitals
n of (8.232) are five orbitals for the anion and 5 orbitals for cations, a total of ten
orbitals. Therefore, Hamiltonian matrix for the basis functions |nbk) results in a
10×10 matrix. These elements are given by Table (A) of reference [10], and are also
shown in Sect. 8.4.5 of this textbook. From the solutions of the determinant the band
structures of III–V semiconductors are obtained. As an example, the band structures
of GaAs and AlAs are calculated by using the parameters given by Vogl et al. [10],
which are shown in Figs. 8.31 and 8.32, respectively. It is found in Fig. 8.32 that the
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sp3 tight binding approximation gives the indirect band gap band structure for AlAs,
which explains the experimental results quite well, whereas the sp3 tight binding
approximation failed in explaining it. The conduction band minima are located near
the X point.

8.4.5 Energy Band Calculations for Superlattices

Let us consider a superlattice (ca)n/(CA)m consisting of a layer structure of two
different zinc blende-type materials such as n layers of ca and m layers of CA,
periodically grown on the (001) surface, where c and C are cations, and a and A are
anions. The superlattice (ca)n/(CA)m has 2(n+m) atoms in the unit cell (the position
vector is Ri and i is the index for each unit cell) and the respective atom has five
orbitals of s, px , py , pz and s∗. Then the Bloch sum is written as the following:

|χα
j (k)〉 = 1√

N

∑
Ri

exp
[
ik · (Ri + τ j )

] |α j〉 , (8.235)

where α = s, px , py, pz, s∗ and the subscript j indicates the atom in the unit cell
with the position vector τ j . The Hamiltonian matrix of the superlattice for the basis
functions is given by

Ĥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 . . . . . . 2n 1 2 3 . . . . . . 2m

1 â âc Ĉa
†

2 ĉ ĉa

3 â
. . . 0

...
. . .

. . .
...

. . . âc
2n ĉ ĉA
1 Â ÂC
2 Ĉ Ĉ A

3 Â
. . .

...
. . .

. . .
... h.c. Â ÂC
2m Ĉ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.236)

where h.c. means the Hermite conjugate and the matrix elements of the above equa-
tion are given by the following matrix:
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â =

⎛
⎜⎜⎜⎜⎝

s px py pz s∗

s Esa 0 0 0 0
px 0 Epa 0 0 0
py 0 0 Epa 0 0
pz 0 0 0 Epa 0
s∗ 0 0 0 0 Es∗a

⎞
⎟⎟⎟⎟⎠ (8.237a)

ĉ =

⎛
⎜⎜⎜⎜⎝

s px py pz s∗

s Esc 0 0 0 0
px 0 Epc 0 0 0
py 0 0 Epc 0 0
pz 0 0 0 Epc 0
s∗ 0 0 0 0 Es∗c

⎞
⎟⎟⎟⎟⎠ (8.237b)

âc =

⎛
⎜⎜⎜⎜⎝

s px py pz s∗

s Vssg0 Vsapcg1 Vsapcg1 Vsapcg0 0
px −Vscpag1 Vxxg0 Vxyg0 Vxyg1 −Vs∗cpag1
py −Vscpag1 Vxyg0 Vxxg0 Vxyg1 −Vs∗cpag1
pz −Vscpag0 Vxyg1 Vxyg1 Vxxg0 −Vs∗cpag0
s∗ 0 Vs∗apcg1 Vs∗apcg1 Vs∗apcg0 0

⎞
⎟⎟⎟⎟⎠

ĉa =

⎛
⎜⎜⎜⎜⎝

s px py pz s∗

s Vssg2 −Vscpag3 Vscpag3 Vscpag2 0
px Vsapcg3 Vxxg2 −Vxyg2 −Vxyg3 Vs∗apcg3
py −Vsapcg3 −Vxyg2 Vxxg2 Vxyg3 −Vs∗apcg3
pz −Vsapcg2 −Vxyg3 Vxyg3 Vxxg2 −Vs∗apcg2
s∗ 0 −Vs∗cpag3 Vs∗cpag3 Vs∗cpag2 0

⎞
⎟⎟⎟⎟⎠

The phase factors gi (i = 0 . . . 4) are given by the following equations with k =
(ξ, η, ζ)2π/a0: (see footnote5 for the derivation)

5The phase factors are obtained as follows. For example, in a bulk material, let the position vectors
of the four atoms next to a central anion d1 = (111)a/4, d2 = (1̄11̄)a/4, d3 = (1̄1̄1)a/4,
d4 = (11̄1̄)a/4 and we have

g0 = eik·d1 + eik·d2 + eik·d3 + eik·d4

g1 = eik·d1 + eik·d2 − eik·d3 − eik·d4

g2 = eik·d1 − eik·d2 + eik·d3 − eik·d4

g3 = eik·d1 − eik·d2 − eik·d3 + eik·d4

.
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g0 = 1

2
exp

(
i
ζ

2

)
cos

(
ξ + η

2

)
, (8.238a)

g1 = i

2
exp

(
i
ζ

2

)
sin

(
ξ + η

2

)
, (8.238b)

g2 = 1

2
exp

(
i
ζ

2

)
cos

(
ξ − η

2

)
, (8.238c)

g3 = i

2
exp

(
i
ζ

2

)
sin

(
ξ − η

2

)
. (8.238d)

The position vectors of a superlattice are also obtained in a similar fashion. In addition
the position vectors of the next nearest neighbors g4 . . . g11 are also derived in a similar
way. The matrix elements âc, ĉa and so on represent the nearest neighbor interaction
in a bulk material, and ĉA and Ĉa indicate the interaction at the heterointerface.

We have derived the Hamiltonian matrix to calculate the energy band structure
of an arbitrary n + m superlattice, which will give us eigenvalues and eigenstates
at an arbitrary point k in the Brillouin zone. However, we have to note that the
energy band calculations require several parameters to be determined empirically.
Before calculating the energy band structures of superlattices, we shall derive the
Hamiltonianmatrix of a bulk semiconductor such asGaAs andAlAs. The bulkmatrix
elements are obtained by putting n = 1 and m = 0.

Ĥ(bulk) = Ĥ(n = 1,m = 0) =
∣∣∣∣ â + âa + âa† âc + ĉa†

âc† + ĉa ĉ + ĉc + ĉc†

∣∣∣∣ (8.239)

represents the bulk Hamiltonian matrix elements of the tight binding approximation
for a bulk semiconductor such as GaAs, and reduces to the matrix of Table (A) of
Vogl et al. [10]. The parameters for the tight binding approximation are given by the
following, which are determined empirically:

Es± = [E(Γ c
1 ) + E(Γ v

1 ) ± ΔEs
]

, (8.240a)

Ep± = Exx± = [E(Γ c
15) + E(Γ c

15)
v
15 ± ΔEp

]
, (8.240b)

Vss = 4Ess
(1
2

1

2

1

2

)
= −√Es+Es− − E(Γ c

1 )E(Γ v
1 ) , (8.240c)

Vxx = 4Exx
(1
2

1

2

1

2

)
= √Ep+Ep− − E(Γ c

15)E(Γ v
15) , (8.240d)

Vxy = 4Exy
(1
2

1

2

1

2

)
= √Ep+Ep− − E(X c

5)E(Xv
5) , (8.240e)

Vs±p∓ = 4Es±p∓
(1
2

1

2

1

2

)
= √[Es±C± − D±]/[Es± − Es∗±] , (8.240f)

Vs∗±p∓ = 4Es∗±p∓
(1
2

1

2

1

2

)
= √[Es∗±C± − D±]/[Es∗± − Es±] . (8.240g)
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where

C± = Es±Ep∓ − E(Xv
±)E(X c

±)

+[Es± + Ep∓ − E(Xv
±) − E(X c

±)][Es∗± − E(Xv
±) − E(X c

±)] , (8.241a)

D± = det

∣∣∣∣∣∣∣
Es± E(X c±) E(Xv±)

E(X c±) Ep∓ E(Xv±)

E(X c±) E(X c±) Es∗±

∣∣∣∣∣∣∣
. (8.241b)

Here E(X+) = E(X3), E(X−) = E(X1), where the subscripts + and − represent the
anion and the cation, respectively, andΔE(α) = Eαc−Eαa . In the above equation the
representation of Slater–Koster is used (see [78]). A convenient method to deduce the
parameters of the tight binding approximation has been reported by Yamaguchi [64].

A comparison between the energy band structures of superlattices calculated
from the sp3s∗ tight binding approximation and deduced from experiment has been
reported by Fujimoto et al. [44], where the transition energies determined from
photoreflectance and photoluminescence experiments on (GaAs)n/(AlAs)n (n =
1 . . . 15) are compared with the theoretical calculations. Later Matsuoka et al. [45]
pointed out that the assumptions used for the calculations are not correct. Photore-
flectance signals are produced by the following mechanisms. Electron–hole pairs are
excited by illumination of a weak intensity laser with photon energy larger than the
energy band gap. The excited electrons (or holes) recombine at the sample surface and
the other carriers, i.e. holes (electrons) induce an electric field at the surface, and thus
the surface electric field is modulated without electrode contacts. Photoreflectance
is therefore one of the techniques of modulation spectroscopy.

The experimental results at T = 200K for photoreflectance (PR) and photolu-
minescence (PL) on (GaAs)n/(AlAs)n superlattices with n = 8 and n = 12 are
shown in Figs. 8.33 and 8.34, respectively, where the best fit theoretical curves based
on the Aspnes theory described in Sect. 5.1.3 are also plotted and the transition
energies obtained from the best fit curves are indicated by the arrows. The arrows
in Fig. 8.33 for the (GaAs)8/(AlAs)8 superlattice indicate the transition energies,
1.797eV, 1.897eV, 1.915eV, and 1.951eV, which are determined from the best fit
of the theoretical curve to the experimental data. In this superlattice we find a weak
structure around 1.797eV below the main peak at about 1.9eV. Since the direct tran-
sition results in a strong peak in the PR spectra, the weak structure seems to arise
from a direct transition with a very weak transition probability. In other words, the
weak transition is ascribed to the quasi-direct transition between the zone-folded
Xz conduction band and the heavy-hole band (Xz–Γh transition). The main peak is
ascribed to the direct transition between the Γ conduction band and the heavy-hole
band (Γ –Γh transition), and the peak at about 1.95eV is due to the direct transi-
tion between the Γ conduction band and the light-hole band (zone-folded valence
band) (Γ –Γl transition). We find in Fig. 8.33 that PL peaks appear at 1.8515eV and
1.902eV and these peaks exhibit good agreement with the weak structure at 1.797eV
and the main peak at 1.9eV observed in the PR spectra.

http://dx.doi.org/10.1007/978-3-319-66860-4_5
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Fig. 8.33 Photoreflectance
(PR) and photoluminescence
(PL) spectra of the
(GaAs)8/(AlAs)8
superlattice, where the solid
curves are the theoretical
results based on the Aspnes
theory and the arrows
indicate the transition
energies determined from the
analysis. The dot-dashed
curves are
photoluminescence data.
(T = 200K)
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Fig. 8.34 Photoreflectance
(PR) and photoluminescence
(PL) spectra of the
(GaAs)12/(AlAs)12
superlattice, where the solid
curves are the theoretical
results based on the Aspnes
theory and the arrows
indicate the transition
energies determined from the
analysis. The dot-dashed
curves are
photoluminescence data.
(T = 200K)
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Figure8.34 shows the PR and PL spectra at 200K for (GaAs)12/(AlAs)12 super-
lattice along with the best fit PR curve from the Aspnes theory. From the analysis
of the PR spectra three transitions at 1.740eV, 1.754eV and 1.793eV are obtained
in the narrow region of photon energy from 1.7eV to 1.85eV. However, it is very
interesting to point out that any weak structure such as observed in the PR spec-
tra of the (GaAs)8/(AlAs)8 superlattice of Fig. 8.33 has not been resolved in the
(GaAs)12/(AlAs)12 superlattice. This may be interpreted as showing that the Xz con-
duction band is located on the higher energy side than the Γ conduction band or that
these two bands are mixed. The PL spectra show a peak at about 1.75eV which is
in good agreement with the peaks at 1.74eV and 1.754eV of the PR spectra. In the
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Γ

Γ

Fig. 8.35 Transition energies of (GaAs)n /(AlAs)n superlattices calculated by the sp3s∗ tight bind-
ing approximation are shown as a function of the layer number n, where the solid, dotted and
dot-dashed curves are for direct allowed, quasi-direct, and indirect transition energies. In the figure
the experimental data obtained by Matsuoka et al. [45] are also shown. The calculations based on
the sp3s∗ tight binding approximation show that a crossing from direct to indirect transitions occurs
at n = 8 and the quasi-direct transition appears on the lower-energy side for n < 5

following a comparison will be described between these experimental results and
calculations based on the tight binding approximation.

A comparison between experiments and calculations based on the sp3s∗ tight
binding approximation is shown in Fig. 8.35, where a similar comparison has been
reported by Fujimoto et al. [44]. In the calculations the valence band discontinuity
is assumed to be 0.54eV. It is found in Fig. 8.35 that the theoretical calculations
reveal a crossing from direct to indirect transitions occurs at n = 8 and to a quasi-
direct transition for n < 5. However, the experimental results exhibit the crossing
between the direct and indirect or quasi-direct (Xz) transitions around n = 12 and
that there exists a considerable disagreement between the experimental data and the
calculations in the region of small n. The calculations show that the indirect transition
energy is the lowest for n < 8, which corresponds to the R point for n = 1 and the
M point otherwise. The reason for this disagreement may be ascribed to the fact that
the sp3s∗ tight binding approximation does not take account of the correct value of
the effective mass of the X valleys of AlAs [45, 81].

8.4.6 Second Nearest-Neighbor sp3 Tight Binding
Approximation

We have already pointed out that Brillouin zone folding plays an important role in
the electronic and optical properties of superlattices. In particular, the states Xz and
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Xxy strongly reflect the magnitude and anisotropy of the effective mass of the X
valleys. Therefore, the energy band calculations require the exact effective mass of
the X valleys. It has been shown that the sp3s∗ tight binding approximation explains
the indirect transition in some III–V semiconductors. However, the method will not
guarantee the anisotropy of the effective mass at the bottom of the conduction band
valleys. We may easily understand that more parameters are required to calculate the
effectivemass anisotropy of the X valleys from the tight binding theory. The states Xz

and Xxy in superlatticesmay be calculated accurately by taking account of the precise
anisotropy of the effective mass at the X point. Focusing on this point, Lu and Sham
[43] have calculated the energy band structure by using the second nearest-neighbor
sp3 tight binding approximation and succeeded in obtaining good agreement with
the experimental results. Also Matsuoka et al. [45] have performed energy band
calculations for (GaAs)n/(AlAs)n superlattices by the second nearest-neighbor sp3

tight binding approximation and explained their experimental results.
The (ca)n(CA)m superlattice contains 2(n+m) atoms in a unit cell Ri (i indicates

the i th unit cell), and in the second nearest-neighbor approximation four orbitals s,
px , py and pz are taken into account. The Hamiltonian matrix of a superlattice for
these orbitals is similar to that for the sp3s∗ tight binding approximation and reduces
to a similar expression to (8.236). However, the elements are different and given by

b̂ =

⎛
⎜⎜⎝

s px py pz
s Esb + Esbsbg7 Esbxbg10 Esbxbg11 0
px −Esbxbg10 Epb + Exbxbg7 −iλb + Exbybg4 λb

py −Esbxbg11 iλb + Exbybg4 Epb + Exbxbg7 −iλb

pz 0 λb iλb Epb + Ezbzbg7

⎞
⎟⎟⎠

âc =

⎛
⎜⎜⎝

s px py pz
s Vssg0 Vsapcg1 Vsapcg1 Vsapcg0
px −Vscpag1 Vxxg0 Vxyg0 Vxyg1
py −Vscpag1 Vxyg0 Vxxg0 Vxyg1
pz −Vscpag0 Vxyg1 Vxyg1 Vxxg0

⎞
⎟⎟⎠

ĉa =

⎛
⎜⎜⎝

s px py pz
s Vssg2 −Vscpag3 Vscpag3 Vscpag2
px Vsapcg3 Vxxg2 −Vxyg2 −Vxyg3
py −Vsapcg3 −Vxyg2 Vxxg2 Vxyg3
pz −Vsapcg2 −Vxyg3 Vxyg3 Vxxg2

⎞
⎟⎟⎠

b̂b =

⎛
⎜⎜⎝

s px py pz
s Esbsb(g8 + g9) −Esbxbg5 −Esbxbg6 Esbxb(g8 + g9)
px Esbxbg5 Exbxbg8 + Ezbzbg9 0 −Exbybg5
py Esbxbg6 0 Exbxbg9 + Ezbzbg8 −Exbybg6
pz −Esbxb(g8 + g9) −Exbybg5 −Exbybg6 Exbxb(g8 + g9)

⎞
⎟⎟⎠
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where

Eαb = Eα(000)b, Vss = 4Ess( 12 1
2
1
2 ), Vxx = 4Exx ( 12 1

2
1
2 ),

Vxy = 4Exy( 12 1
2
1
2 ), Vsapc = 4Esx ( 12 1

2
1
2 )ac, Vscpa = 4Esx ( 12 1

2
1
2 )ca,

Esbsb = 4Ess(110)b, Esbxb = 4Esx (110)b, Exbxb = 4Exx (110)b,
Exbyb = 4Exy(110)b, Ezbzb = 4Exx (011)b,

and λb is the spin–orbit interaction of the p orbitals. The renormalized spin–orbit
splitting of the anion and cation, Δa and Δc, is defined by

λb = 1

3
Δb, (b = a, c) (8.242)

and the following relations hold for |pxbα), |pybα) and |pzbα):

(pxbα|Hso|pybα) = −iλb , (8.243a)

(pxbα|Hso|pzbα) = λb , (8.243b)

(pybα|Hso|pxbα) = iλb , (8.243c)

(pybα|Hso|pzbα) = −iλb , (8.243d)

(pzbα|Hso|pxbα) = λb , (8.243e)

(pzbα|Hso|pybα) = iλb . (8.243f)

The renormalized spin–orbit splitting energies for the p orbitals are tabulated
in Table8.4. The phase factors gi (i = 0 . . . 11) are given by (8.238a–8.238d) for
g0 . . . g3, and the other factors are as follows:

g4 = sin(ξ) sin(η) , (8.244a)

g5 = − i

2
exp(iζ) sin(ξ) , (8.244b)

g6 = − i

2
exp(iζ) sin(η) , (8.244c)

g7 = cos ξ cos η , (8.244d)

g8 = 1

2
exp(iζ) cos ξ , (8.244e)

Table 8.4 The renormalized spin–orbit splitting energies for the p orbitals [eV]

Al Si P S

0.024 0.044 0.067 0.074
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Table 8.5 Parameters for the
tight binding approximation
shown with the notation of
Slater-Koster (see [78])

SK notation GaAs AlAs

Ess(000)a 7.0012 7.3378

Ess(000)c 7.2004 6.1030

Exx (000)a −0.6498 0.4592

Exx (000)c 5.7192 6.0433

Ess( 12 1
2
1
2 ) 0.6084 0.4657

Exx ( 12 1
2
1
2 ) −0.5586 −0.5401

Exy( 12 1
2
1
2 ) −1.2224 −1.4245

Esx ( 12 1
2
1
2 )ac −0.6375 −0.4981

Esx ( 12 1
2
1
2 )ca −1.8169 −1.8926

Ess(110)a −0.3699 −0.2534

Esx (110)a −0.5760 −0.8941

Exx (110)a 0.2813 0.1453

Exx (011)c −0.6500 −0.7912

g9 = 1

2
exp(iζ) cos η , (8.244f)

g10 = i sin ξ cos η , (8.244g)

g11 = i cos ξ sin η . (8.244h)

The parameters used in the calculations are those determined by Lu and Sham,which
are shown in Table8.5. The other parameters not shown in the table are assumed to
be 0. Also, the spin–orbit interaction is neglected for simplicity.

Here we have to point out that some additional parameters are required to calcu-
late the energy band structure of a superlattice such as GaAs/AlAs. The additional
parameters to be determined are those of the atom at the interface (As atom in the
case of GaAs/AlAs superlattice), which are usually approximated by the following
method.

1. The parameters Esb, Epb and λb of the interface atom As are estimated from the
average values of GaAs and AlAs.

2. The nearest-neighbor interaction between the interface atom As and the Ga atom
or Al atom is approximated by the interaction in GaAs or AlAs, respectively.

3. The second nearest-neighbor interaction between the Ga atom and the Al atom
is approximated by the average value of the Ga–Ga interaction in GaAs and the
Al–Al interaction in AlAs.

4. The second nearest-neighbor interaction between the As atoms at the interface is
approximated by the average value of the second nearest-neighbor interaction in
GaAs and AlAs. The second nearest-neighbor interaction between the interface
atom As and the As atom in GaAs or AlAs is approximated by the interaction in
GaAs and AlAs.

These approximationswill give a good result when the parameters associatedwith the
As atoms ofGaAs andAlAs are almost the same. Lu and Sham [43] have reported that
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Fig. 8.36 Energy band
structure of the
(GaAs)1/(AlAs)1
superlattice calculated by the
second nearest-neighbor sp3

tight binding approximation
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Fig. 8.37 Energy band
structure of the
(GaAs)3/(AlAs)3
superlattice calculated by the
second nearest-neighbor sp3

tight binding approximation
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such approximations will not introduce a considerable effect in the case of n > 3. In
addition, the approximations are essential for the wave functions which are required
to satisfy their symmetry [81].

Using the parameters estimated from these assumptions and those reported by
Lu and Sham [43], and assuming the valence band discontinuity ΔEv = 0.55eV,
the energy band structures of (GaAs)n/(AlAs)n are calculated. Typical examples of
the energy band structures are shown in Figs. 8.36, 8.37, 8.38 and 8.39 for superlat-
tices of n = 1, 3, 8 and 12. In Fig. 8.40 the transition energies of (GaAs)n/(AlAs)n
superlattices as a function of the atomic layer number n calculated from the second
nearest-neighbor sp3 tight binding approximation, along with the experimental data,
where the experimental data are the same as those shown in Fig. 8.35, which are
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Fig. 8.38 Energy band
structure of the
(GaAs)8/(AlAs)8
superlattice calculated by the
second nearest-neighbor sp3

tight binding approximation
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Fig. 8.39 Energy band
structure of the
(GaAs)12/(AlAs)12
superlattice calculated by the
second nearest-neighbor sp3

tight binding approximation
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obtained from photoreflectance (PR) and photoluminescence (PL) experiments. It
is found from the calculated results that the lowest transition energy is associated
with a quasi-direct transition involving the Xz conduction band for n < 12 except
n = 1. In addition, we find that the conduction band at the Z point (indirect band)
lies almost at the same level as the Xz conduction band for n = 3 . . . 12 and that
the Xz conduction band is lower than the Xxy conduction band (M point) except
for n = 1. These calculated results show good agreement with the calculations
based on the effective mass approximation [82, 83], and indicate the importance of
the effective mass anisotropy of the X valleys in AlAs. It should be noted that the
lowest conduction band for n = 1 is the Xxy conduction band located at the M point,
but the results depend strongly on the parameters used. In addition, it seems to be
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Fig. 8.40 Transition energies as a function of layer number n in the (GaAs)n /(AlAs)n superlat-
tice calculated by the second nearest-neighbor sp3 tight binding approximation. The solid and
dashed curves are respectively the direct (Γ ) and quasi-direct (Xz) transitions calculated by the
second nearest-neighbor sp3 tight binding approximation and the dot-dashed curve is the indirect
transition energy associated with the M point. Experimental results for photoreflectance (PR) and
photoluminescence (PL) are also shown for comparison. The theory indicates that the crossing
between the direct allowed and quasi-direct transitions occurs at n = 12 and that the bottom of
the Xxy conduction band (M point) is higher that the bottom of the Xz conduction band except for
n = 1. The conduction band at the Z point (indirect band) lies at almost the same level as the Xz
conduction band for n = 3–12 (see [45])

almost impossible to grow a perfect superlattice of (GaAs)1/(AlAs)1 and thus we are
not able to determine conclusively the band structure of the superlattice for n = 1.
Ge et al. [84] have reported experiments on PL, PLE (photoluminescence excitation
spectra) and PLunder the application of pressure and explained the results as showing
that the lowest conduction band is Xxy for n < 3 and thus that the superlattices are
the indirect transition type. In order to draw this conclusion we need to do accurate
band structure calculations by taking into account the conduction band at the L point
and by making a careful comparison between experiment and theory.

Finally, we will discuss the contribution of the atomic orbitals to the band edges of
superlattices. The eigenstates of the eigenvalues consist of the mixture of the atomic
orbitals which give the measure of the contribution by the eigenstates. Therefore, the
electron distribution in the unit cell is given by

|〈λk|λk〉|2 =
∑
n

|(nbjk|λk〉|2 , (8.245)

where n = s, px , py and pz , b = a or c, and j indicates the atom position in the
unit cell with j = 1 − 2(n + m). Figure8.41a–c shows respectively the density
distribution of the atomic orbitals at the top of the valence band (Γv), at the bottom
of the Xz conduction band and at the bottom of the Γ conduction band (Γc) in the



8.4 Superlattices 493

0 4 8 12 16 20 24 28 32
0

10

20

30
To

ta
l C

on
tri

bu
tio

n 
[%

]

Layer

GaAs AlAs

(GaAs)8/(AlAs)8

Γv  0.000 eV

As

Ga, Al

(a)

0 4 8 12 16 20 24 28 32
0

10

20

30

Layer

To
ta

l C
on

tri
bu

tio
n 

[%
] (GaAs)8/(AlAs)8

Xz  1.800 eV

As

Ga, Al

GaAs AlAs

(b)

0 4 8 12 16 20 24 28 32
0

10

20

30

Layer

To
ta

l C
on

tri
bu

tio
n 

[%
] (GaAs)8/(AlAs)8

Γc   1.874  eV

As
Ga, Al

GaAs AlAs

(c)

Fig. 8.41 Contribution of electrons from each atom in the superlattice (GaAs)8/(AlAs)8. The
electron contribution is shown a the valence band (Γv), where the valence band Γv is found to
consist mostly of electrons in the Ga and As atoms, b the Xz conduction band (the X is zone folded
at the Γ point), where the electrons of the Al atoms in AlAs mostly contribute to the zone-folded
Xz conduction band, and c the Γc conduction band, where the contribution of electrons from the
As atoms in GaAs dominates

(GaAs)8/(AlAs)8 superlattice. From the figure we find the following result. The top
of the valence band (Γv) dominated by the atomic orbitals inGaAs, the Xz conduction
band edge (Xz is zone folded at the Γ point) consists of the atomic orbitals in the
AlAs layer, especially of the orbitals of the As atoms, and the Γc conduction band
edge consists of the atomic orbitals in GaAs, mostly of As atom orbitals. From these
considerations we find the contribution of the bands from the atomic orbitals, the
symmetry of the valence and conduction bands, and the contribution of the energy
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bands from the X point in AlAs and the Γ point of GaAs. In addition, we find that the
electron distributions satisfy the symmetry operation IC4, indicating the correctness
of the assumptions.

8.5 Mesoscopic Phenomena

8.5.1 Mesoscopic Region

Many aspects of this section are based on the textbooks edited by Namba [11] and
by Ando et al. [12]. The technical word macroscopic is often cited against the word
microscopic. However, the definition of “microscopic” has changed along with the
development of LSI (large scale integration). For example, vacuum tubes have the
size which we can handle by our hands and the electric circuits for vacuum tubes
are assembled by soldering, although they were improved and miniaturized from
year to year after their invention in 1906. Therefore, vacuum tubes are macroscopic
devices. On the other hand, transistors are very small in size and are classified as
microscopic devices. The operating principle of transistors is based on the mecha-
nisms that minority carriers (holes in n-type semiconductors or electrons in p-type
semiconductors) emitted from the emitter to the base region diffuse through the base
region and arrive at the collector region, giving rise to the collector current signal
induced by the emitter current signal. This base region is of the size of microns
(µm) and therefore a transistor may be classified as a microscopic device. Several
tens of millions of such transistors or MOSFETs are integrated in a Si substrate of
about 1cm2 area, which is called ULSI (ultra-large scale integration). Compared to
ULSI semiconductor devices, the old transistor is no longer a microscopic device.
The trend of ULSI size is shown in Fig. 8.42, where we find that the capacity of
memories is increasing and the corresponding size of the devices is decreasing from

Fig. 8.42 Trend of
integration of semiconductor
memories. Integration of
DRAM and its size are
plotted as a function of year.
The size of submicron region
is expected to be achieved in
the next generation
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Fig. 8.43 Interference of
electron waves. Electron
waves transmitted from a slit
transit through the region of
magnetic flux Φ of a
solenoid and the interference
appears on a screen Q

ΦSlit P

Q

1

2

year to year. If this trend continues, DRAMs of 1Gb will be fabricated with a device
size of 0.1µm in the early part of the 21st century.

In the 1980s metal rings, semiconductor wires, point contact devices and so on
were fabricated by using semiconductor LSI technology and the physical properties
of these devices were reported. Such work was triggered by an idea to prove the
paper published in 1959 by Aharonov and Bohm [85]. In the paper they showed that
electrons in a solid have a phase factor which is affected by an external magnetic
field. This phenomenon is called the Aharonov–Bohm effect. This effect is not
observed in a system with inelastic scattering because the electrons lose the phase
information after the inelastic scattering. As an example, let us consider electron
waves with a finite energy that travel through a region of magnetic flux Φ produced
by a small solenoid in vacuum as shown in Fig. 8.43. In such a system, interference of
the electron waves occurs and conductance or resistance oscillations with the period
of the flux quantaΦ0 = h/e orΦ0/2 are observed. In experiments, metals rings were
used and the uniform magnetic field and the resistance exhibited oscillations with a
period of h/e [86].

This interference effect may be explained as follows. The electron wave ψ(r) is
described by the Schrödinger equation

[
1

2m
( p + eA)2 + V (r)

]
ψ(r) = Eψ(r) , (8.246)

wherem is the electron effectivemass,−e is the electron charge, A is the vector poten-
tial and E is the energy eigenvalue. For simplicity we assume V (r) = 0 and the elec-
tronwave is expressed asψ(r) ∝ e−ik·r (k = √

2mE/�2). Let the electronwave func-
tions on the screen Q pass through the different channels ψi (Q) (i = 1, 2). The inter-
ference intensity on the screen Q is proportional to �[ψ∗

1(Q)ψ2(Q)] ∝ cos θ12(Q),
where θ12(Q) is the phase difference between the electrons in the difference paths.
Let us express the electron wave in the presence of a magnetic flux by

ψi (r) = exp[−iθi (r)]ψi (r) , (8.247)

θi (r) = 2π

Φ0

∫ Q

P
A · dsi , (8.248)
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where Φ0 = h/e is the flux quanta and
∫
dsi is the line integral along the path i .

The interference intensity of the electron waves on the screen Q is given by

|ψ1(Q) + ψ2(Q)|2 = |ψ1(Q)|2 + |ψ2(Q)|2 + 2�[ψ∗
1(Q)ψ2(Q)]

� 2|ψ0
1(Q)|2 {1 + cos[ξE (Q) + (θ1 − θ2]} , (8.249)

θ1 − θ2 = 2π

Φ0

[∫ Q

P
A(s) · ds1 −

∫ Q

P
A(s) · ds2

]

= 2π

Φ0

∮
A(s) · ds = 2π

Φ

Φ0
, (8.250)

where we have assumed |ψ1(Q)|2 ∼ |ψ2(Q)|2 ∼ |ψ0
1(Q)|2 and ξE (Q) is defined

by ψ0∗
1 (Q)ψ0

2(Q) = |ψ0
1 |2 exp[iξE (Q)]. It is evident from these equations that the

interference intensity of electron waves on the screen Q is given by a function of
Φ/Φ0 and thus the interference results in periodic oscillations. This phenomenon is
called the Aharonov–Bohm effect or AB effect [85].

The sample used for observation of the AB effect is a gold ring with diameter
825nm (∼ 0.8µm and line width 49nm), which is not an extremely small device
[86]. The experimental data will be shown in Sect. 8.5.4. Later Ishibashi et al. [87]
observed resistance oscillations of period e/h in a small ring of semiconductor,
where the sample diameter of the sample used in the experiment was 1µm. It is very
interesting to point out that the samples used in the experiments were not extremely
small and that quantum effects are very obviously observed in samples with a size of
below and beyondµmor of severalµm.The size ranges between themicroscopic and
macroscopic region and thus the system is called the mesoscopic system [11]. These
investigations clarified the difference betweenmicroscopic andmacroscopic systems
and the term “microscopic” was then used to describe the atomic size. On the other
hand, the measure of a mesoscopic system depends the state of the electrons in the
system and the size of the mesoscopic structure is determined by the electron mean
free path and diffusion length. Roughly speaking, the size of a mesoscopic system is
in the range around µm and is defined as a system in which obvious quantum effects
are observed. In such a mesoscopic system, between microscopic and macroscopic
systems, various new phenomena have been observed experimentally and interpreted
theoretically in the 1990s and this trend is still continuing. In addition, various
phenomena observed and explained previously are again interpreted in terms of the
new theory for the mesoscopic region.

8.5.2 Definition of Mesoscopic Region

Herewewill define physical parameters that are useful for understandingmesoscopic
phenomena [11]. Electrical conduction in semiconductors (solids) is described by the
mean free path or Fermi wavelength. The mean free path Λ is the average distance
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of electron transit between collisions and is defined by using the average scattering
time or relaxation time τ and Fermi velocity vF:

Λ = vFτ . (8.251)

The electrical conductivity σ and the electron mobility μ

σ = ne2τ

m
= neμ , (8.252)

μ = eτ

m
, (8.253)

where n is the electron density,m is the electron effective mass and−e is the electron
charge. The FermiwavelengthλF is thewave length of the electronwith Fermi energy
EF, and is derived as

�
2k2F
2m

= EF , (8.254)

λF = 2π

kF
. (8.255)

The electron density in a metal is very high and the Fermi energy is large, giving rise
to the Fermi wavelength λF ∼ 1Å. On the other hand, the electron density in a semi-
conductor is low and the Fermi wavelength is very large. For example, for the Fermi
wavelength of two-dimensional electron gas in a GaAs/AlGaAs heterostructure we
have

λF ∼ 400Å (n ∼ 3 × 1011 cm−2) , (8.256)

Λ = 1 ∼ 100µm . (8.257)

This size is larger than the size of theLSImicrostructures and ringswehavediscussed,
and we may expect new features of electrical conduction which have not yet been
observed in normal size devices.

In addition to these physical parameters, the diffusion coefficient D and diffusion
length DLT also give a measure to understand the phenomena in mesoscopic region.
These parameters are given by

D ∼ v2
Fτ = Λ2

τ
= ΛvF , (8.258)

LT =
√

D�

kBT
. (8.259)

In the analysis of the electron interference effect, the phase coherence length is very
important and is defined by

Lφ = √
Dτφ = Λ

√
τφ

τ
, (8.260)

where τφ is the phase relaxation time governed by inelastic scattering.
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When the size of a sample is large enough for electrons to experience repeated
scattering and to drift between the electrode contacts and the electron motion is
governed by the classical Boltzmann transport equation, the electrons are in the
diffusion region. On the other hand, when electrons transit between the electrode
contacts without suffering any scattering, the electrons are in the ballistic region.
The mesoscopic system which is between the microscopic and macroscopic regions
in size is characterized by the phase coherence length Lφ. When the sample length
becomes shorter than the phase coherence length, a quantum mechanical effect, that
is characteristic of the system structure results. Therefore, the mesoscopic region
includes a part of the diffusion region and the ballistic region and is described as
follows by using the physical parameters defined above [11]:

mesoscopic region =
{
diffusion region (L � Λ)

ballistic region (L � Λ)
, (8.261)

where L is the system size and the electrical conduction is independent of L in the
diffusion region but depends on L in the ballistic region. The electron mean free path
in a high-mobility semiconductor is several tens µm and the ballistic region is easily
achieved in such a semiconductor. In addition, the electron Fermi wavelength in a
high-mobility semiconductor is several 100µm and thus quantum effects are easily
observed in confined electron system of heterostructures.

8.5.3 Landauer Formula and Büttiker–Landauer Formula

Let us explain the Landauer formula with the help of the system shown in Fig. 8.44.
Ideal conductors are connected to a conductor specimen and the ideal conductors
are connected to ideal electrodes called reservoirs. Let the chemical potentials of
the reservoirs on the left- and right-hand sides be μ1 and μ2, respectively, and the
chemical potentials of the ideal conductors beμA andμB , respectively.Assuming that
the electron channel is one-dimensional and its energy is given by E = �

2k2x/2m
∗,

then the density of electrons moving in one direction (positive direction) is given by
∂n+/∂E = 1/π�vx , where the electron spins are taken into account. The electron
velocity vx is given by m∗vx = �kx . Letting the electron transmission coefficient
through this channel be T and the reflectivity R, we have the relation T + R = 1.
The electron current through this system is then defined as

I = (−e)vx
∂n+
∂E T (μ1 − μ2) = − e

π�
T (μ1 − μ2) . (8.262)

Since the voltage difference between the electrodes is given by −eV21 = μ1 − μ2,
the conductance between the two terminals is obtained as
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Fig. 8.44 Schematic illustration of a system used to derive the Landauer formula and its energy
diagram. Ideal conductors are connected to both sides of a system (conductor) and the ideal con-
ductors are contacted to ideal electrodes called reservoirs. The current through the system flows
due to the chemical potential difference between the reservoirs

G = I

V21
= e2

π�
T = 2e2

h
T . (8.263)

The conductance measured in the system is defined by the voltage applied to the
system and the current through the system and not by the voltage drop between the
electrodes and the current through the electrodes. When the reflectivity R is unity,
the left-hand and right-hand conductors are equilibrated with electrodes 1 and 2,
respectively, resulting in −eV = μ1 −μ2. On the other hand, when the transmission
coefficient T is unity, we have the relation −eV = 0. In general, there holds the
following relation for arbitrary transmission coefficient T and reflection coefficient
R (see Ando [11], Chap. 2):

−eV = R(μ1 − μ2) . (8.264)

Therefore the conductance of the system is written as

G = e2

π�

T

R
= e2

π�

T

1 − T
. (8.265)

This relation is called the Landauer formula [88].
Generalized expressions for the conductance of a system with two or more ter-

minals have been derived by Landauer and Büttiker, where the Landauer formula is
extended to a system with multi-terminals and called the Büttiker-Landauer for-
mula [89]. In this textbook we follow the treatment of Büttiker [90]. Figure8.45
shows a conductor with four terminals connected via perfect leads (unshaded) to
four reservoirs at chemical potentials μ1, μ2, μ3 and μ4. The shaded region is a disor-
dered conductor. The reservoirs serve both as a source and as a sink of carriers and of
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Fig. 8.45 Schematic illustration of a device which consists of a disordered normal conductor with
four terminals via perfect leads (unshaded) to four reservoirs at chemical potentials μ1, μ2, μ3 and
μ4. An Aharonov–Bohm flux Φ is applied through the hole in the sample

energy. At T = 0K they can supply carriers with energy up to μi to the leads. A car-
rier supplied through the lead to the reservoir is absorbed by the reservoir depending
on the phase and energy of the incident carrier. The unshaded regions of the leads
are perfect conductors, free of elastic scattering, between the disordered terminals
and the reservoirs.

First, we assume that the perfect leads are one-dimensional quantum channels.
Then there exist two types of carriers at the Fermi level, one with positive velocity
leaving the reservoir and one with negative velocity. Scattering in the sample is
assumed to be elastic; inelastic scattering will occur only in the reservoirs. Therefore,
the elastic scattering in the sample is described by an S-matrix. Designating the
amplitudes of the incident currents as αi and the amplitudes of the outgoing currents
as α′

i (i = 1, · · · , 4), we have the following relation between these amplitudes:

α′
i =

i=4∑
i=1

si jα j . (8.266)

Since the current is conserved, the S-matrix is unitary, S† = S−1, where S† is the
Hermitian conjugate of S. Time reversal requires the relation S∗(−Φ) = S−1(Φ) (∗
means complex conjugate). From these relations the S-matrix obeys the reciprocity
relations si j (Φ) = s ji (−Φ). The coefficient si j (Φ) is the transmission amplitude for
a carrier leaving contact j to reach contact i in the presence of a flux Φ and is the
same as that of a carrier leaving contact i to reach contact j if the flux is reversed.
We define the transmission probabilities for carriers leaving lead j to reach lead i
by Ti j = |si j |2, i �= j , and the reflection probabilities for carriers leaving lead i to
be reflected to lead i by Rii = |sii |2. Then the reciprocity symmetry of the S-matrix
implies that

Rii (Φ) = Rii (−Φ), Ti j (Φ) = Tji (−Φ) . (8.267)

Let us calculate the current flowing through the leads.We assume that the potential
differences between the leads are small and that the transmission and reflection prob-
abilities are independent of the carrier energy. First we introduce a chemical potential
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that is small compared to the chemical potentials μi of the four conductors. When the
carrier energy is below the chemical potential μ0, the states of positive and negative
velocities are both occupied and thus the net current is zero. Therefore, we can ana-
lyze the channel transport by taking account of the states above μ0, Δμi = μi − μ0.
Referring to the derivation of (8.262) for the current in one-dimensional channel, the
current injected from reservoir i into the lead i is given by evi (dn/dE)Δμi , where vi
is the velocity at the Fermi energy in lead i and dn/dE = 1/2π�vi is the density of
states (each state of electron spin) for carriers with negative or with positive velocity
vi at the Fermi energy. Therefore, the current injected by reservoir i is given by
(e/h)Δμi . When we consider the current in lead 1, a current (e/h)(1− R11)Δμ1 is
reflected back to lead 1. Carriers which are injected by reservoir 2 into lead 1 reduce
the current in lead 1 by −(e/h)T12Δμ2. Similarly, from the current fed into leads 3
and 4 we obtain a current in lead 1 of −(e/h)(T13Δμ3 + T14Δμ4). Summing these
results and applying similar considerations to determine the currents in the other
leads results in

Ii = e

h

[
(1 − Rii )μi −

∑
i �= j

Ti jμ j

]
, (8.268)

where the currents are independent of the reference potentialμ0, since the coefficients
multiplying the potentials add to zero. This formula is called theBüttiker–Landauer
formula. We have to note that the following relation holds for all the leads i :

Rii +
∑
j �=i

Ti j = 1 . (8.269)

The above results are derived for a current in single channel. In general, electrons
are confined in the directions perpendicular to the current, giving rise to discrete
quantum levels En , n = 1, 2, · · · . Therefore, the number of channels will be changed
by the relation between the quantum level En and the Fermi energy EF. For a number
of quantum channels Ni the scattering matrix contains the elements (

∑
Ni )

2. Here
we define the element by si j,mn which gives the transmission amplitude for a carrier
incident in channel n in lead j to reach channel m in lead i . The probability for a
carrier incident in channel n in lead i to be reflected into the same lead into channel
m is denoted by Rii,mn = |sii,mn|2, and the probability for a carrier incident in lead
j in channel n to be transmitted into lead i in channel m is Ti j,mn = |si j,mn|2. The
current in lead i due to carriers injected in lead j is

Ii j = − e

h

∑
mn

Ti j,mnΔμ j . (8.270)
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Therefore, if we introduce

Rii =
∑
mn

Rii,mn , Ti j =
∑
mn

Ti j,mn , (8.271)

the currents flowing from the reservoir toward the conductor is

Ii = e

h

[
(Ni − Rii )μi −

∑
i �= j

Ti jμ j

]
. (8.272)

where Ni is the number of channels in lead i .
The result given by (8.272) indicates that the conductance is evaluated from (e/h)

multiplied by the term [ ] when the currents and chemical potentials are measured
simultaneously at all the probes. Note that experiments are carried out by choosing
appropriate current leads and potential probes. As an example, consider the four-
probe device shown in Fig. 8.45, where a current I1 is fed into lead 1 and is taken
out in lead 3, and a current I2 is fed into lead 2 and leaves the sample through lead
4. Then we have to solve (8.272) under the condition that I1 = −I3 and I2 = −I4.
This will give the two currents as a function of potential difference Vi = μi/e,

I1 = α11(V1 − V3) − α12(V2 − V4) , (8.273)

I2 = = −α21(V1 − V3) + α22(V2 − V4) , (8.274)

where the conductance matrix αi j is given by

α11 = (e2/h)[(1 − R11)S − (T14 + T12)(T41 + T21)]/S , (8.275a)

α12 = (e2/h)(T12T34 − T14T32)/S , (8.275b)

α21 = (e2/h)(T21T43 − T23T41)/S , (8.275c)

α22 = (e2/h)[(1 − R22)S − (T21 + T23)(T32 + T12)]/S , (8.275d)

S = T12 + T14 + T32 + T34 = T21 + T41 + T23 + T43 . (8.275e)

From these results we find that the diagonal elements are symmetric in the magnetic
flux α11(Φ) = α22(−Φ), α22(Φ) = α22(−Φ), and the off-diagonal elements satisfy
α12(Φ) = α21(−Φ).

Next we will discuss how to derive the resistance of the system from (8.273) and
(8.274). In the four-probe system shown in Fig. 8.45, a current is fed between the two
leads and the chemical potentials of the two leads is measured. For example, when
a current is fed through lead 1 and taken out through lead 3, the current between
leads 2 and 4 is zero, and the chemical potentials are μ2 = eV2 and μ4 = eV4, we
obtain from (8.274) V2 − V4 = (α21/α22)(V1 − V3) for I2 = 0. Inserting this into
(8.273), the current I1 is given by a function of (V2 −V4). Therefore the resistance is
expressed by the following relation when a current flows between lead 1 and 3 and
the potentials are measured at leads 2 and 4:
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R13,24 = V2 − V4

I1
= α21

(α11α22 − α12α21)
. (8.276)

Since α21 is in general not symmetric, the resistance R13,24 is also not symmetric.
Now we exchange the current and the voltage probes but keep the flux fixed. The
resistance is then given by

R24,13 = α12

(α11α22 − α12α21)
. (8.277)

The sum of these resistances, Sα = (R13,24 + R24,13)/2, is symmetric.
In general under a flux Φ, if a current is fed into lead m and taken out from lead

n, and if the potential difference between leads k and l is measured, the resistance is
defined by the following relation [90]:

Rmn,kl = h

e2
(TkmTln − TknTlm)

D
, (8.278)

where D = (h/e2)2(α11α22 − α12α21)/S. Since D is independent of the exchange
of mn and kl, the relation Rmn,kl = −Rmn,lk = −Rnm,kl holds.

Here we will discuss the relation between the Büttiker–Landauer formula and
Landauer formula. Consider a device such as that shown in Fig. 8.46, where a current
is fed through lead 1 and taken out from lead 2, and the potential difference is
measured between leads 3 and 4, which are weakly connected to the conductor
through tunnel barriers. In this case the following relation is derived [89]:

μ3 − μ4 = T31T42
(T31 + T32)(T41 + T42)

(μ1 − μ2) . (8.279)

Since the voltage probes are connected to the conductor through the perfect leads
and only elastic scattering occurs in the conductor between the voltage probes, the
system is characterized by a transmission probability T and a reflection probability
R. Then we have the relations, T12 = T21 = T , T31 = T13 = T42 = T24 = 1 + R,
T32 = T23 = T14 = T41 = T , and T43 = T34 = T . Inserting these relations into
(8.279) we obtain

μ

μ μ

μ

Fig. 8.46 Four-terminal conductor. The two current probes are 1 and 2, while the two potential
probes are connected through the tunneling barrier junctions (dark areas)
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μ3 − μ4 = 1

4
[(1 + R)2 − (1 − R)2](μ1 − μ2) = R(μ1 − μ2) . (8.280)

Since the current is given by I = (e/h)T (μ1 − μ2), the resistance R (conductance
: G = 1/R) is expressed as

R = h

e2
R

T
. (8.281)

When we take into account the spin degeneracy factor 2, the above equation is
equivalent to the Landauer formula, (8.265).

8.5.4 Research in the Mesoscopic Region

Recently, many scientists have been attracted to do research on mesoscopic struc-
tures and a variety of phenomena have been observed so far. The definition of meso-
scopic structures has become clear from these investigations. In the following we
discuss some important and advanced work related to mesoscopic phenomena. Some
well-known phenomena have been reinterpreted in terms of mesoscopic phenomena.
The quantum Hall effect, for example, is also interpreted in terms of the Büttiker–
Landauer formula for edge channels, which is one of the most important theories
of mesoscopic phenomena. As stated previously, research on mesoscopic structures
is being intensively carried out in the fields of semiconductor physics, new func-
tional devices fabricated in semiconductors and advanced semiconductor devices,
and many other interesting work has been done beside the work discussed here.

8.5.5 Aharonov–Bohm Effect (AB Effect)

The Aharonov–Bohm effect is based on the prediction reported by Aharonov and
Bohm in 1959 for a quantum mechanical investigation, as discussed in Sect. 8.5.1.
When electron waves with a finite energy transit through a small solenoid and the
magnetic field (vector potential) is changed, the conductance of ametal ring oscillates
periodically as the magnetic flux becomes a multiple of the flux quantum Φ0 = h/e.
This phenomenon was first proved by Webb et al. [86, 91, 92] and an example
is shown in Fig. 8.47, where the inset shows the metal ring structure used in the
experiment and the line width is 40nm and ring diameter is 0.8µm. The ring has
Au leads attached to symmetric positions on the ring and the magnetoresistance
can be measured through the outer circuits connected to the Au leads. Electron
waves entering from one of the leads are separated into two parts and are subjected
to the magnetic field, resulting in interference at the other lead. The phase of the
interference changes by 2π as the flux is increased by a multiple of h/e and the
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Fig. 8.47 Periodic
oscillations of
magnetoresistance in a Au
ring of diameter 0.8µm and
line width 40nm shown in
the inset. A period of h/e
and its second-harmonic
component 2 h/e are
observed in a magnetic field
B=0–8T and at temperature
T = 50mK

Fig. 8.48 Fourier transform
of Fig. 8.47. The period h/e
(1/0.0076T−1) corresponds
to the condition where the
flux quanta pass through the
metal ring. The weak
second-harmonic component
2 h/e (1/0.0038T−1) is also
observed

magnetoresistance oscillates with period h/e. The experimental results are shown in
Fig. 8.47,where the oscillatorymagnetoresistance is plotted as a function ofmagnetic
field over the range 0–8T and the period is found to be 0.0076T (1/0.0076T−1). This
period corresponds to the flux quanta h/e through the Au ring. It is very interesting
to point out that more than 1000 Aharonov–Bohm oscillations are observed in the
magnetic field region 0–8T. The Fourier transform of the data is shown in Fig. 8.48,
where two peaks corresponding to the period h/e and its weak second-harmonic
component 2 h/e (1/0.0038T−1) are identified. These two periods are observed in
the whole experimental range of magnetic field up to 8T. We have to note here that
the AB effect is shown theoretically to be related to fluctuations. The interference is
caused by electrons frommany channels and thus randommotion of electrons results
in fluctuations of the conductance. Therefore, the AB effect is not observed in an
electron system with many channels or, in other words, in a macroscopic system.
In such a macroscopic system the AAS effect (Altshuler–Aharonov–Spivak effect)
with the period of flux Φ0/2 is observed instead of the AB effect [93].
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8.5.6 Ballistic Electron Transport

ULSI (Ultra-Large Scale Integration) technology and microfabrication of semicon-
ductor devices enable us to produce an extremely short channel device in which
electrons can transit ballistically between the electrode contacts without suffering
any scattering when the electrode distance is shorter than the electron mean free
path. This phenomenon is interpreted as an analogy to electron transport in a vac-
uum tube and has attracted semiconductor engineers from an aspect of developing
new high-frequency devices. [94]. However, this interpretation does not take account
of the effects of electrical leads and reservoirs and thus it is not correct. It was later
pointed out that such a device should be interpreted with the help of the Landauer
formula. The most striking finding is the quantization of conductance in a one-
dimensional channel, which is well explained by the Landauer formula and accepted
as a typical example of a mesoscopic phenomenon. The device structure is shown
in Fig. 8.49, where the split-gate structure is formed on AlGaAs/GaAs and the point
contacts constrict the channel of the two-dimensional electron gas. The Electron cur-
rent through the point contact structure shows quantized conductance in multiples of
2 e2/h. The phenomenon has been discovered independently by vanWees et al. [95]
and Wharam et al. [96]. An example of the experimental data is shown in Fig. 8.50.

When a voltage is applied to the split-gate, the electron channel is constricted due
to the expansion of the depletion region and electrons in a limited number of channel
mode can pass through the constriction. The experimental result is explained in terms
of the Landauer formula as follows. In the case where the effect of reflection can
be neglected and the transmission coefficient Tn depends on the channel mode, the
conductance G is given by

G = 2e2

h

N∑
n=1

Tn . (8.282)

Fig. 8.49 Split-gate structure used for the experiment to observe conductance quantization in a
quasi-one dimensional electron system. Gate electrodes G formed on the AlGaAs surface above
the two-dimensional electron gas system constrict the electron channels between the point contacts
and the conductance due to electron flow through the constricted region is measured
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Fig. 8.50 An example of experimental data for conductance quantization in the split-gate structure.
The horizontal axis is the voltage applied to the gate electrodes G and the vertical axis is the
conductance in units of 2 e2/h. The conductance quantized in units of 2 e2/h is well resolved in
the experimental range as staircases. (After van Wees et al. [95])

Fig. 8.51 A schematic illustration of a sample used for observation of the magnetic focusing effect.
In the presence of a magnetic field an electron beam is injected through the injection channel I and
the voltage variation is detected through the detection channel C. The detected voltage oscillates
periodically when the magnetic field is swept

Assuming that electrons of modes n = 1, 2, · · · , N can pass through the point
contacts channel and approximating the transmission coefficient to be Tn ≈ 1 for the
channels, then we obtain

G ≈ 2e2

h
N . (8.283)

A change in the applied voltage on the gates of the sample shown in Fig. 8.49 results
in a change in the channels of electrons (modes), and the conductance is quantized
as multiples of 2 e2/h. This feature is clearly seen in Fig. 8.50.

Another well-known phenomenon of electron ballistic transport is the magnetic
focusing effect. This effect is observed in the sample shown in Fig. 8.51, where two
point contacts are separated by distance L . When a multiple of the cyclotron radius
2 rc becomes equal to the distance L in a magnetic field perpendicular to the surface,
(2Nrc = L , N = 1, 2, 3, · · · ), electrons emitted from the injection channel enter
the detection channel and cause a change in the electric current or voltage [97, 98].
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8.6 Quantum Hall Effect

The quantum Hall effect discovered in 1980 by Klaus von Klitzing et al. [14] has
made a great impact upon semiconductor physics. The importance of the quantum
Hall effect can be understood from the fact that the Hall resistance has been adopted
as the international standard of resistance. Figure8.52 shows the first observation of
the quantum Hall effect in a Si-MOSFET, where a two-dimensional electron gas is
induced in the inversion layer by applying a gate voltage and the Hall effect due to
the two-dimensional electron gas is measured. In the presence of a magnetic field
perpendicular to the interface and of a constant current between the source and the
drain, the Hall conductivity σxy in the classical theory is expected to be proportional
to the inversion electron density Ns which is changed by the gate voltage. The Hall
voltage is proportional to theHall resistance and thus to the inversion electron density.
However, the experiments on Si MOSFETs by von Klitzing et al. revealed that the
Hall voltage is not proportional to the inversion electron density but that instead the
Hall voltage exhibits plateaus in some regions of the electron sheet density as shown
in Fig. 8.52. The experiment was carried out with a source-drain current I = 1µA,
magnetic field B = 18T and at temperature T = 1.5K. The Hall voltage shows a

Fig. 8.52 Gate voltage VG dependence of Hall voltage VH and potential difference Vpp between two
potential probes in the two-dimensional electron gas of a Si-MOSFET, for temperature T = 1.5K,
magnetic field B = 18T, and source–drain current I = 1mA. The inset shows the device structure
with length L = 400µm, width W = 50µm, and the distance between the potential probes
Lpp = 130µm.ThevoltagedropVpp showsShubnikov–deHaas oscillations,which are proportional
to σxx . When Vpp becomes a minimum, the Hall voltage VH (proportional to σxy) exhibits a plateau
and the Hall resistanceRK = VH/I is quantized. In the experiment the filling factor of the Landau
levels of the two-dimensional electron gas is changed by the gate voltage. N is the Landau index.
(After von Klitzing et al. [14])
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plateau in the regionwhere the voltage Vpp (proportional toσxx ) becomes aminimum.
Under these conditions the Hall resistance defined by the Hall voltage divided by the
source-drain current is found to be

RH = h

e2
· 1
i

= 25813

i
[�] , (8.284)

where i = 1, 2, 3, · · · and thus the Hall resistance RH is quantized. Here the Hall
resistance is defined byRH in order to distinguish it from the Hall coefficient RH of
Sect. 7.1. Later the quantizedHall resistance has beenmeasured at various institutions
in the world and found to agree with 10 digits in the accuracy of and the quantized
Hall resistance is approved as the international standard of resistance:

RK = 25812.8074555(59)� . (8.285)

The constant is therefore called the von Klitzing constant.6 Later (in 1982) the Hall
resistance and magnetoresistance were found to exhibit an anomaly for fractional
values of i . Since then the former phenomenon (i is integer) is called the integer
quantum Hall effect (IQHE) and the latter phenomenon (i is fractional) is called
the fractional quantum Hall effect (FQHE). The discovery of the quantum Hall
effect was stimulated by the early work on transport in a two-dimensional electron
gas by T. Ando, Y. Uemura and S. Kawaji in Japan.

Figure8.53 shows the quantum Hall effect in the AlGaAs/GaAs HEMT structure,
where the highmobility of the two-dimensional electrongas results in a clear quantum
Hall effect [99]. Kawaji et al. reported a detailed investigation of the accuracy of the
quantized Hall resistance in order to adopt the value for the international standard
[13]. Komiyama, Kawaji et al. have carried out detailed experiments to show that
the plateaus of the quantum Hall resistance disappear under the application of a high
electric current [11, 13].

We start from (7.20a) and (7.20b) derived for three dimensional case of Sect. 7.1.
Denoting the sheet density of the two-dimensional electron gas by Ns [1/m2] and the
cyclotron angular frequency by ωc = eB/m∗, then the conductivity in a magnetic
field is given by expanding (7.20b) in terms of 1/(ωcτ )2 for ωcτ ≥ 1

σxy = −Nse

B
+ σxx

ωcτ
≡ −Nse

B
+ Δσxy . (8.286)

When ωcτ � 1 is satisfied, the following approximation is valid:

σxy = −Nse

B
. (8.287)

6From 2014 CODADA recommended value and the number in parentheses is standard uncertainty
in the last two digits of the given value (http://physics.nist.gov/cgi-bin/cuu/Value?rk). See also the
fundamental constants of Physics and Chemistry reported by P. J. Mohr, B. N. Taylor, and D. B.
Newell; Rev. Mod. Phys., 84, (2012) 1527.

http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://physics.nist.gov/cgi-bin/cuu/Value?rk
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Fig. 8.53 Quantum Hall
effect in AlGaAs/GaAs. The
high mobility of the
two-dimensional electron
gas in AlGaAs/GaAs results
in clear plateaus in the Hall
conductance σxy . The lower
part of this figure shows the
magnetoconductance σxx as
a function of the magnetic
field, where the indices are
the Landau quantum number
and spin polarization. The
measurements are for
T = 50mK and
I = 2.6µA/m

Weknow that the density of states for a two-dimensional system is given by a constant
value of m∗/2π�

2. When the cyclotron radius of the ground Landau state is given
by l, the density of states for each Landau level in a two-dimensional system in a
magnetic field is defined by (2.108) of Sect. 2.5

1

2πl2
= m∗

2π�2
· �ωc = eB

2π�
= eB

h
. (8.288)

When the Landau levels are degenerate for spins, the density of states defined above
is multiplied by a factor 2. For simplicity, we neglect the spin degeneracy and take
into account one of the spins. In addition we neglect the broadening of the density
of states and assume that it is given by a delta function. Under these simplified
assumptions we examine how the Fermi energy behaves in the presence of magnetic
field. The Landau levels are given by

EN =
(
N + 1

2

)
�ωc, N = 0, 1, 2, 3, . . . ,

which are plotted in Fig. 8.54 form∗ = 0.067m.Whenwe assume a constant electron
sheet density Ns = 4.0 × 1011 cm−2, a higher magnetic field in which the electrons
occupy the lowest Landau level N = 0 only is given by

eB1

h
= Ns, B1 = 16.6 [T] .

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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ε

Fig. 8.54 Landau levels and Fermi energy are plotted as a function of magnetic field for two-
dimensional electron gas with the effective mass m∗ = 0.67m and sheet electron density Ns =
4.0× 10−11 cm−2. The density of states is assumed to be given by a delta function of aerial density
2 eB/h and the Fermi energy oscillates with magnetic field. The oscillatory behavior of the Fermi
energy result in Shubnikov-de Haas oscillations in σxx . The electron spins are not taken into account

In a magnetic field lower than B1, the Landau level N = 0 cannot contain all the
electrons and some of the electrons occupy the second Landau level N = 1. The
magnetic field is lowered below B2 = B1/2, and electrons occupy the third Landau
level N = 2. The Fermi level at T = 0K thus obtained is plotted by the solid lines
in Fig. 8.54.

When electrons occupy up to the i th Landau levels (i = N + 1), we find

Ns = i · eB
h

, i = 1, 2, 3, . . . , (8.289)

where i is called as “filling factor” and thus the Hall conductivity is obtained as

σxy = −i · e
2

h
, i = 1, 2, 3, . . . . (8.290)

Here we consider dimension of two–dimensional electron gas in a magnetic field
applied in the perpendicular to the electron sheet (z direction). Ns is defined in units of
[1/m2] (n: [1/m3] for three dimensional electrons) as described before. Assuming the
width of the current channel of two dimensional electrons as W [m], the parameters
in (7.20a) and (7.20b) are redefined as Ix = Jx · W , VH = Ey · W and thus we have
the following relations

Ji [A/m], E j [V/m], σi j [A/V] = [1/�] .

Therefore the Hall resistance is given by RH = VH/Ix = Ey/Jx = 1/σxy and has
dimension of [V/A] = [�]. Therefore the Hall resistance is given by for filling factor
i = 1 (Landau levels are filled up to i–th level),

http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
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RH = 1

i
· h

e2
= 25813

i
[�] (8.291)

and the relation of (8.284) is derived. It is very important to note the following
remarks. The above treatment shows only that the value of the Hall resistanceRH is
quantized at a point where the Landau level occupation number i changes. In other
words, the treatment does not explain the plateau of the Hall resistance in certain
magnetic field regions.

In classical theory, the Hall voltage is proportional to the Hall resistance

RH = B

Nse
. (8.292)

Therefore, the Hall resistance is proportional to the magnetic field and inversely
proportional to the electron sheet density. Such a state that the electrons occupy up to
the i th Landau levels is given by (8.289), and this condition leads to the relation
Ns = ieB/h between the electron sheet density Ns and the magnetic field B for
the quantized Hall state. The density of states (eB/h)δ(E − EN ) is obtained without
broadening of the Landau level, but electronic states in a real semiconductors is
broadened by scattering. In such a case increasing Ns beyond filling factor i = 1,
and some electrons occupy the non-conductive broadened states andσxx in the second
term of (8.286) is zero, resulting in constant σxy until the electrons occupy themobile
states of the next Landau level (N=1; i=2). This feature may explain the plateau of
the Quantum Hall effect as follows.

Figure8.55 illustrate the density of states of a Landau level (N = 0, i = 1) with
the localized states shown by hatched area, conductivity σxx , and Hall conductivity
σxy . When the sheet electron density is increased, Fermi level moves as Ns2πl2 up to
1 (the Landau level filled). When Fermi level lies in the localized region, σxy = 0
because of non–conducting electrons (Nsτ = 0; by putting n → Ns in (7.20b)),
and plateau appears when Fermi level lies in the higher hatched region as shown in
Fig. 8.55.

As discussed above, when the Landau levels have a finite width, the electronic
states at the edge of the Landau levels are localized and the electrons in these
states will not contribute to the current. This feature is illustrated in Fig. 8.56 for
more general discussion. When the Fermi level is located in the hatched region
(localized state), the electrons do not contribute to the current, and σxx = 0 and
σxy = −Nse/B = −ie2/h, resulting in a plateau of σxy . On the other hand,
when the Fermi level is in a non-localized state, the Hall conductance is given by
σxy � −Nse/B+σxx/ωcτ and expected to behave like a curve as shown in Fig. 8.55.
With increasing the electron density further until the next Landau level is occupied
by electrons, Hall conductance behaves very similarly and gives rise to the quantized
Hall conductance σxy = −(i + 1)e2/h. These features are depicted in Fig. 8.56.

It is even more interesting to point out that the condition leads to a singularity in
the magnetic flux quantization. Let us consider the case where electrons occupy the
lowest Landau level (i = 1; N = 0). As shown before, the flux quantum is given by

http://dx.doi.org/10.1007/978-3-319-66860-4_7
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Fig. 8.55 Landau levels and
conductivity. a Landau level
with localized states (hatched
region), b conductivity σxx
contributed from the
electrons in the non-localized
region, and Hall conductivity
σxy as a function electron
sheet density Ns below
Fermi level. (After Aoki and
Ando [100])

Fig. 8.56 Origin of the
plateau in the quantum Hall
effect. In this figure electron
filling is illustrated as the
sheet electron density is
changed under a constant
applied magnetic field. In the
presence of localized states
of the Landau levels the
electrons occupying the
localized states cannot
contribute to the electron
current and the plateaus in
the quantized Hall states
result, depending on the
filling factor of the electrons.
(After Aoki and Ando [100])
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h/e, and the area occupied by an electron is 2πl2 = h/(eB). When we put i = 1
in (8.289), we find B/Ns = h/e and a single magnetic flux goes through a Landau
orbit for an electron. In general, we find that i flux quanta go through the Landau
orbit for the quantized Hall state with filling factor i . Therefore, we may conclude
that the quantized Hall state is accompanied by magnetic flux quantization.

The first theoretical interpretation of the quantum Hall effect was given by Aoki
and Ando [100] by using the linear response theory. Later, a theory based on the
gauge transform was reported by Laughlin [101]. In addition, the importance of the
edge current in the quantum Hall regime was pointed out by Halperin [102], and
Büttiker [103] succeeded in explaining the integer quantum Hall effect in terms of
the edge current by the Büttiker–Landauer formula, which is an extension of the
Landauer formula. Reports on the quantum Hall effects are found in review papers
such as [104–106].

This textbook does not intend to review the theories of the quantum Hall effects,
but to give an introduction for experimentalists. First, an outline of the linear response
theory of Aoki and Ando was given to understand the Quantum Hall Effect. When
we neglect the broadening of the Landau levels and the localization of the electrons,
the electrons are quantized into Landau orbits, and under the condition of the integer
quantum Hall regime and for i = 1, in the classical picture the Landau orbits of the
Ni electrons occupy the whole area of the sample. Under this condition we obtain
2πl2 × Ni = 1 from (8.288) and (8.289), which corresponds to the classical model.
This model will not give the electron drift along the electric field direction and thus
no current in the longitudinal direction, which gives rise to σxx = 0.

In experiments plateaus are observed in the region near this magnetic field, which
may be interpreted in terms of the localization of electronic states as described before.
When the potential fluctuates slowly compared to the magnetic length l, electrons
move along the equipotential lines (classical orbits) near the hills and valleys as
expected from the classical theory as shown in Fig. 8.57. Such localized electrons
will not contribute to the current. With increasing sheet electron density, the electron

Fig. 8.57 Electron motion in fluctuating potentials. When the irregular potential fluctuates slowly
compared to the magnetic length l, the center of the cyclotron motion of an electron traverses along
the equipotential lines as expected from classical theory (solid and dotted curves near the hills and
valleys of the potential, respectively)
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Fig. 8.58 Motion of a two-dimensional electron gas in a high magnetic field is illustrated schemat-
ically. In the middle region of the sample the electrons complete cyclotron orbits, whereas electrons
near the sample edge cannot make cyclotron motion but a skipping motion instead because of the
existence of the potential wall at the edges. In general, the skipping motions of the upper and lower
edges are different in their distance between the cyclotron centers and the edge. This skipping
motion gives rise to the edge channel in the quantum Hall effect

ω
ε

Fig. 8.59 Energy spectrum of electrons in a high magnetic field in a semiconductor with a rec-
tangular confining potential (walls at y1 and y2) at the semiconductor surfaces. The Landau levels
near the center are E j = �ωc( j + 1/2) (flat) but are strongly bent upward near the edges. y0 is the
center of the harmonic oscillator wave functions. (After [102])

orbits are not closed and electron current is induced along the electric field direction.
Next, we consider the edge channel. As shown schematically in Fig. 8.58, electrons
near the center can complete cyclotron orbits and are Landau quantized. However,
electrons near the edges are affected by the confining potential and performa skipping
motion. In Fig. 8.58 the magnetic field is upward normal to the page and the direction
of the electron motion is shown by the arrows. Under these boundary conditions the
electronic states in a magnetic field are schematically shown by Fig. 8.59, where the
electron energy in the y direction is plotted for the case of the current in the x direction
and the magnetic field in the z direction, and y1 and y2 are the sample boundaries
[102]. In the central part of the y direction, an electron performs cyclotron motion
and its energy is flat, whereas electrons near the edges at y1 and y2 are affected by
the confining potential, resulting in a skipping motion flowing in the x direction.
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The associated current is called the edge current and the channel is called the edge
channel.

Electrons in the edge channels are expected to be ballistic and thus their transport
properties are analyzed by the Landauer formula or the Büttiker–Landauer formula
[103]. Here we will discuss the quantum Hall effect by the method introduced by
Büttiker. It should be noted here that the samples used in the measurements of the
quantum Hall effect have electrode contacts for the Hall voltage in addition to the
current probes. Therefore, the devices are multi-terminals. First we discuss the edge
states by taking account of the boundary condition (confining potential). Defining
the vector potential A = (−By, 0, 0), the Hamiltonian for an electron with effective
mass m∗ and electronic charge −e is given by the following equation according to
the results presented in Sect. 2.5.

H = 1

2m∗
[
(px + eBy) + p2y

] + V (y) . (8.293)

In the presence of a magnetic field, an electron performs cyclotron motion in the xy
plane, and the wave function of the electron is written as ψ j,k = exp(ikx)Fj (y) and
the function F is given by an eigenfunction of the following equation:

[
− �

2

2m∗
∂2

∂y2
+ 1

2
m∗ω2

c (y − y0)
2 + V (y)

]
Fj (y) = E j Fj (y) , (8.294)

where ωc = eB/m∗ is the cyclotron angular frequency. The eigenvalues of (8.294)
depend on

y0 = − �k

m∗
1

ωc
= −kl2 (8.295)

and l = √
�/eB. In Fig. 8.59, letting the potential V (y) ≡ 0 in the flat region, the

solution of (8.294) is given by

E jk = �ωc

(
j + 1

2

)
, (8.296)

with j = 0, 1, 2, . . . as shown in Sect. 2.5. The solution given by (8.296) is indepen-
dent of the parameter y0 and thus of k. However, in the region near the edges y1 and
y2, as shown in Fig. 8.59, the electrons cannot complete cyclotron orbits and instead
perform a skipping motion. As a result, the energy eigenvalue of an electron is a
function of y0 and deviates from the value given by (8.296), giving rise to bending
upward near the edge. In the edge region the electron energy depends on the distance
|y1 − y0| or |y2 − y0|. Figure8.59 illustrates the electron energies by taking account
of the confining potential. The electron energy is then expressed as

E jk = E[ j,ωc, y0(k)] . (8.297)

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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The velocity along the sample edge of a carrier in such an edge state is defined as

v jk = 1

�

dE jk

dk
= 1

�

dE jk

dy0

dy0
dk

. (8.298)

Here we find that the velocity along the sample edge is proportional to the slope of
the Landau level, dE/dy0. dE/dy0 is negative at the upper edge y2 and is positive
at the lower edge y1 (see Fig. 8.59). When a magnetic field is applied in the upward
direction with respect to the page in Fig. 8.58, dy0/dk is negative and therefore the
velocity is positive at the upper edge y2 and negative at the lower edge y1. In the
region of the bulk Landau levels or the flat region of the Landau levels shown in
Fig. 8.59, E is independent of y0 and thus the carrier velocity in this region is zero.
This is again understood from the fact that the carriers complete cyclotron orbits,
the motion is quantized in the plane perpendicular to the magnetic field and the
center of the cyclotron orbit will not move. The density of states in this region is
discussed in Sect. 2.5. On the other hand, the density of states of a carrier along the
edge state of Landau level E j is one-dimensional and given by dn/dk = 1/2π or
dn/dk = dn/dy0|dy0/dk|. Since we obtain dn/dy0 = 1/(2πl2) from (8.295), the
density of states in energy space is related to the velocity by the following relation:

[
dn

dE
]
j

= dn

dk

[
dk

dE
]
j

= 1

2π�v jk
. (8.299)

The density of states at the Fermi energy is evaluated from (8.297) by replacing
E jk with EF. From this relation we may obtain k at the Fermi energy, and the states
consist of discrete values of n = 1, 2, . . . , N . Here we have to note that N should be
taken for positive and negative values of k. When the Fermi energy passes through
a Landau level, the number of edge states changes from N to N − 1.

First, we consider the case of a two-terminal circuit and calculate the current
injected into the edge by using the Landauer formula. The current through the edge
state is written as

I = ev j

[
dn

dE
]
j

(μ1 − μ2) = e

h
Δμ . (8.300)

Since the current injected into the edge states is equivalent to the current injected
into quantum channels, the resistance of this two-terminal circuit is given by

R = h

e2
1

N
, (8.301)

where N is the number of edge states (the number of one-dimensional channels for
positive velocity). We have to note that the resistance given by (8.301) is a two-
terminal resistance and not the Hall resistance. The result is just a repeat of the
calculation described in Sect. 8.5.3.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. 8.60 Electron flow of the edge states in a sample with Hall bar geometry in a magnetic field
applied perpendicular and upward with respect to the page. In the figure two edge channels are
assumed to be active in. Coherent electron motion from one contact to the other is prevented by
phase randomizing reservoirs. The electrode distance is assumed to be longer than the inelastic
scattering length. Under these conditions The Hall plateau is explained as described in the text. In
the figure the direction of electron flow is indicated by the arrow (see [103])

Next, we discuss the quantization ofHall resistance on the basis of the edge current
in a sample with Hall bar geometry. Consider the sample with six electrode contacts
shown in Fig. 8.60, where we identify the electrodes by labels 1, 2, 3, . . . , 6. Current
is injected from electrode 1 (source) and taken out from electrode 4 (drain). The
current direction is given by the electron flow multiplied by −e and the direction is
reversed with respect to the electron flow direction. The arrows in Fig. 8.60 show the
direction of electron flow. Although the Hall contacts for normal measurements are
taken to be the pair of 2, 6 or 3, 5, we find in general that the pair 2, 5 or 3, 6 may
give the same result. The electrons in the edge channels are one-dimensional and
the electrons may bend around a corner because of the Lorentz force. The current
injected from contact 1 enters into the voltage probe 6. Since the current is not
taken out of probe 6, the same amount of current is fed from the other side of the
contact. If the contacts 5, 3, and 2 are voltage probes, the same condition should
be fulfilled. Since electrical current flows in or out electrode contacts 1 and 4, the
difference between the current flowing from the sample toward the contact and the
current flowing from the other contact into the sample is the net current in the device.
For simplicity, the edge is assumed to contain Ni ≡ N edge channels (the Landau
levels up to Ni are filled by electrons). The current in the edge channels is evaluated
from the Büttiker–Landauer formula of (8.272). We assume perfect contact between
the electrodes and the two-dimensional electron gas system, and thus Rii = 0. The
current at the source contact is I1 = −I and the current at the drain is I4 = +I .
The current at the other potential probes is 0. Since Ni = N at all the edges, we find
T61 = N , T56 = N , T45 = N , T34 = N , T23 = N and T12 = N , and all the other
transmission probabilities are zero. From these results the current flowing from each
reservoir into the semiconductor is given by
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I1 = Ne
h (μ1 − μ2) = −I , I4 = Ne

h (μ4 − μ5) = I ,

I2 = Ne
h (μ2 − μ3) = 0 , I3 = Ne

h (μ3 − μ4) = 0 ,

I5 = Ne
h (μ5 − μ6) = 0 , I6 = Ne

h (μ6 − μ1) = 0 .

(8.302)

Therefore, we obtain

R14,62 = μ6 − μ2

−eI
= h

e2
· 1

N
, (8.303)

where we find that the result agrees with (8.284) (N → i), and thus the quantum
Hall effect is explained. It is obvious thatR14,53 = R14,63 ≡ R14,62. In addition, we
find

Rxx = R14,23 = R14,56 = 0 , (8.304)

and the longitudinal resistanceRxx = 0, which is in agreementwith the experimental
result of σxx = 0. Another theory of the quantum Hall besides those mentioned here
is the theory based on the gauge transform by Laughlin [101].

The discovery of the quantumHall effect hasmade a great contribution to semicon-
ductor physics. Later, Tsui, Stormer and Gossard reported Hall resistance plateaus
and of vanishing of ρxx for a filling factor ν at ν = 1/3 [107], and this is called
the fractional quantum Hall effect (FQHE). More detailed investigations revealed
obvious fractional quantum Hall effects for the filling factors ν = p/q (q is always
odd) such as ν = 5/3, 4/3, 2/3, 3/5, 4/7, 4/9, 3/7, 2/5, . . .. The research in the field
of quantum Hall effect is still making great progress and expanding widely. Another
exciting subject is the existence of the Wigner crystal predicted by Tsui et al. [107]
and this is still an attractive field of research for both theory and experiment. The
theory of the fractional quantum Hall effect has been developed by Laughlin, who
took account ofmany-body effects and succeeded in explaining various experimental
observations [108], but it is believed to be incomplete. In addition, recently various
models such as the composite boson model, the composite fermion model, and so
on have been proposed. A detailed review is given by Aoki, and readers who are
interested in this field are recommended to read the paper by Aoki [13].

Figure8.61 shows an example of experimental data on the fractional quantum
Hall effect, where the diagonal component of magnetoresistance ρxx is plotted as a
function of magnetic field in the region near the filling factor ν = 1/2 and 1/4 at a
temperature of T = 40mK [109]. The physical explanation of the fractional quantum
Hall effect is as follows. At extremely low temperatures, the Coulomb interaction
dominates in two-dimensional electron gas systems, and the electrons are condensed
into quantum liquids at a filling factor ν = p/q (q is an odd number). The filling
factor is different from the case of the integer quantum Hall effect and the Landau
levels are partially filled by electrons. The most remarkable condensation occurs at
the filling factor ν = 1/q, which is interpreted in terms of the many-body wave
functions derived by Laughlin [108]. A gap appears above this ground state and the
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Fig. 8.61 Diagonal
component of
magnetoresistance ρxx
plotted as a function of
magnetic field in the region
near the filling factor
ν = 1/2 and 1/3 at
T = 40mK, where the data
for magnetic field higher
than 14T are divided by a
factor 2.5. The series of
p/(2 p ± 1) is clearly
observed near the filling
factor ν = 1/2

conductanceσxx disappears around the filling factor. Therefore, theHall conductance
σxy = hq/e2 is also quantized at the filling factor. Excitation beyond this gap results
in a creation of a quasi-particle with fractional charge e/q. Such a condensation is
known to occur for a different electron density near the filling factor ν = 1/q, and
in general the fractional quantum Hall effect at ν = p/q is observed. However,
the experimental data reveals fractional quantum Hall effects besides the condition
ν = p/q, and the theories reported so far have not been brought together under a
common interpretation. Of the various reported experiments the work of Jiang et al.
has attracted many researchers [110]. They observed a very deep minimum in σxx

at the filling factor ν = 1/2, and found that the temperature dependence of the
minimum is quite different from other fractional quantum Hall effects. As shown
clearly in Fig. 8.61, a series of p/(2 p ± 1) is observed for up to ν = 9/19 and 9/17
for the filling factor ν = 1/2, and for the fractional quantum Hall states of ν = 1/4
the series of p/(4 p±1) such as ν = 1/3, 2/5, 3/7, 4/9 and 5/11 are observed. The
most probable theory to explain the fractional quantum Hall effect is known to be
the composite fermion model of Jain [111], but all the observation has not explained
yet.

8.7 Coulomb Blockade and Single Electron Transistor

The semiconductor devices in common use utilizemany electrons in each device. For
example, 1011 to 1012 electrons exist in the 1cm2 area of a typical MOSFET device,
and thus in a MOSFET with an area as small as 1µm × 1µm 103–104 electrons
are involved in the device operation. If device fabrication technology continues to
advance and a device size below 0.1µm becomes possible, then the number of
electrons involved in the operation decreases and in the limit a device operated by
a single electron will be achieved in the future. However, it is expected that new
devices based on operating principles different from those in present devices may
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Fig. 8.62 Schematic
illustration of a tunnel
junction biased by a voltage
V . The lower part shows its
equivalent circuit

εF

be developed, where single or several electrons take part in the device operation.
Research projects on new functional devices with few electrons are in progress. The
most important principle for such devices is believed to be the Coulomb blockade
[112, 113]. In this section the basic principle of the Coulomb blockade will be
described [114–116].

First, consider the tunnel junction shown in Fig. 8.62. The energy stored in the
junction is given by

U = Q2

2C
. (8.305)

In the presence of a bias voltage V , an electron at the source electrode with kinetic
energy Es(k)will tunnel into the state at the drain electrodewith kinetic energy Ed(k ′),
and thus we find the following relation:

Es(k) + 1

2
CV 2 = Ed(k ′) + (CV − e)2

2C
. (8.306)

Since the electron tunneling through the junction has to satisfy the Pauli exclusion
principle the following inequalities are required.

Es(k) < EF − kBT , Ed(k ′) > EF + kBT . (8.307)

This will lead to

Ed(k ′) − Es(k) > 2kBT . (8.308)

Therefore, the tunneling condition is given by

eV ≥ e2

2C
− 2kBT , (8.309)
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Fig. 8.63 A finite energy is
required for an electron to
tunnel through the junction
and in the limit of
temperature T = 0 no
electron current flows at the
bias voltage below
V = e/2C . This bias region
is called the Coulomb gap

and no current flows at a bias below a threshold voltage which depends on the
temperature. At T = 0, no current results below V = e/2C . This bias region
is called the Coulomb gap and the tunneling characteristics of the Coulomb gap
are schematically illustrated in Fig. 8.63. The prohibition of tunneling is called the
Coulomb blockade.

We discuss the Coulomb blockade phenomenon in a little more detail by investi-
gating the change in the electrostatic energy at the tunnel junction shown in Fig. 8.62.
Letting the electrostatic capacitance of a small junction beC , we calculate the change
in the electrostatic energydue to the tunneling of an electron. In this system the change
in electrostatic energy before and after the tunneling is estimated to be of the order
of the Coulomb energy of an electron given by

EC = e2

2C
.

This energy is quite small in a junction of macroscopic size and thus the energy is
washed by the thermal noise, making detection impossible. However, in a tunneling
junctionwith an area of 0.01µm2 with an insulating filmof 1nm thickness, the energy
becomes equivalent to temperature of about 1K. Therefore, if the temperature of the
tunnel junction is kept below 1K, it is expected that the tunneling probability will
be controlled by the Coulomb energy EC.

When charges of ±Q are stored at the junction surfaces, the electrostatic energy
of this system is given by Q2/2C . Let us consider the case where an electron tunnels
from the negative electrode to the positive electrode in this system. The charges at the
positive and negative electrodes will therefore be changed to ±(Q − e). The change
in the electrostatic energy before and after the tunneling is then given by

ΔE = (Q − e)2

2C
− Q2

2C
= e

C

( e
2

− Q
)

= EC − eV , (8.310)

where the final relation is rewritten by using the voltage applied to the junction
V = Q/C . This result tells us the following fact. When an electron tunnels in the
system, the system loses its own Coulomb energy EC and receives energy eV from
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the voltage source. Therefore, the tunneling condition for an electron in this system
is such that the voltage applied to the junction has to satisfy V > EC/e. In other
words, under the condition

V <
EC
e

, (8.311)

and at low temperatures such that kBT � EC, the electron is not allowed to tunnel
through the junction.

In a similar fashion, the change in the charges due to the tunneling of an electron
from the positive electrode to the negative electrode is given by ±(Q + e) and thus
the change in the electrostatic energy is shown to be

ΔE = (Q + e)2

2C
− Q2

2C
= eV + EC . (8.312)

Therefore, for an applied bias voltage such that

−EC
e

< V , (8.313)

the electron is not allowed to tunnel through the junction. From these results we find
that electron tunneling is forbidden for |V | < 2/2C or |Q| < e/2, and the Coulomb
gap appears.

Next, let us discuss the characteristics of a single electron transistor (SET). An
example of a SET circuit is shown in Fig. 8.64. The characteristics of the SET are
interpreted in terms of the Coulomb blockade phenomenon. In the device two tunnel
junctions are connected in series and the isolated area in between is called a Coulomb
island. The electron number in the Coulomb island is controlled externally through
the junction capacitance CG, and the capacitance is called the gate electrode or gate
capacitance. In such a circuit tunneling through the gate capacitance can be neglected.

Fig. 8.64 Single electron
transistor circuit consisting
of two tunneling junctions
and a condenser to control
electron tunneling. The
arrows indicate four possible
tunneling processes of an
electron when n electrons
exist in the Coulomb island

J1 J2

VG

V/2
+

+

t4

Bias (Gate capacitance)

Gate bias

CG

t3

t1 t2-e

-e

-e

-e

-V/2

-ne
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In order to compare it with a transistor, the contact leading to the left tunnel junction
is called the source electrode and the contact outside the right tunnel junction is
called the drain electrode. We consider the case where voltages +V/2 and −V/2
are applied to the source and drain electrodes, respectively, and the gate electrode is
biased independently by VG as shown in Fig. 8.64. From (8.310) it may be understood
that electron tunneling through the junction is possible in the case where the change
in the electrostatic energy ΔE is zero or negative. This is because a more stable state
of lower energy exists after the tunneling. On the contrary, in the case of ΔE > 0,
electron tunneling is not allowed.

Assume that there are n excess electrons and thus −ne charges in the Coulomb
island. Four tunneling processes, t1, t2, t3 and t4, are possible, as shown in Fig. 8.64,
where an electron is added to or removed from the n electrons due to the tunneling.
We define the change in the electrostatic energy due to the four tunneling processes
by ΔE1, . . . , ΔE4. When all of them are positive, tunneling is forbidden and the
number of electrons in the Coulomb island is unchanged, giving rise to zero electron
current. For example, the change in electrostatic energy ΔE1 due to the tunneling
process t1 is given by

ΔE1 = e

C�

[
C�

2
V − CGVG − e

(
n + 1

2

)]
, (8.314)

C� = 2C + CG , (8.315)

where C� is the total electrostatic capacitance seen from the Coulomb island. In
a similar fashion, ΔE2, ΔE3 and ΔE4 are also calculated, and the results are given
by (8.314) by replacing the last term on the right–hand side with one of the terms
±(n ± 1/2). Equation (8.314) is plotted in Fig. 8.65a with horizontal axis CGVG

and vertical axis C�V , where the hatched region satisfies ΔE1 > 0 and tunneling is
forbidden. The region where all the four tunneling processes are forbidden is shown
by the hatched diamonds in Fig. 8.65b. This region is called the Coulomb diamond.
When the number of electronsn is not fixed,wefind the region for forbidden tunneling
for different n as shown in Fig. 8.65c.

Next, we discuss the tunneling current in the SET device. Keeping the voltage
applied to the source–drain electrodes constant and changing the gate voltage VG,
the SET characteristics pass through along the dotted line in Fig. 8.66 and thus pass

ΣΣ
(a) (b) (c)

Fig. 8.65 Operating characteristics of the single electron transistor circuit shown in Fig. 8.64. a
The hatched region indicates the condition under which the tunneling process t1 does not occur,
where n electrons exist in the Coulomb island shown in Fig. 8.64. b The hatched region shows the
condition under which any of the tunneling processes t1, t2, t3 and t4 will not occur. c Condition
for no tunneling is shown by the hatched region for different values of the number n
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Σ

Fig. 8.66 SET characteristics when the source and drain currents are controlled by the gate voltage
VG. Keeping source–drain voltage constant and changing the gate voltage VG, the characteristics
pass through the forbidden and allowed tunneling regions alternately. When the gate voltage VG
passes through the region without hatching, the tunneling current and source–drain current flow as
shown in the lower part of the figure

through the diamond of forbidden tunneling and outside the diamond, allowing tun-
neling, alternately. Therefore, the source–drain current flows periodically as shown
in the lower part of Fig. 8.66. It is therefore evident from Fig. 8.66 that the change in
the electronic charge at the gate electrode is less than e, the charge of one electron.
It means that the device is operated by a charge of less than a single electron. The
term “single electron transistor” (SET) was named after the fact that such a circuit
consisting of tunneling junctions is operated by controlling the source–drain current
by the gate voltage, and the device characteristics are comparable to those of the
MOSFET and MESFET.

In order to apply the Coulomb blockade effect to a real device operated at a
temperature near 300K, e2/2C is required to be larger than kBT and thus we have to
achieve a device with very small capacitance. At T = 300K, the capacitance should
be C ≤ 3.1 × 10−18 F = 3.1aF. It may be possible to fabricate a device of this
size by using microfabrication technology, but its large scale integration seems to
be impossible. This is because in such a small device the noise, radiation hardness,
reproducibility and uniformity of large scale integration pose very serious problems
for fabrication process. There have been reported so far various types of SET circuits
and related functional devices, but most of them are concerned with the investigation
of the physical properties of the devices. Recently several important results for SET
devices have been reported. Transistors operated by a single electron have been
fabricated and the device operation has been confirmed by observing the Coulomb
blockade phenomenon at room temperature [117–121]. In addition Yano et al. have
succeeded in fabricating very small MOSFETs by using poly Si and in observing
SET characteristics by charging and discharging one electron at a trap near the
channel, resulting in a change in the threshold voltage. They have integrated SETs
and fabricated SET memories [122].
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Fig. 8.67 Quantum dot
structure used by Tarucha
et al. [125] for the
investigation of Coulomb
oscillations and addition
energy vs electron number.
Electrons are confined in the
z direction by the double
barrier heterostructure
AlGaAs/In0.05Ga0.95As/
AlGaAs and then the side
gate confines electrons in the
(x, y) plane, forming
quantum dot disk

8.8 Quantum Dots

In this section we present a good example of an artificial atom and discuss Coulomb
interaction of electrons confined in a disk composed heterostructure GaAs/AlGaAs/
InGaAs.7 It was pointed out that electrons in a quantum dot with a good symmetry
exhibit the shell structure of atoms and thus the electronic states reflect Hund’s rule
[123–125]. From this reason such a quantum dot is called an artificial atom, in which
electronic states are controlled by the unit of an electron. Here we summarize the
experimental date of Tarucha et al. [125] and theoretical explanation of the observed
results. Figure8.67 shows the quantum dot structure used by Tarucha et al. [125],
where double barrier tunnel structure is cut into a disk shape and the side gate confines
electrons with its parabolic potential. First we disregard Coulomb interaction and
show that the assumption fails in explaining typical features. Then we deal with
many electron system by the method of diagonalization of the coupled N–electron
Hamiltonian with Coulomb interaction.

8.8.1 Addition Energy

Tarucha et al. used devices such as shown in Fig. 8.67, where the double barrier
heterostructure (DBH) consists of an undoped 12.0 nm In0.05Ga0.95As and undoped
Al0.22Ga0.78As barriers of thickness 9.0 (upper barrier) and 7.5 nm (lower barrier).
Figure8.68 shows the current flowing through the device as a function of the gate
voltage under the drain bias of V = 150µV,wherewe see clear Coulomb oscillations

7This section is based on the Ph.D Thesis (in Japanese) by Tatsuya Ezaki, submitted to Osaka
University (1997).
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Fig. 8.68 Coulomb oscillations observed in the quantum dot of D = 0.5µm shown in Fig. 8.67,
where the current through the dot is plotted as a function of the gate voltage under the drain voltage
of Vd = 150µV [125]

Fig. 8.69 Chemical
potential difference vs
electron number for two
different dots with D = 0.5
and 0.44µm. See text for the
definition of the addition
energy and the chemical
potential difference [125]

for Vg > −1.6 V with each peak corresponding to a change of exactly one electron
in the dot. The spacing between the current peaks in Fig. 8.68 reflects the energy
required to add one more to a dot containing N electrons. The spacing at N=2 and
3, N=4 and 5, and N=6 and 7 are larger than the other spacing, which means the
difference in the addition energy defined byΔμN below is higher at N = 2, 4, 6, . . .
than the other spacing. Tarucha et al. estimated the chemical potential difference
(difference in addition energy) from their experiments and plotted as a function of
electron number in Fig. 8.69 for two different devices.

Addition energyμN and the chemical potential differenceΔμN are defined below,
which are illustrated in Fig. 8.70. When we neglect Coulomb interaction, the energy
EN of N electrons is given by summing up the energy levels ε j of the one–electron
states,

EN =
N∑
j=1

ε j . (8.316)

Then the addition energy (chemical potential) required for adding the N–th electron
to the electronic state with N -1 electrons is define by

μN = EN − EN−1 = εN . (8.317)
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Fig. 8.70 Relation between
electronic state EN of N
electrons, the chemical
potential (addition energy)
μN and the chemical
potential difference ΔμN are
illustrated

In the presence of Coulomb interaction we have to calculate the total energy EN

by taking account of many body effects, which will be discussed later. Figure8.70
illustrates schematically, the electronic energies for N -1, N and N+1 electrons, the
chemical potentials and the difference in chemical potential. The difference in the
chemical potential ΔμN is given by

ΔμN = μN+1 − μN . (8.318)

In Fig. 8.69 we find that the chemical potential difference exhibits clear peaks at
N = 2, 4, 6, and, 12. These features may be understood by investigating the filling
of the shell structure. Let’s consider electronic states without Coulomb interaction,
and then one electron Hamiltonian h0(r, s) in the presence of a magnetic field B is
written as

h0(r, s) = 1

2m∗ ( p + eA)2 + V (x, y) + V (z) , (8.319)

where r is the three dimensional coordinates and s is the spin coordinate. In the z
direction the electrons in the disk are confined by the double barriers of the het-
erostructure as shown earlier. Here we are interested in the system of few electrons,
and then the lowest subband is taken into account. In the (x, y) plane, the potential
V (x, y) is produced by the depletion layer controlled by the gate voltage, and the
shape is parabolic. For the purpose of the later discussion we express the potential
defined by Ezaki et al. [126] and Ezaki [127],

V (x, y) = 1

2
m∗ (

ω2
x x

2 + ω2
y y

2
) [

1 + α
2

7
cos(3φ)

]
, (8.320)

where �ωx and �ωy are the confinement potentials in the x and y directions, respec-
tively, and α is introduced to modify the potential shapes as follows. When we put
α = 0, we obtain a circular dot for ωx = ωy and an ellipsoidal disk for ωx �= ωy ,
and a triangular dot for α = 1 and ωx = ωy . First we consider the simplest case of
a circular dot, and put ωx = ωy = ω0. Also note that ωL is the Lamor frequency
and related to the cyclotron frequency by ωL = ωc/2. In the z direction we assume
infinite barrier potentials with the well width W , and thus
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ζ(z) =
√

2

W
sin

( π

W
z
)

. (8.321)

Since the system is symmetrical in the (x, y) plane, we use the polar coordinate
(ρ,φ), and then we may write the wave function of the electron in the disk as

ψmn(ρ,φ, z) = 1

l0

√
2!

(|m| + n)! exp
[
−1

2

(
ρ

l0

)2
]

×
(

ρ

l0

)|m|
L |m|
n

(
ρ

l0

)
ϕm(φ)ζ(z) , (8.322a)

ϕm(φ) = 1√
2π

e−imφ , (8.322b)

l0 =
√

�

m∗Ω
, (8.322c)

Ω =
√

ω2
0 + ωL

2

, (8.322d)

ωL = eB

2m∗ , (8.322e)

where L |m|
n is the generalized Laguerre polynomial. The energy of one–electron state

is

εmn = �Ω(2n + |m| + 1) − m�ωL + εz , (8.323)

where εz is the ground subband energy of electrons confined in the z direction. The
potentials for elliptic and triangular shapes are also expressed as follows for the
purpose to expand the electronic states by Slater determinant. In the case of elliptic
potential

V (ρ,φ) = 1

2
m∗ωρ2 + 1

4
m∗ (

ω2
x − ω2

y

)
ρ2 cos(2φ) , (8.324a)

ω =
√

ω2
x + ω2

y

2
, (8.324b)

and for the triangular potential

V (ρ,φ) = 1

2
m∗ω2

0ρ
2 + 1

7
m∗ω2

0ρ
2 cos(3φ) . (8.324c)

In order to understand the peaks of the chemical potential difference in Fig. 8.69,
we first deal with the case of no Coulomb interaction in a circular disk. Then the
one–electron energy is given by

εmn = �ω0(2n + |m| + 1) (+εz) . (8.325)
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Fig. 8.71 Electronic states in a circular disk with parabolic confinement potential. The lower left
figure shows the quantized energy levels with equal spacing �ω0 and several energy states are shown
by the quantum number (n,m) in the lower right figure. The upper right figure shows the filling of
9 electrons with spin up and down, where the Coulomb interaction is neglected

Fig. 8.72 Shell structure is
shown, where the energy is
given by εnm = �ω0(2n +
|m| + 1). The filled shells are
illustrated with the spin
orientations. From this figure
the chemical potential
difference without Coulomb
interaction in a circular disk
is easily deduced, which is
shown in Fig. 8.73

Therefore the electronic states are well expressed by the quantum number (n, m).
The lower states are then expressed by (n,m) = (0, 0), (0,±1), (0,±2), (1, 0),
(0,±3), (1,±1), . . ., which are illustrated in Fig. 8.71.

In Fig. 8.72 such a shell filling is represented by using an atomic orbital model.We
may easily evaluate the difference in addition energies ΔμN as shown in Fig. 8.73,
where we find the peaks with the height of �ω0 at N=2, 4, and 6. Therefore the peaks
found by Tarucha et al. shown in Fig. 8.69 are qualitatively explained. In order to
explain the detailed features of Fig. 8.69, however, we have to take into account the
Coulomb interaction of N electrons in a disk.
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Fig. 8.73 The shell structure
of the electronic states in a
circular disk and the
chemical potential difference
is plotted as a function of
electron number, where the
Coulomb interaction is
neglected

8.8.2 Exact Diagonalization Method

It is well known that the electron–electron interaction plays an important role in
many electron system and that the energy eigenstates derived for a single electron
Hamiltonian fail in explaining various aspect of the observed features. In Sect. 8.8.1
such a single electron approximation fails in quantitative explanation of the experi-
mental data on the chemical potential change in a quantum dot. In order to analyze
a many electron system with including Coulomb interaction, we have to use many
electron wave functions. We know that Slater determinant describes the properties
of fermion system, which is written for N electrons as

∣∣1, 2, · · · , N 〉 = 1√
N !

∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN (x1)

χ1(x2) χ2(x2) · · · χN (x2)
...

...
. . .

...

χ1(xN ) χ2(xN ) · · · χN (xN )

∣∣∣∣∣∣∣∣∣
, (8.326)

where xi denotes the Cartesian coordinates r i plus spin coordinates for electron i
and is equivalently expressed as χi (xi ) = ψi (r i )|α〉 or χi (xi ) = ψi (r i )|β〉 with
one–electron eigenfunction ψi (r i ) and spin functions |α〉 and |β〉. One–electron
eigenfunction ψi (r) is given by

h0(r)ψi (r) = εiψi (r) , (8.327)

where h0(r) is one–electron Hamiltonian and εi is the eigenenergy. Using the solu-
tions of one–electron Hamiltonian h0(x), we rewrite the eigenfunction as ψiσ(x)

and the eigenenergy as εiσ , where we introduced spin quantum number σ. Then the
second quantized Hamiltonian is written as

H0 =
∑
iσ

εiσC
†
iσCiσ , (8.328)

where i is the quantum number for the spatial part of wave function and σ is the spin
quantum number.C†

iσ andCiσ represent the creation and annihilation operators of the
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electron state iσ, respectively. When 2 or more electrons are contained in a quantum
dot, we have to take into account of the electron–electron interactions, among which
Coulomb interaction plays the most important role. The Hamiltonian with Coulomb
interaction is written as

HC = 1

2

∑
i ′ j ′ j i

∑
σσ′

ui ′ j ′ j iC
†
i ′σC

†
j ′σ′C jσ′Ciσ , (8.329a)

ui ′ j ′ j i =
∫∫

ψ∗
i ′(r1)ψ∗

j ′(r2)u(r1 − r2)ψ j (r2)ψi (r1) d r1 d r2 , (8.329b)

u(r1 − r2) = e2

4πε|r1 − r2| . (8.329c)

Then the total Hamiltonian is given by

H =
∑
iσ

εiσC
†
iσCiσ + 1

2

∑
i ′ j ′ j i

∑
σσ′

ui ′ j ′ j iC
†
i ′σC

†
j ′σ′C jσ′Ciσ . (8.330)

The wave function |Ψ 〉 of N electrons in a quantum dot is expressed by a linear
combination of the orthonormal system |I 〉 (a linear combination of Slater determi-
nants)

|Ψ 〉 =
∑
I

dI |I 〉 . (8.331)

In this book the basis function of N electrons is given by

|I 〉 = |nλ1, nλ2, · · · , nλk, · · · 〉
(
nλi = 1, (i = 1, 2, · · · , N )
nλ j = 0, (λ j �= λi )

)
(8.332a)

= C†
λN
C†

λN−1
C†

λ1
|0〉 , (8.332b)

where λ1 < λ2 < · · · < λN and |0〉 is the vacuum state. Using the orthonormal
system of N particles |I 〉 we may solve the Hamiltonian matrix HI J = 〈I |H|J 〉 =
〈I |H0 + HC|J 〉 and obtain the many particle states exactly.

8.8.3 Hamiltonian for Electrons in a Quantum Dot

As described in Sect. 8.8.2, Hamiltonian for interacting electrons is given by

H =
∑
iσ

εiσC
†
iσCiσ + 1

2

∑
i ′ j ′ j i

∑
σσ′

ui ′ j ′ j iC
†
i ′σC

†
j ′σ′C jσ′Ciσ , (8.333)
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where the second term on the right hand side is the energy of Coulomb interaction.
Here we will expand the states of N electrons in terms of orthonormal sets, which is
done by using Slater determinant of N electrons. We compose Slater determinant of
N electrons by the wave functions of (8.322e) obtained for one–electron solutions
confined in the two dimensional simple harmonic type potential (ωx = ωy = ω0) in
the plane parallel to the hetero–interfaces and in the infinite potentials perpendicular
to the hetero–interfaces (z direction).

In the later section we mention the results on the disks with elliptic and triangu-
lar potentials. For this purpose we divide the potentials into two terms, circularly
symmetric and asymmetric parts, which are given for the elliptic potential

V (ρ,φ) = 1

2
m∗ω2ρ2 + 1

4
m∗(ω2

x − ω2
y)ρ

2 cos 2φ , (8.334a)

ω =
√

ω2
x + ω2

y

2
, (8.334b)

and for the triangular potential

V (ρ,φ) = 1

2
m∗ω2

0ρ
2 + 1

7
m∗ω2

0ρ
2 cos 3φ . (8.335)

Expressing the asymmetric part of the potential by V ′(r), Hamiltonian of N electrons
is given by

H =
∑
iσ

εiσC
†
iσCiσ +

∑
i ′i

∑
σ

v′
i ′iC

†
i ′σCiσ

+1

2

∑
i ′ j ′ j i

∑
σσ′

ui ′ j ′ j iC
†
i ′σC

†
j ′σ′C jσ′Ciσ , (8.336a)

ui ′ j ′ j i =
∫∫

ψ∗
i ′(r1)ψ∗

j ′(r2)u(r1 − r2)ψ j (r2)ψi (r1) d3r1 d3r2, (8.336b)

v′
i ′i =

∫
ψ∗
i ′(r)V ′(r)ψi (r) d3r , (8.336c)

where Fourier expansion of the Coulomb interaction is written as

u(r1 − r2) =
∑

Q

e2

2εQ
ei Q·(æ1−æ2)e−Q|z1−z2| . (8.337)

Inserting the one–electron wave functions of (8.322e) into (8.336b), we obtain

ui ′ j ′ j i = e2

4πε

∫ ∞

0
F(Q)gi ′i (Q)g∗

j j ′(Q) dQ × δmi+m j ,mi ′ +m j ′ , (8.338a)
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gi ′i (Q) = imi−mi ′
∫ ∞

0
ψ∗
i ′(ρ)ψi (ρ)Jmi−mi ′ (Qρ)ρ dρ , (8.338b)

F(Q) =
∫∫

|ξ(z1)|2|ξ(z2)|2e−Q|z1−z2| dz1 dz2

= 2

x2 + (2π)2

[
3

2
x + (2π)2

x
− (2π)4

x2(x2 + (2π)2)
(1 − e−x )

]
(8.338c)

x = QW ,

where Jn(x) is Bessel function and δmi+m j ,mi ′ +m j ′ of (8.338a) represents the momen-
tum conservation rule.

The asymmetric part of the elliptic confinement potential V ′(r) is written by using
(8.334a) and (8.335) as

V ′(r) = 1

4
m∗(ω2

x − ω2
y)ρ

2 cos 2φ , (8.339)

and inserting it into (8.336c)we obtain thematrix element of the asymmetric potential

v′
i ′i = 1

8
m∗(ω2

x − ω2
y)

∫
ψ∗
i ′(ρ)ψi (ρ)ρ3 dρ × (δm ′,m+2 + δm ′,m−2) . (8.340)

In the case of the triangular confinement potential, the asymmetric part is

V ′(r) = 1

7
m∗ω2

0ρ
2 cos 3φ , (8.341)

and inserting it into (8.336c) we obtain the matrix element of the asymmetric part of
potential v′

i ′i

v′
i ′i = 1

14
m∗ω2

0

∫
ψ∗
i ′(ρ)ψi (ρ)ρ3 dρ × (δm ′,m+3 + δm ′,m−3). (8.342)

In the following analysis we use a quantum dot model shown in Fig. 8.74, where
the dot is formed by AlGaAs/In0.05Ga0.95As/AlGaAs double heterostructure and
constriction in the (x, y) plane. The double heterostructure confines electrons in the
z direction with the well width W . The bird’s–eye–view of the model potential in
the (x, y) plane is calculated from (8.320) and plotted in Fig. 8.75 for the ellipsoidal
potential and in Fig. 8.76 for the triangular potential, where the equi–energy lines are
shown. The elliptic potential is obtained by putting α = 0 and ωx �= ωy in (8.320)
and the circular potential is obtained by putting ωx = ωy . The triangular potential is
shown in Fig. 8.76, where we put α = 1 and ωx = ωy in (8.320).
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Fig. 8.74 A model of a
quantum dot used for the
analysis. The dot is formed
by AlGaAs/InGaAs/AlGaAs
double heterostructure and
constricted in the (x, y)
plane by etching and gate
voltage [126]

Dot

Barrier

Barrier

n-GaAs

n-GaAs

InGaAs

x

y

z

(AlGaAs)

(AlGaAs)

Fig. 8.75 Elliptic confining
potential in the (x, y) plane
sandwiched by the double
heterostructure. The
potential is calculated by
putting α = 0 and ωx �= ωy
in (8.320). When we put
ωx = ωy , we obtain the
circular confining potential
[126]

Fig. 8.76 Triangular
confining potential in the
(x, y) plane sandwiched by
the double heterostructure.
The potential is calculated by
putting α = 1 and ωx = ωy
in (8.320) [126]

8.8.4 Diagonalization of N Electrons Hamiltonian Matrix

The wave function |Ψ 〉 of N electrons is expressed by a linear combination of
the orthonormal system, in other words N particle Slater determinant |I 〉 given by
(8.331),

|Ψ 〉 =
∑
I

dI |I 〉 . (8.343)

Here we define the difference |I − J | between Slater determinants of N electrons
|I 〉 and |J 〉 by the number of the different pairs of one–electron states.
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|I 〉 = |m1,m2, · · · ,mk, · · · 〉 , (8.344)

|J 〉 = |n1, n2, · · · , nk, · · · 〉 . (8.345)

Using the above expressions we find the following results. When mi = ni (i =
1, 2, · · · ) and thus |I 〉 = |J 〉, we obtain |I − J | = 0. When np–th and nq–th one
electron states of |I 〉 and |J 〉 are interchanged, for example,

|I 〉 = | · · · ,
np

1p, · · · ,
nq
0q , · · · 〉, |J 〉 = | · · · ,

np

0p, · · · ,
nq
1q , · · · 〉 , (8.346)

we obtain |I − J | = 1. For the purpose of further calculations we classify the matrix
elements of N electrons Hamiltonian HI J = 〈I |H|J 〉 = 〈I |H0 + V ′ + HC|J 〉 into
the following four cases by using the difference between Slater determinants |I − J |.
1. |I − J | = 0 (diagonal elements)

〈I |H0|J 〉 =
N∑
i=1

ελi , (8.347a)

〈I |V ′|J 〉 =
N∑
i=1

v′
λiλi

, (8.347b)

〈I |HC|J 〉 =
N−1∑
i=1

N∑
j=i+1

(
uλiλ jλ jλi ,−uλiλ jλiλ j δσλi σλ j

)
. (8.347c)

2. |I − J | = 1

|I 〉 = | · · · ,
np

1p, · · · ,
nq
0q , · · · 〉 ,

|J 〉 = | · · · ,
np

0p, · · · ,
nq
1q , · · · 〉 ,

(8.348a)

〈I |H0|J 〉 = 0 , (8.348b)

〈I |V ′|J 〉 = (−1)np+nqv′
qpδσpσq , (8.348c)

〈I |HC|J 〉 = (−1)np+nq
N∑
i=1

(
uqλiλi pδσpσq − uλi qλi pδσqσλi

)
. (8.348d)

3. |I − J | = 2

|I 〉 = | · · · ,
np

1p, · · · ,
nr
0r , · · · ,

nq
1q , · · · ,

ns
0s, · · · 〉 ,

|J 〉 = | · · · ,
np

0p, · · · ,
nr
1r , · · · ,

nq
0q , · · · ,

ns
1s, · · · 〉 ,

(8.349a)

〈I |H0|J 〉 = 〈I |V ′|J 〉 = 0 , (8.349b)

〈I |HC|J 〉 = (−1)np+nq+nr+ns

× (
ursqpδσpσr δσqσs − usrqpδσpσsδσqσs

)
. (8.349c)
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4. |I − J | ≥ 3

〈I |H0|J 〉 = 〈I |V ′|J 〉 = 〈I |HC|J 〉 = 0 . (8.350)

8.8.5 Electronic States in Quantum Dots

Here we will show the results calculated by means of the exact diagonalization. The
parameters of In0.05Ga0.95As such as the effective mass and dielectric constants are
estimated by extrapolating the parameters of InAs andGaAs, andwe use the effective
massm∗ = 0.065m0 and the dielectric constant ε = 12.9ε0. The confinement poten-
tial is determined so that the average value of �ωx and �ωy remains constant and we
set (�ωx + �ωy)/2 = �ω0 = 3 [meV]. The well width in the z direction is assumed
to be W = 12 [nm]. Slater determinant is composed by 20 one–electron states from
the lowest ground state to upper 20–th states. The separation of the energy levels
between the ground state and the first excited state levels due to the confinement by
the heterobarriers in the z direction estimated from (8.321) is 121 [meV], while the
energy difference between the ground state and the 20–th state is 9 [meV]. Therefore
we consider only the ground state in the z direction confinement.

First we present a comparison between the calculated results by the exact diago-
nalization method and the experimental data of Tarucha et al. for a circular quantum
dot. Figure8.77 shows the chemical potential difference ΔμN = μN+1 − μN as a
function of electron number N , where the calculated results are shown by ◦ and the
experimental data of Tarucha et al. [125] by •. Here we note again that the chemical
potential μN of a quantum dot with N electrons is defined by μN ≡ EN+1−EN where
the ground state energy of the quantum dot with N electrons is given by EN . There-
fore the chemical potential difference ΔμN is the energy required to add another

2 4 6 8 10
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N
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Fig. 8.77 The chemical potential difference ΔμN = μN+1 −μN calculated by the exact diagonal-
ization method (◦) vs. electron number N in a circular dot is compared with the experimental data
(•) of Tarucha et al. [125]. In the calculation the confinement potential by the heterointerfaces is
assumed to be �ω0 = 3meV
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1 electron to the dot and thus called charging energy. A state of a large chemical
potential differenceΔμN corresponds to a state with more stable energy. In Fig. 8.77
we find that the chemical potential differenceΔμN exhibits a large value for electron
number N = 2 and 6, and thus the states are more stable. This feature may be easily
understood from the results shown in Figs. 8.72 and 8.73, where the shell structure
is calculated in the case of no–Coulomb interaction or one–electron approximation.
As given by (8.325) the one–electron energy states are expressed by the quantum
number (m, n) or εmn = �ω0(2n + |m| + 1), and thus the energy is degenerate by
the factor 2(2n + |m| + 1) with the spin degeneracy 2. A circular quantum dot with
electrons N = 2, 6, 12, · · · exhibits closed shell structures, and the energy states
become stable, resulting in a large chemical potential difference ΔμN .

In addition to N = 2 and N = 6, we find weak peaks at N = 4 and N = 9. These
two peaks are stable a little and interpreted in the following way. Let’s consider the
case of N = 4 electrons. Two of them will occupy the lowest state and the other 2
electrons will occupy a half of the states of 2n + |m| = 1, resulting in a half–filled
shell structure. The exact diagonalization shows that the spin triplet state of the total
spins S = � (Sz = 0,±�) is the ground state. The outer shell in the quantum dot
with N = 4 electrons contains 2 electrons with the same spin orientation. This may
be explained in terms of Pauli’s exclusion principle as follows. Since the 2 electrons
with the parallel spins of the outer–shell keep away due to Pauli’s exclusion principle,
and thus the Coulomb energy becomes smaller, resulting in a stable state of the spin–
triplet state S = � (Sz = 0,±�). When the quantum dot contains 9 electrons, the
ground state is formed by the spin quadruplet state with the total spins S = 3�/2
(Sz = ±�/2,±3�/2) and a more stable state is achieved. We know that the atomic
states obey Hund’s rule. From the exact diagonalization method, a ground state of
an incomplete shell in a quantum dot is formed so that the total spin becomes a
maximum and thus quantum dot states also obey Hund’s rule [126, 127].

8.8.6 Quantum Dot States in Magnetic Field

When a magnetic field is applied in the z direction, the one–electron energy levels
of a quantum dot are given by (8.323), which are shown in Fig. 8.78(a). Since each
state is doubly degenerate with respect to spin, total number of the electrons filling
the levels at B = 0 is N = (0), 2, 6, 12, 20, · · · as discussed before. The degenerate
energy states with the same value n at B = 0 split into several levels at B �= 0 and
the energy level with the angular momentum parallel to the magnetic field (m > 0
becomes the lowest). Such a simple feature is dramatically changed when we take
Coulomb interaction into account. Here we present the results calculated by the exact
diagonalization method for electrons N = 4 in Fig. 8.78(b), where the quantum dot
model is the same as the circular dot used for the results of B = 0 and the calculated
energy levels are plotted as a function of magnetic Field B. In Fig. 8.78(b), •, � and
◦ are the states with the total angular momentum 0, ±� and ±2�, respectively. Δ

is the energy difference between the singlet and triplet states due to the exchange
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Fig. 8.78 (a)One–electron states of a quantum dot in magnetic field, where the states are doubly
degenerate with respect to spins. The state with the angular momentum parallel to the magnetic
field (m is positive) is lower than the other states with the same n. (b)Energy states in a circular dot
with 4 electrons calculated by exact diagonalization method, where •, � and ◦ are the states with
the total angular momentum 0, ±� and ±2�, respectively. Δ is the energy difference between the
singlet and triplet states due to the exchange interaction. The ground state energy of the spin triplet
S = 1 with the total angular momentum M = 0 increases with the magnetic field, while the singlet
state S = 0 with total angular momentum M = 2 decreases, and the transition of the ground state
occurs at B ≈ 0.25 [T]

interaction, which is estimated to be Δ = 0.44 [meV]. The ground state energy of
the spin triplet S = 1 with the total angular momentum M = 0 increases with the
magnetic field, while the singlet state S = 0 with total angular momentum M = 2
decreases, and the transition of the ground state occurs at B ≈ 0.25 [T]. It is also
shown by the exact diagonalization that transition of the ground state for electrons
N = 5 occurs from the state of the total angular momentum M = 1 to the state
M =4 at B ≈ 0.6 [T].

8.8.7 Electronic States in Elliptic and Triangular
Quantum Dots

As described before we may expect the chemical potential difference depends on the
structure of quantum dots, and therefore it is very interesting to show the calculated
results on elliptic and triangular quantum dots. In Fig. 8.79 the chemical potential
difference is shown as a function of electron number N in the two different elliptic
dots with (�ωx , �ωy) = (2.5meV, 3.5meV) and (�ωx , �ωy) = (2meV, 4meV) by
� and �, respectively, where the data of • are the chemical potential difference in a
circular quantum dot with �ωx = �ωy = 3meV. The well width in the z direction
is the same for the above three quantum dots and W = 12nm. We find in Fig. 8.79
that peaks except N = 6 are not well resolved compared to the case of the circular
dot. This feature is explained in terms that the degeneracy of one–electron states is
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Fig. 8.79 Calculated chemical potential difference ΔμN in two kinds of elliptic dots compared
with the results of a circular dot. � and ◦ are the results for the elliptic dots with the confinement
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Fig. 8.80 Calculated electron distributions for N = 4 in (a) the circular dot (�ω0 = 3meV) and
(b) the elliptic dot (�ωx , �ωy) = (2meV,= 4meV), where 
0 = 20nm

removed due to the weakened symmetry in elliptic quantum dots, resulting in orbits
of mixed angular momentum.

The electron distributions of (a) the circular and (b) elliptic dots in the (x, y)
plane calculated by the exact diagonalization method are shown in Fig. 8.80, where 4
electrons are contained in the circular dot (a) of �ω0 = 3meV and in the elliptic dot
(b) of (�ωx , �ωy) = (2meV, 4meV). As seen in Fig. 8.80(a) the electron distribution
in the circular dot is symmetric in the plane, while (b) in the elliptic dot the electron
distribution has double peaks along the long axis.

For comparison, calculated results of the chemical potential difference for a trian-
gular dot (•) with �ω0 = 3meV are shown together with the results for a circular dot
(�) in Fig. 8.81. We find no significant difference between the two dots in Fig. 8.81.
Here we have to note that the corners of the potential of the triangular dot used in
the calculations is smoothed, resulting in a small change in the chemical potential
difference compared to the circular dot. However, we find that the states for electrons
N = 3, 6 and 9 are stable a little compared to the circular dot. This feature may be
explained in terms of the electron distribution shown in Fig. 8.82, where the results
for N = 3 are shown in Fig. 8.82(a) for the circular dot and in Fig. 8.82(b) for the
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triangular dot and the circular dot
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Fig. 8.82 A comparison of the electron wave function distribution for electrons N = 3 in a circular
dot (left curve) and in a triangular dot (right curve), where,
0 = 20nm

triangular dot. The electron distribution of the circular dot in Fig. 8.82(a) is symmet-
ric but the central part of the distribution is low due to the Coulomb repulsion. In
the triangular dot, on the contrarily, each electron occupies the corner as shown in
Fig. 8.82(b), resulting in a little bit stable states for electrons 3, 6 and 9.

8.9 Problems

(8.1) Show that two–dimensional electron gas density of the subband Ei is given
by (8.15).

(8.2) Show the scattering rate and themobility due to acoustic deformationpotential
scattering. Calculate temperature dependence of two–dimensional electron
gas due to the scattering.

(8.3) Show the scattering rate and the mobility due to non–polar optical phonons.
Calculate temperature dependence of two–dimensional electron gas due to
the scattering.
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(8.4) Show the scattering rate and the mobility due to polar optical phonons. Cal-
culate temperature dependence of two–dimensional electron gas due to the
scattering.

(8.5) Show the scattering rate and themobility due to piezoelectric potential. Calcu-
late temperature dependence of two–dimensional electron gas due to the scat-
tering. Consider transverse acoustic waves with vt and e14 = 0.160 [C/m2].

(8.6) Show the scattering rate and the mobility due to ionized ion scattering. Cal-
culate temperature dependence of two–dimensional electron gas due to the
scattering.

(8.7) Draw the mobilities of two–dimensional electron gas due to all the scattering
processes shown above as a function of temperature using the parameters
for GaAs given in Table6.3 and assume quantum well width W = 10 nm
and optical phonon deformation potential Eop = Dac/0.4 (relation used for
electrons of Ge) and Dop = Eopω0/vs.

(8.8) Compare the calculated mobilities of two–dimensional electron gas due to
polar optical phonon scattering between the twomodels given by (8.97) (8.96)
and (8.97), changing the quantum well width W = 5, 10, 20, 50 [nm].

(8.9) Calculate the mobility of two dimensional electron gas due to the scattering
processes (1) acoustic deformation potential, (2) piezoelectric potential scat-
tering, (3) ionized impurity scattering, and (4) polar optical phonon scatter-
ing. For this purpose a simplified approximate formula given by the following
relation;

1

μ2D
= 1

μac
+ 1

μpiez
+ 1

μion
+ 1

μpop(k)
.

(8.10) In order to understand the filling factor of integral Quantum Hall effect, con-
sider the following cases. The density of Landau level is given by δ function
(eB/h)δ(E −EN ). For simplicity we assume each Landau level state is given
straight narrow bar with its areal density of (eB/h). Using this model show
the filling states for i = 1 and i = 4.

(8.11) In this chapter the electron–phonon interactions are treated as the confined
electrons (2DEG) scattered by the bulk phonons. However, phonon modes
(lattice vibrations) are also affected by the confinement. Comment on this
interactions.
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Chapter 9
Light Emission and Laser

Abstract In this chapter, physics of luminescence and laser oscillations are treated
in detail. First the definition of Einstein coefficients is introduced to connect absorp-
tion with spontaneous emission and stimulated emission. Then the spontaneous and
stimulated emission rates are derived from the perturbation theory. Absorption and
emission rates are strongly affected by the density of states, The density of states in
the presence of impurities are shown to result in the band tail effect, where Kane’s
model is used. Using these results the gain of laser oscillations are discussed. The
results are also used to explain various types of luminescence. Since semiconductor
lasers are fabricated in heterostructures and light emission is confined by the het-
erointerfaces, we discuss optical wave guide analysis to reveal the importance of
double heterostructure. Mode analysis of the waveguide is given in detail to explain
TE and TMmodes and confinement factor, in addition to Fabry–Perot analysis. Since
most of the laser diodes (LDs) are fabricated in quantum well structures, confine-
ments of electrons in the conduction band and holes in the valence bands play an
important role in the laser mode and the gain. In order to obtain the quantized states
in valence bands, we show how to solve 6×6 Luttinger Hamiltonian including strain
effect. Final part of this chapter is devoted to the physics of GaN based lasers, where
we show the strain effect plays an important role in the laser oscillations. Here we
present how to deal with the energy band structure and Luttinger Hamiltonian in
wurtzite crystals.

In Chaps. 4 and 5 we dealt with optical properties of semiconductors, where electron
transition induced by absorbing photon plays the most important role. It is also
possible for an electron to make transition from a higher energy state to a lower
energy state by emitting a photon. In other words electrons recombine with holes
by emitting light. The latter process gives rise to a light emission (luminescence)
and laser action, and provides well known devices such as light emitting diode
(LED) and laser diode (LD). In this chapter we deal with light emission from
semiconductors and laser diodes. Firstwedealwith spontaneous emission, stimulated
emission and absorption, where spontaneous emission is related to luminescence and
stimulated emission plays the most important role in the laser action.
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Fig. 9.1 Three optical
processes of radiation
proposed by Einstein:
spontaneous emission,
absorption and stimulated
emission

9.1 Einstein Coefficients A and B

Einstein proposed the optical processes of absorption, spontaneous emission and
stimulated emission in 1917.1 In the paper Einstein dealt with emission and absorp-
tion of light and pointed out for the first time the concept of stimulated emission.
We know that the basic mechanism of the laser action comes from the stimulated
emission, but the discovery of lasers was accomplished after his death. The con-
cept proposed by Einstein explains not only the principle on laser action but also
the optical processes of absorption and emission. Here we will describe Einstein’s
theory first and then derive so called Einstein coefficients A and B. We consider an
interaction between radiation field (light or photon) and N atoms or molecules in a
cavity, where the atoms or molecules have energy levels E1 and E2, and we assume
that the atoms or molecules are allowed to make transition between the two levels
by absorbing or emitting the photon energy given by

�ω = E2 − E1 , (9.1)

where the atomic energies are degenerate with the degeneracy g1 and g2, and the
number of atoms or molecules are N1 and N2, respectively. The system is shown
schematically in Fig. 9.1.

The average density of radiation field W (ω) depends on the thermal equilibrium
value WT(ω) and the external excitation WE(ω), and is given by the following relation

W (ω) = WT(ω) + WE(ω) . (9.2)

Here we have to note that WE(ω) is not uniform in the cavity in general case.
Emission and absorption of photon are defined in the following way. We define

transition rate of an atom from the energy level 2 to the energy level 1 by A21. An atom
of the energy level 1 is not possible to make a transition to the energy level 2 without
radiation field, because the energy conservation is not fulfilled in the transition.
However, the transition 1 → 2 is possible by absorbing a photon �ω. We define

1A. Einstein: “Zur Quantentheorie der Strahlung,” Phys. Z. 18, 121 (1917), The title in English is
“On the Quantum Theory of Radiation”.
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the transition rate 1 → 2 by B12 in the presence of photon field with the radiation
density W (ω). These two processes are easily understood, but careful consideration
is required for the transition from the upper level 2 to the lower level 1 in the presence
of the radiation W (ω). It is easily expected that the transition 2 → 1 is enhanced in
the presence of the radiation field. This transition enhanced by the radiation is called
stimulated emission and the rate is defined by B21. These three transition processes
are schematically shown in Fig. 9.1. These optical processes were defined by Einstein
in 1917, and the coefficients A21, B12 and B21 are called Einstein coefficients. We
have to note here that the Einstein coefficients A21, B12 and B21 are independent of
the radiation density W (ω). In the above case absorption and stimulated emission are
assumed to be proportional to the radiation density W (ω). This assumption is valid
when the radiation density is a slowly varying function of transition frequency ω.
The transition A21 is called spontaneous emission and independent of the radiation
density.

The occupation densities N1 of the level 1 and N2 of the levels 2 are governed by
the following rate equation,

dN1

dt
= −dN2

dt
= N2 A21 − N1B12W (ω) + N2B21W (ω) . (9.3)

In order to investigate the relations between theEinstein coefficients, firstwe consider
the case of thermal equilibrium. In the thermal equilibrium the distribution densities
of the two levels are constant and then (9.3) leads to the following relation,

N2 A21 − N1B12WT (ω) + N2B21WT (ω) = 0 . (9.4)

This results in

WT (ω) = A21

(N1/N2)B12 − B21
. (9.5)

In the thermal equilibrium, the occupation densities of N1 and N2 are given by
Boltzmann statistics,

N1

N2
= g1 exp(−βE1)

g2 exp(−βE2) = g1

g2
exp(β�ω) , (9.6)

where β = 1/kBT . Using this relation (9.5) is rewritten as

WT (ω) = A21

(g1/g2) exp(β�ω)B12 − B21
, (9.7)

where g1 and g2 represent the degeneracy of the states. We have to note here that
the above equation is derived by using Boltzmann statistics and that the result of
Einstein theory is easily proved to be consistent with Planck’s radiation theory. From
the theory of Planck, the radiation density is given by
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WT (ω)dω = n̄�ωρωdω = n̄�ω3

π2c3
dω = �ω3

π2c3
dω

exp(β�ω) − 1
, (9.8)

where n̄ is the occupation density of photons. Equation (9.7) should coincide with
(9.8), which is validated by the following equations,

g1

g2
B12 = B21 , (9.9)

�ω3

π2c3
B21 = A21 , (9.10)

where the above relations should hold at all temperature range. From these con-
siderations we find that the three Einstein coefficients are related by the above two
equations. In addition it is evident from (9.7) that Einstein theory with stimulated
emission term is equivalent with Planck’s radiation theory. When g1 = g2, we obtain
the following relation

B12 = B21 . (9.11)

9.2 Spontaneous Emission and Stimulated Emission

As shown later, laser oscillations in semiconductors are induced by a strong emission
by recombination. Recombination emissions consists of two terms, spontaneous
emission and stimulated emission. Among them, stimulated emission plays the
most important role in the laser oscillations in semiconductors. Here we deal with
the recombination emissions in semiconductors in detail.

First, we consider the case shown in Fig. 9.2, where excited electrons in the
conduction band recombine with the holes in the valence band by emitting light.
Figure9.2 shows a process that an electron in a valence band makes a transition
by absorb a light, and the reverse process that the excited electron recombine
with the hole by emitting a light. Here the reverse process has two distinct emis-
sion processes, spontaneous and stimulated emissions. Before dealing with these

Fig. 9.2 Optical absorption and recombination emission
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processes by quantum mechanics, we will briefly mention how to excite electrons
from the valence bands to the conduction band. When we create electron–hole pairs
in a semiconductor by light incidence, the resulting recombination emission is called
photoluminescence. In the case where an electric field excites electron–hole pairs or
the electric field injects electrons and holes in p–n junction, the resulting light emis-
sion is called electro-luminescence. Sometimes electron beams are used to excite
electron–hole pairs, and the light emission is called cathode luminescence. Light
emitting diode (LED) and laser diode (LD) are excited by electron–hole injection.
Also we have to note that excited electrons or holes recombine by absorbing or emit-
ting phonons (lattice vibrations), and thus no photons are emitted. This process is
called non-radiative recombination.

Let’s discuss the excitation of electrons of E1 in the valence band into the con-
duction band E2 by incident photon and light emission by recombination as shown
in Fig. 9.2. The rate of photon emission in the energy space dE per unit time and unit
solid angle Ω is given by the following relation according to Lasher and Stern [1]

r(E)dE(dΩ/4π) = [rspon(E) + nphotonrstim(E)
]
dE(dΩ/4π) , (9.12)

where nphoton is the photon numbers per mode given for thermal equilibrium by

n0 = 1

exp(E/kBT ) − 1
, (9.13)

kB is Boltzmann’s constant and T is the absolute temperature. In (9.12) the term
rspon(E) represents the spontaneous transition of electrons from the upper level to the
lower level and, nphotonrstim is the difference between the upward transition (absorp-
tion) and stimulated downward transition. For band–to–band transition the sponta-
neous and stimulated emission rates are given by [6, 9] (see also Appendix G for
the derivation)

rspon(E)dE =
∑ nre2E

πε0m2�2c3
|M |2 f2(1 − f1)dE , (9.14)

rstim(E)dE =
∑ nre2E

πε0m2�2c3
|M |2( f2 − f1)dE , (9.15)

where the factor ( f2− f1) of (9.15) is derived from the net rate of stimulated transition
between the downward factor f2(1− f1) and the upward factor f1(1− f2); f2(1− f1)−
f1(1− f2) = ( f2− f1). Here f2 and f1 are the electron occupation probabilities of the
upper and lower levels, respectively, and nr is the refractive index. The summation

∑

is taken over all pairs of states in the conduction and valence bands per unit volume
whose energy difference is dE and E + dE . The squared momentum matrix element
|M |2 is defined in Chap.4 and for the purpose of simplicity we assume the value
averaged over the all polarizations of the incident light as

http://dx.doi.org/10.1007/978-3-319-66860-4_4
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|M |2 = 1

3

(|Mx |2 + |My|2 + |Mz|2
)

, (9.16a)

Mx = −i�
〈
ψ2

∣∣exp(ik · r) ∂

∂x

∣∣ψ1
〉
, (9.16b)

where |ψ1〉 and |ψ2〉 are the lower and higher bands wave functions, respectively. As
stated in Chap.4, for band–to–band transition the electron wave vectors k2 and k1,
and photon wave vector k are governed by the conservation rule δ(k2 − k1 ± k).
Since photon wave vector k is negligibly small, we can use the relation k2 = k1.2

When the upper and lower energy bands E2 and E1 are expressed by the functions
of k = |k2| = |k1|, the density of states for the band–to–band transition (reduced
density of states) ρred is easily evaluated. Then the transition rates for photon energy
E are given by

rspon(E) = nre2E
πε0m2�2c3

|M |2ρred(E) f2(1 − f1) , (9.17)

rstim(E) = nre2E
πε0m2�2c3

|M |2ρred(E)( f2 − f1) , (9.18)

where the reduced density of states for the band–to–band transition is given by for
one direction of spin

ρred(E) = 1

(2π2)
k2 d(E2 − E1)

dk
. (9.19)

From the energy conservation we have E2 − E1 = E , and thus we can define the
following relation,

Rspon =
∫

rspon(E)dE . (9.20)

The above equation is evaluated in the three extreme cases by Lasher and Stern [1].

(1) In the case of degenerate valence band, we can put f1 = 0 for all transitions.

Rspon = 2nre2E
πε0m2�2c3

〈|Mb|2〉av
[(

1 + me

mhh

)−3/2

+
(
1 + me

m lh

)−3/2
]

n , (9.21)

wheren is the electrondensity, and 〈|Mb|2〉av is the averagematrix element connecting
states near the band edges.

(2) In the case of non-degenerate conduction and valence bands

Rspon = nre2E
πε0m2�2c3

(
2π�

2

mkBT

)3/2

〈|Mb|2〉av

× [m lh/(me + m lh)]
3/2 + [mhh/(me + mhh)]

3/2

(m lh/m)3/2 + (mhh/m)3/2
(9.22)

2As described later this assumption is not valid for the transition including the band tail sates.

http://dx.doi.org/10.1007/978-3-319-66860-4_4
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(3) In the case where the matrix elements are all the same for all the transitions
(no–selection rule case), the following general equation is derived from (9.14) and
(9.15).

rspon(E) = B
∫

ρc(E ′)ρv(E ′ − E) fc(E ′)
[
1 − fv(E ′ − E)

]
dE ′ , (9.23)

rstim(E) = B
∫

ρc(E ′)ρv(E ′ − E)
[

fc(E ′) − fv(E ′ − E)
]
dE ′ , (9.24)

E = �ω, E ′ = E2 = E1 + E = E1 + �ω , (9.25)

where ρc and ρv are the density of states of the conduction and valence bands with
two spin directions, respectively. For the valence bands the heavy hole and light
hole bands should be taken into account. These relations are valid for large amounts
of electron and hole injection and the conservation of energies is assumed but the
conservation of wave vectors is not included. As mentioned later, the conservation
of wave vectors is not required for the transitions including the band tail states,
and thus the above equations may be used. For the transitions with the wave vector
conservation we have to use the following relations.

E1 = Ev − mμ

mh
(�ω − EG) , (9.26)

E2 = Ec + mμ

me
(�ω − EG) , (9.27)

1

mred
= 1

me
+ 1

mh
. (9.28)

The coefficient B is given by

B = nre2E
πε0m2�2c3

〈|M |2〉avV , (9.29)

where 〈|M |2〉av is the average value of the squared matrix element over spins in the
upper and lower bands, and V is the crystal volume.

Total rate of spontaneous emission is easily evaluated if the selection rule is
disregarded and then we obtain the following relation by carrying integration over
the conduction and valence bands..

Rspon = Bnp , (9.30)

where n and p are the injected electron and hole densities. The total rateRspon is the
spontaneous emission rate per unit volume and the dimension is m3/sec.

Distribution functions of the upper E2 (conduction band) and the lower E1 (valence
band) states are given by the following relations by using quasi–Fermi level EFn in
the conduction band and quasi–Fermi level EFp in the valence band,
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f2 = 1

1 + exp[(E2 − EFn)/kBT ] , (9.31)

f1 = 1

1 + exp[(E1 − EFp)/kBT ] . (9.32)

Using these equations in (9.14) and (9.15), we obtain the following relation,

rstim(E) = rspon(E) {1 − exp[(E − ΔEF)/kBT ]} , (9.33)

where ΔEF = EFn − EFp is the difference of the quasi–Fermi energies and becomes
0 in the thermal equilibrium.

Stimulated emission rstim is related to the absorption coefficient α(E) defined in
Chap.4 and given by

α(E) = −π2c2�3

n2
r E2

rstim(E) , (9.34)

where − sign is used to express that the stimulated emission rstim(E) has an opposite
sign compared to the absorption coefficient α(E). Equation (9.34) is easily derived
from (G.14) and (9.18). When we put g(�ω) = −α(�ω) for the semiconductor laser
gain,

g(�ω) = −α(�ω) = π2c2�3

n2
r (�ω)2

rstim(�ω)

= πe2

nrcε0m2ω
|M |2 ( f2 − f1)ρred(�ω) . (9.35)

Here we find that the gain is positive (g > 0) when f2 − f1 > 0, which means that
the population in the upper level f2 is higher than the lower level f1. This condition
is called population inversion.

We show in Figs. 9.3 and 9.4 the calculated results of inversion factor f2 − f1 and
gain factor ( f2− f1)ρred, respectively, as a function of the emitted photon energy �ω,
where we used (9.26)∼ (9.28), (9.31), and (9.32), withme = 0.068m,mh = 0.59m,
EG = 1.43eV, and T = 300K. The injected electrons and holes are estimated
by choosing proper values of the quasi–Fermi levels. The curves of the inversion
factors in Fig. 9.3 correspond to the quasi–Fermi levels, EFn − Ec = Ev − EFp =
−20, −10, 0, +5, +10, +15, +20 meV from the bottom to the upper curves. The
gain factors ( f2− f1)ρred in Fig. 9.4 are estimated by assuming EFn−Ec = Ev−EFp =
−20, −15, −10, −5, 0, 5, 10, 15, 20 meV from the bottom to the upper curves.
We see in Figs. 9.3 and 9.4 that the inversion factor and the gain factor become
positive near the band edge for higher injection levels.

From the results we may write

rspon(E) = 4ε0n2
r E2

πc2�3
α(E)

1

exp[(E − ΔEF)/kBT ] − 1
. (9.36)

http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 9.3 Inversion factor
f2 − f1 of pn junction is
plotted as a function of
emitted photon energy,
where the curves are
obtained by putting
EFn − Ec = Ev − EFp =
−20, −10, 0, +5, +10,
+15,+20 meV from the
bottom to the upper curves.
me = 0.068m, mh = 0.59m,
EG = 1.43eV, and
T = 300K

Fig. 9.4 The gain factor
( f2 − f1)ρred is plotted as a
function of emitted photon
energy, where the curves are
obtained by putting
EFn − Ec = Ev − EFp =
−20, −15, −10, −5, 0, 5,
10, 15, 20 meV.
me = 0.068m, mh = 0.59m,
EG = 1.43eV, and
T = 300K

Summarizing these results the laser gain due to the stimulated emission is equivalent
to the negative absorption coefficient and given by

g(ω) = πc2�3

4ε0n2
r (�ω)2

rstim(ω)

= πc2�3

4ε0n2
r (�ω)2

rspon(ω)

{
1 − exp

[
�ω − ΔEF

kBT

]}
. (9.37)

The above equation expresses the laser action. The gain g is positive (g > 0) for
�ω > ΔEF = (EFn −EFp). On the other hand, for �ω < ΔEF the gain is negative and
light absorption occurs.

Spontaneous and stimulated emission rates of GaAs calculated for no–selection
rule case from (9.23) and (9.24) are shown in Fig. 9.5, where the parabolic energy
bands are assumed and temperature is T = 80 K. In the calculations quasi–Fermi
levels are assumed to be 11.8 meV for holes, and 5 meV and 15 meV for electrons.
The coefficient C for GaAs is estimated from (9.38) and (9.40) [1], which is given
by
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Fig. 9.5 Spontaneous
emission rate rspon and
stimulated emission rate rstim
are calculated from (9.23)
and (9.24) for GaAs
assuming parabolic energy
bands at 80K, where the
quasi–Fermi levels are 11.8
meV for holes, and 5 and
15meV for electrons.
Coefficient C is for GaAs
and defined by (9.38) and
(9.40) [1]

C = 128

3π3�2me4c3
· m1/2

c m3/2
v m

m∗3 · EG + Δ

EG + (2/3)Δ
nrEEGκ3 . (9.38)

Using the values EG = 1.521 eV,mc = 0.072m, E = 1.47 eV,Δ = 0.33 eV, nr = 3.6,
and κ = 12.5, we obtain

B = 0.75 × 10−9cm2/sec, (9.39)

C = 2.6 × 1023cm−3 sec−1meV−3 . (9.40)

9.3 Band Tail Effect

In the previous section we are concerned with the emission rates in semiconductors
with parabolic bands, and assumed that no electronic states in the band gap. In such
a case distributions of electrons and holes are schematically shown as in Fig. 9.6.

However, Kane [2] pointed out that the electronic states are deformed by the
potential due to impurities (cluster of impurities). Taking account of the Thomas–
Fermi screening (see Sect. 6.3.10) by electrons and assuming Gaussian distribution
for the potential fluctuations, the density of states is approximated as

ρc(E ′) = m3/2
c

π2�3
(2ηc)

1/2y

(E ′ − Ec
ηc

)
, (9.41)

where mc is the electron effective mass and Ec is the conduction band bottom energy
obtained without the impurity potentials. Putting E ′ − Ec = E and x = E/ηc the
function y(x) is written as

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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Fig. 9.6 Electron and hole distribution in parabolic bands, a thermal equilibrium, b population
inversion at T = 0 K, and c population inversion at T > 0 K

y(x) = 1

π1/2

∫ x

−∞
(x − z)1/2 exp(−z2)dz . (9.42)

Here ηc represents the extension of the band tail, and

ηc = e2

4πκε
(4πNDLscr)

1/2 , (9.43)

where κε0 is the dielectric constant, ND is the donor density and Lscr is the screening
length, defined by 1/qs in Sect. 6.3.10 (see (6.277) or (6.279)). The fluctuation of
the potentials results in a Gaussian type modification of the band edge and gives rise
to extended electronic states in the band gap. This band states are called band tail
states and the effect is referred to as band tail effect. The same effect is expected
in the valence band. When both of the conduction and valence bands are affected
by such potential fluctuations, the donor density N+

D in (9.43) is replaced as ND →
N+
D + N−

A , where N+
D is the ionized donor density and N+

A is the ionized acceptor
density. Figure9.7 shows a comparison between the density of stateswith the band tail
effect, (9.42), and the density of states for the parabolic band y(x) = √

x without
the band tail effect. It is clear from (9.42) that ρ ∝ E1/2 at higher energies and
ρ ∝ exp(−E2/η2

c ) at lower energies.
Here we will summarize the theory of band tail effect proposed by Kane [2].

Hamiltonian of an electron is written as

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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Fig. 9.7 Band edge states
with the band tail effect y(x)

of (9.42) is compared with
the parabolic band states
given by y(x) = √

x

H = H0 + HI , (9.44)

H0 = − �
2

2m∗ ∇2 , (9.45)

HI =
∑

i

v(r − r i ) , (9.46)

v(r) = − e2

4πκε0r
exp

(
− r

Lscr

)
, (9.47)

where H0 is the unperturbed Hamiltonian of a perfect single crystal with the effective
mass m∗ and the dielectric constant κε0, and perturbation HI arises from randomly
distributed impurities over lattice sites r i . The potential energy of an impurity v(r)

is screened by electrons with the density n, and the screening length Lscr = (1/qs)

is given by (6.273) as shown in Sect. 6.3.10,

1

Lscr
=
√

e2

κε0

∂n

∂EF . (9.48)

As described in Sect. 6.3.10, the screening length in a degenerate semiconductors is
given by Thomas–Fermi screening length, (6.277),

1

Lscr
=
√

3e2n

2κε0EF ≡ qTF , (9.49)

or in a non-degenerate semiconductor the screening length is given byDebye–Huckel
screening length, (6.279),

1

Lscr
=
√

e2n

κε0kBT
≡ qDH . (9.50)

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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We define the potential distribution function, F(V), by

Δp = F(V)ΔV , (9.51)

where Δp is the probability of finding the potential between V and V + ΔV . The
total density of states is given by

ρ(E) =
√
2m∗3/2V

π2�3

∫ E

−∞
(E − V)1/2F(V)dV . (9.52)

Assuming Gaussian distribution of the impurities, Kane [2] derived

F(V) = 1√
πη

exp

(
−V2

η2

)
, (9.53a)

η = e2

4πκε0
(4πnLscr)

1/2 , (9.53b)

where η has been defined by (9.43), and

∫
v2(r)d3r = 2πe4

(4πκε0)2
Lscr (9.54)

for the screened Coulomb potential. Substituting (9.53a) into (9.52), Kane derived
(9.41) for the density of states with the band tail effect.

Distributions of the electron and hole densities with the band tail effect are shown
in Fig. 9.8. Spontaneous emission spectra rspon calculated by Stern [3] with the band
tail effect are shown as a function of photon energy in Fig. 9.9, where the arrows are
the peak positions of −α(E). The spectra are calculated for the gain g = 100 cm−1.

The gain g vs. current density in GaAs is shown in Fig. 9.10, where curves are
plotted for several temperatures, and the donor and acceptor densities are ND =
1× 1018 and NA = 4× 1018 cm−3, respectively. The solid and dashed curves are the

Fig. 9.8 Electron and hole
distribution in the
conduction band and valence
band, where the band tail
effect is included
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Fig. 9.9 The calculated
spontaneous emission
spectra in GaAs with
ND = 3 × 1018cm−3 and
NA = 6 × 1018cm−3 at
several temperatures. The
arrows show the peak
positions of −α(E). (from
Sterm [3])

Fig. 9.10 The gain g is
plotted as a function of
injected current density in
GaAs with donor density
ND = 1 × 1018 and acceptor
density NA = 4 × 1018

cm−3. The solid and dashed
curves are calculated with
and without the band tail
effect, respectively. (from
Stern [3])

gains with and without the band tail effect, respectively. In Fig. 9.11, current density
required to get the gain g = 100cm−1 is plotted as a function of temperature for
different impurity densities, where NA − ND = 3 × 1018 cm−3 and donor densities
ND = 3 × 1017, 3 × 1018, 1.0 × 1019, 3 × 1019 cm−3.

Semiconductor laser diodes consist of highly doped pn junctions and thus the band
tail effect plays an important role in the laser action. In such a case the momentum
(wave vector) conservation rule is not fulfilled, and thus the laser gain is calculated
by taking account of the density of states with the band tail effect and the energy
conservation rule. We will discuss laser oscillations in Sect. 9.4 in connection with
luminescence and detailed mechanisms in Sect. 9.5. The difference between LDs
(Laser Diodes) and LEDs (Light Emitting Diodes) is the line width of the emission
spectra. The spectral line shapes of LDs are very narrow with high output but LEDs
exhibit wide line width. In the next section we deal with the emission of LDs and
LEDs in various materials and discuss the mechanisms of the luminescence.
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Fig. 9.11 Injected current
density required to get gain
g = 100cm−1is plotted as a
function of temperature for
GaAs with the impurity
density NA − ND = 3× 1018

cm−3. (from Stern [3])

9.4 Luminescence

Excited electrons and holes in semiconductors recombine to emit photons. This
process is called luminescence. The excitations (pumping) by light (photons), cath-
ode ray (electronbeams) and electron–hole injectionby forward current in pn junction
are called, respectively, photoluminescence, cathode luminescence, and electro–
luminescence. Luminescence in semiconductors is based on the light emission due to
the recombination of excited electrons and holes. Various mechanisms are involved
in the recombination processes, in which the direct recombination of electrons and
holes in direct gap semiconductors play the most important role. In indirect semi-
conductors the recombination involves phonon emission or absorption and thus the
intensity is veryweak. Luminescence is also induced by othermechanisms such as (1)
recombination of excited electrons in the conduction band with the holes trapped in
acceptors, (2) recombination of trapped electrons in donors with holes in the valence
band, (3) recombination of the pair states of donor and acceptor, and so on. At low
temperatures an electron bound to a donor attracts an hole and forms an electron–
hole pair (exciton) bound at a donor (DX pair) which dissociates to emit light. In
addition isoelectronic traps in GaP such as GaP:N results in strong light emission
in indirect semiconductors. In this section we will concern with the mechanisms of
luminescence in semiconductors. See the review articles of Bebb and Williams [4],
Williams and Bebb [5], and Holonyak and Lee [6] for the details of the theories and
experiments on luminescence.

9.4.1 Luminescence Due to Band to Band Transition

In semiconductors without the band tail effect luminescence is governed by band to
band transition, and the luminescence intensity I is proportional to the spontaneous
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Fig. 9.12 Calculated
luminescence spectra for the
band to band transition in
GaAs in GaAs, where the
distribution function of the
excited electrons is assumed
to be given by Boltzmann
distribution function and the
temperature dependence of
the band gap is taken
account.
EG(300K) = 1.43eV at
T = 300K and
EG(77K) = 1.50eV at
T = 77K

emission rate rspon, which is given by the following relation with the emitted photon
energy �ω from (9.17),

I (�ω) ∝ rspon ∝ √�ω − EG exp

(
−�ω − EG

kBT

)
, (9.55)

where the excited electron density is approximated by Boltzmann distribution f2 ∼=
exp (−�ω/kBT ) and the hole distribution function is assumed tobe f1 ∼= 1.Using this
relation calculated luminescence spectra are shown inFig. 9.12,where the normalized
intensities at T = 300K and T = 77K are compared in GaAs. In Fig. 9.12 the
temperature dependence of the band gap is taken into account; EG(300K) = 1.43eV
at T = 300K and EG(77K) = 1.50eV at T = 77K. We see in the figure that the
band width of the luminescence becomes narrower at lower temperatures.

9.4.2 Luminescence Due to Excitons

Wediscussed in Sect. 4.5 excitons in an direct band gap semiconductor and in indirect
band gap semiconductor. Luminescence is the reverse process of the absorption.

9.4.2.1 (1) Luminescence Due to Free Excitons

In Sect. 4.5 we discussed Coulomb interaction of an electron–hole pair (exciton) by
solving Hamiltonian, and the exciton state is described by the bound state with the
dissociation energy Ex/n2, n = 1, 2, 3, . . . ) and the continuum state with the center
of mass motion. These excitons are possible to move freely in the crystal (called
free excitons) and are distinguished from the excitons bound to donors or accep-

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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tors, bound excitons, which will be discussed later. From the analogy to hydrogen
atom model, using the Bohr radius of an exciton ax = (m/μ)(ε/ε0)aB and the
exciton reduced mass 1/μ = 1/me + 1/mh, we obtain Ex = (μ/m)(ε0/ε)

2EH =
(μe4)/[2(4πε)2�2], and the absorption coefficient of the exciton is given by (see
Sect. 4.5).

α(�ω) ∝ 1

(�ω − EG + Ex)2 + Γ 2
, (9.56)

where the dielectric function of the exciton is approximated by Lorentzian. Therefore
the luminescence intensity has a peak around the energy Ex below the band edge.
The luminescence near the band edge is modified by the factor exp(−�ω/kBT ) and
the peak position is shifted to the lower energy side by kBT . Therefore it is very
difficult to determine the energy gap exactly from the luminescence spectrum. The
luminescence spectrum of the free exciton is given by

I (�ω) ∝ 1

(�ω − EG + Ex)2 + Γ 2
exp [−(�ω − EG + Ex)/kBT ] , (9.57)

where Γ is the broadening energy.

9.4.2.2 (2) Luminescence Due to Indirect Excitons

The locations of the conduction band bottom and valence band top in a indirect gap
semiconductor are different in the k space, such as in GaP. As described in Sec. 4.5
light absorption occurs accompanying absorption or emission of a phonon. Since
various types of phonons are involved in the absorption, complicated structures of the
absorption spectra are observed. The absorption coefficient due to indirect excitons
is expressed as follows (see Sec. 4.5.2)

α(�ω) ∝ [�ω − EG ∓ �ωα
q + Ex/n2

]1/2
, (9.58)

where �ωα
q is the phonon energy involved in the absorption and ∓ corresponds to

absorption and emission of a phonon. Therefore luminescence involving phonon
emission appears below the band gap energy and is well resolved. Thus the lumines-
cence spectrum is given by

I (�ω) ∝ [�ω − EG + �ωα
q + Ex/n2

]1/2

× exp
[−(�ω − EG + �ωα

q + Ex/n2)/kBT
]

. (9.59)

Comparing with (9.59) with (9.55) we find the line shape of the photoluminescence
due to the indirect exciton is similar to the line shape of the direct band to band
transition. From these considerations the luminescence spectrum due to indirect
exciton accompanies well resolved phonon peaks.

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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9.4.2.3 (3) Luminescence Due to Excitons Bound to Impurities

The state in which an electron and a hole are bound to an impurity is called bound
exciton and the energy state depends on the mass ratio of an electron and a hole,
σ = me/mh. See the references for the detailed analysis of the bound excitons. Here
we summarize the luminescence due to the bound excitons.

The bound state of the exciton–ionized donor (an exciton bound to an ionized
donor) is expressed as

(D+, x), ⊕ − +, or D+e h . (9.60)

The exciton bound to ionized acceptor is expressed by

(A−, x), � + −, or A−e h , (9.61)

where other symbols are also used in papers reported so far. The exciton bound to a
neutral donor consists of a neutral donor D0, two electrons −− and a hole +, and
expressed as

(D0, x), ⊕ − − + or D+e e h . (9.62)

The exciton bound to a neutral acceptor is shown by

(A0, x), � + + − or A−h h e . (9.63)

The emitted photon energy due to the dissociation of the exciton complex in GaAs
is written as [7]

�ω(D0, x) = EG − Ex − 0.13ED , (9.64a)

�ω(D+, x) = EG − ED − 0.06ED , (9.64b)

�ω(A0, x) = EG − Ex − 0.0.07EA , (9.64c)

�ω(A−, x) = EG − EA − 0.4EA . (9.64d)

9.4.2.4 (4) Luminescence Due to Donor–Acceptor Pairs

A donor and an acceptor occupy different sites of the lattices. In the case where the
wave functions of the donor and the acceptor overlap, the donor ion D+, the acceptor
ion A−, an electron − and a hole + compose a complex state, and luminescence due
to the dissociation of the complex is observed. Such a complex is written as

(D0,A0), (D+A−, x), ⊕ � − + D+A− e h . (9.65)
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This type of a complex is called an exciton bound to donor–acceptor pair D+A− and
the bound energy depends on the distance between the donor D+ and the acceptor
A−.

9.4.2.5 (5) Exciton Molecules

Another important example of complexes is excitonmolecules (exciton–exciton com-
plex) which is expressed as

(x x), + + −−, or h h e e . (9.66)

The excitation energy of an exciton is given by

E(x) = EG − Ex . (9.67)

Letting the interaction energy of two excitons D0, the excitation energy of two exci-
tons is approximated as 2E(x) − D0. Therefore we obtain the following relation for
the excitation energy of an exciton molecule,

E(x1 x2) = E(x1) + E(x2) − D0 . (9.68)

When an exciton molecule dissociates, one of the exciton of the molecule dissociates
and leaves a free exciton of the energy E(x2) and a photon �ω. Since the final state of
the energy �ω + E(x2) is equivalent to the initial state E(x x), the following relation
is obtained,

�ω = E(x1) − D0 ≡ EG − Ex − D0 , (9.69)

where the crystal still has the energy E(x2) and thus emits the second photon of
energy �ω′ = EG − Ex.

9.4.3 Luminescence via Impurities

The luminescence via impurities plays an important role in the recombination in semi-
conductors. Here wewill deal with the basic mechanisms of luminescence associated
with impurities. See the papers by Dumke [8] and Eagles [9] for the theoretical treat-
ments. These two papers are based on different expressions of the wave functions
of the impurity states, but the obtained results are the same. We will describe the
method of Dumke in detail and briefly refer the result of Eagles.

For simplicity, we calculate the recombination rate between a hole bound to the
ground state of an acceptor and an electron in the conduction band. It is apparent
that the recombination rate between an electron bound to a donor and a hole in



566 9 Light Emission and Laser

the valence band as seen from the following treatment. The wave function (envelop
function) F(r) of a particle bound to an impurity ion is given by the effective mass
approximation,

[
− �

2

2m∗ ∇2 − e2

4πκε0r
− E

]
F(r) = 0 . (9.70)

Since a hole near the valence band edge k ∼= 0 is captured by an acceptor, the wave
function may be expressed by the envelop function given by the above equation.
Therefore the wave function of a hole captured by an acceptor is given by the product
of the Bloch function Ψv,k(r) = eik·ruv,k(r) and the envelop function F(r). In other
words,

ΨA(r) = uv,k(r)eik·r F(r) ∼= uv,0(r)F(r) (9.71)

The eigenvalue of the resulting effective mass equation is given by

En = − m∗e4

2(4πκε0)2�2
· 1

n2
, n = 1, 2, . . . , (9.72)

and the eigenfunction of the ground state (n = 1) is written as

F1(r) =
√

1

πa3
A

e−r/aA (9.73)

aA = 4π�
2κε0

m∗e2
. (9.74)

Using these results the momentum matrix element for the transition of the electron
in the conduction band to the acceptor is obtained as follows.

Here we will present the calculations of the momentum matrix element proposed
by Dumke [4, 8]. The momentum matrix element is written as

(e · p)cA = 〈c, k|e · p|A〉 =
∫

e−ik·ruc,k(e · p)ΨA(r)d3r , (9.75)

where e is the unit vector of the light polarization and p is the momentum operator.
The calculation of the above momentum matrix element is carried out by operating
p = −i�∇ to ΨA(r) and the following two terms appear.

(e · p)cA =
∫

e−ik·r F(r)
[
uc,k(r)(e · p)uv,0(r)

]
d3r

+
∫

e−ikr [(e · p)F(r)
]

uc,k(r)uv,0(r)d3r . (9.76)

The above integration is not easy, but may be carried out under the following assump-
tion. When the functions F(r) and e−ik·r are assumed to change slowly compared
to the period of the Bloch function u(r + Rm) = u(r), the integral is replaced by
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the summation of the unit cells Ω;
∫ →∑

Rm

∫
ω . The slowly varying function F(r)

may be assumed to be constant within a unit cell and approximated by the value at
the center of the unit cell F(Rm). Thus we obtain

Ω
∑

Rm

e−ik·Rm F(Rm)
1

Ω

∫

Ω

uc,k(r)(e · p)uv,0(r)d3r

+Ω
∑

Rm

e−ik·Rm [(e · p)F(r)]Rm

1

Ω

∫

Ω

uc,k(r)uv,0(r)d3r . (9.77)

The second term of the above equation vanishes due the orthogonality of the Bloch
functions. The summation of the first term may be transformed into an integral form
by using an approximation

Ωe−ik·Rm F(Rm) =
∫

Ω

e−ik·Rm F(Rm)d3r �
∫

Ω

e−ik·r F(r)d3r , (9.78)

and therefore the summation over the unit cells is rewritten by the integral over the
crystal volume V

∑

Rm

Ωe−ik·Rm F(Rm) �
∫

V
e−ik·r F(r)d3r . (9.79)

The momentum matrix element of (9.76) is thus given by

(e · p)c,A = 〈c, k|e · p|A〉 =
∫

e−ik·r F(r)d3r · pcv ≡ a(k) · pcv , (9.80a)

where

pcv(k) = 1

Ω

∫

Ω

uc,k(r)(e · p)uv,0(r)d3r . (9.80b)

Since the matrix element pcv(k) varies very slowly with the k value, we use the value
at the band edge pcv(0)

pcv(0) = 1

Ω

∫

Ω

uc,0(r)(e · p)vv,0(r)d3r . (9.80c)

The integral of a(k) is evaluated to obtain

a(k) =
∫

e−ik·r F(r)d3r

= 1

(πa3
A)1/2

∫
e−ikr cos θe−r/aAr2 sin θdθdφdr

= 8
(
πa3

A

)1/2
[
1 + (kaA)2

]2 . (9.81)
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Eagles expressed the wave function of the impurity by a linear combination of
Bloch functions [9] and the shallow impurity state by using the valence band wave
functions, and obtained the same results of Dumke described above.

Using the momentum matrix element for a bulk crystal Mcv(≡ pcv), the squared
matrix element of an electron transition between the conduction band and the acceptor
level is given by

〈|M |2〉av = 〈|Mb|2〉av 1
V

64
(
πa3

A

)

[
1 + (kaA)2

]4 , (9.82)

where V is the volume of the crystal. 〈|Mcv|2〉av is the average matrix element con-
necting bulk states near the band edges and given by the following relation using the
interband matrix element P defined in Chap.2

〈|Mcv|2〉av = m2P2

6�2
� m2

12m∗
e

EG (EG + Δ0)

EG + 2Δ0/3
, (9.83)

wherem∗
e is the band edge effectivemass of the conduction band and given by (2.158).

The above relation is easily deduced from the wave functions of the heavy and light
hole bands given by (2.63a), (2.63b), (2.63e), (2.63f) and P = (�/m)〈S|pz|Z〉 =
(�/m)P0, and the conduction band wave function |S〉.3

3The term m2P2/6�
2 of (9.83) should be replaced by 4m2P2/3�

2, when we take the heavy and
light hole bands into account and neglect the spin–orbit split–off band. For spin orientation | ↑〉,
we obtain

〈
S
∣∣
∣px

∣∣
∣
3

2
,
3

2

〉2
=
〈
S
∣∣
∣py

∣∣
∣
3

2
,
3

2

〉2
= 1

2

m2

�2
P2 ,

〈
S
∣
∣∣px

∣
∣∣
3

2
,−1

2

〉2
=
〈
S
∣
∣∣py

∣
∣∣
3

2
,−1

2

〉2
= 1

6

m2

�2
P2 ,

〈
S
∣
∣∣pz

∣
∣∣
3

2
,
1

2

〉2
= 4

6

m2

�2
P2 .

Then we find the momentum matrix element for spin orientation | ↑〉

|Mx |2 =
〈
S
∣
∣∣px

∣
∣∣
3

2
,
3

2

〉2
+
〈
S
∣
∣∣px

∣
∣∣
3

2
,−1

2

〉2
=
(
1

2
+ 1

6

)
m2

�2
P2 .

Summing up all the components and multiplying by 2 of spin degeneracy, we obtain

〈|Mb|2〉av = 2

3

(
|Mx |2 + |My |2 + |Mz |2

)
= 4m2P2

3�2
,

where we used the following definitions,

〈S|px |X〉2 = 〈S|py |Y 〉2 = 〈S|pz |Z〉2 = m2

�2
P2 .

.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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When the overlapping of the acceptor wave functions is negligible, then the spon-
taneous emission rate is obtained from (G.28) of Appendix G

rspon(�ω) = nre2�ω

πε0m2�2c3
∑

k

NA〈|Mb|2〉av 64
(
πa3

A

)

[
1 + (kaA)2

]4

×δ
[Ec(k) − (Ev,0 + EA) − �ω

]
f (E2)[1 − f (E1)] , (9.84)

where NA is the density of the acceptors, and f (E2) and f (E1) are the occupation
functions of the electrons in the conduction band and the acceptor level, respectively.
Similar expression is obtained for the transition of electron from the donor state to
the valence band.

From the above considerations the luminescence intensity due to the transition of
the electrons in the conduction band to the acceptor level is given by the following
relation

I (�ω) ∝ rspon ∝ √�ω − EG + EA exp

(
−�ω − EG + EA

kBT

)
, (9.85)

which is quite similar to the band to band transition of (9.55), and the luminescence
peak shifts to the lower energy site by EA compared to the band to band transition. The
luminescence line shape is expected to be similar to Fig. 9.12. Photoluminescence
spectra ofGaAs:Cd (Cd dopedGaAs) are comparedwith (9.85) at T = 20Kand 80K
in Fig. 9.13, where we find the luminescence peak appears at EG −EA but strong tails
are observed at the lower energy side. Since the acceptor density is NA = 4 × 1016

cm−3, the band tail effect of the conduction band is negligible and thus the tails of the
luminescence is ascribed to the excitons bound to acceptors (an electron is bound to
an acceptor capturing a hole). Assuming the band gap EG = 1.521eV at T = 20K,
the binding energy of the acceptor is EA = 34.5meV. The band gap at T = 80K is
estimated as EG(T = 80) = 1.512eV.

Fig. 9.13 Experimental data
of photoluminescence from
Cd doped GaAs (GaAs:Cd)
at T = 20K and 80K are
compared with (9.85). ◦ and
• are for the sample 1 at
T = 20 and T = 80K,
respectively, and � are for
the sample 2 at T = 20K.
(after Williams and Webb
[10])
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9.4.4 Luminescence in GaP and GaAsP via N Traps

It iswell known that the bottomsof the conduction bands ofGaP andGaAsxP1−x (x ≥
0.47) are located near the X point in the Brillouin zone, and therefore optical tran-
sition is indirect with emission or absorption of phonons. However, strong lumines-
cence is observed in nitrogen (N) doped samples. Here we explain themechanisms of
the luminescence due to N levels. For more detailed treatments see the review paper
by Holonyak and Lee [6] and references cited in the text. LED (Light–Emitting
Diode) based on GaAsxP1−x crystals are now commercially popular devices. Suc-
cess of suchLEDs are due to the following two factors. One is the uniquemechanisms
of the luminescence and the other is the crystal growth technologies of GaAsxP1−x

on large GaP or GaAs substrates utilizing open–tube vapor–phase–epitaxy (VPE)
by transport of AsH3-PH3. The luminescence of GaAsxP1−x in the direct transition
region x ≤ 0.46 (T = 77K); x ≤ 0.49 (300K) is quite similar to GaAs and in the
region of direct–indirect transition the luminescence is ruled by the emission via the
X conduction band with the large effective mass and the donor level associated with
the X conduction band. In the indirect transition region of GaAsxP1−x (x ≥ 0.46)
the luminescence is dominated by the isoelectronic N level.

Nitrogen (N) atoms doped in GaP and GaAsxP1−x substitute phosphorous (P)
atoms. The N atoms are electronically equivalent to P atoms and thus called isoelec-
tronic traps. The electronegativity of N is larger than P. Lattices surrounding doped
N atoms relax and the negativity of N atom is reduced but electrons are localized
around the N atoms. It is known that the potential on N atom is different from the
Coulomb potential of usual donors screened up to several atomic distance and that
the potential attracts an electron toward the central part (central cell potential). The
dissociation energy of a trapped electron at N atom in GaP is quite small and is
estimated to be about 10meV. Since the electron is captured by the N trap, the wave
function ψ is expected to be spread in k space as shown in Fig. 9.14 from the uncer-
tainty principle and strong luminescence similar to the direct transition is observed
although GaP is an indirect transition semiconductor. Experimental data indicate
that the wave function at k = 0 of the electron trapped at N is about 100 times of
the wave function of the electron bound to a regular donor. In addition the wave
function of an electron captured by the N trap overlaps with a hole wave function
at k = 0 (Γ point), resulting in a formation of an exciton, and luminescence due
to the exciton is observed. When we increase doping of N atoms in GaP, NN pairs
are formed. The nearest neighbor pair is expressed by NN1 (NN2, NN3, . . . are the
second, the third, . . . nearest pairs). As shown in Fig. 9.15, luminescence of NN1

and NN3 pairs are observed and such a pair luminescence is distinguished from the
luminescence due to the isolated N atoms (NX and A–B line). The series of N pairs
NN1, NN2, . . ., NN10 are resolved by the fluorescence (photoluminescence) spec-
troscopy [12, 13]. In GaAsxP1−x (x ∼= 0.28) overlapped luminescence of NX and of
the EΓ band is observed.

A typical example of the experimental results of luminescence of excitons trapped
at N isoelectronic traps is shown in Fig. 9.16. The energy gap of GaP is EG(T =
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Fig. 9.14 Band structure ofGaP:N,where the shaded region represents the amplitude of the electron
wave function ψN(k) bound to the isoelectronic N trap and has large amplitudes near the X and Γ

points reflecting the respective conduction band minima. The binding energy of the N trap is about
10meV and the potential is localized near the N atom (broadened in the k space), the wave function
ψN(k) has a large amplitude near the region k = 0, resulting in a strong quasi–direct transition.
(Figure after Holonyak and Lee [6])

Fig. 9.15 The energy levels
of the Γ conduction band, X
conduction band, and N and
NN pairs in N–doped
GaAsxP1−x at 77K. NΓ is
the donor level (x ≤ 0.55)
associated with the Γ

conduction band. NN1 and
NN3 pairs are
experimentally resolved for
x ≥ 0.90, but in the other
region observed as a broad
NX level. Such a broad
luminescence in GaP:N is
called A–line. (Figure after
Holonyak and Lee [6])

0K) = E(X) − E(Γ ) = 2.339 eV. The peaks of A and B are the no–phonon lines of
the excitons bound to N atoms (N and NN pairs) and phonon lines are well resolved.
Figure9.17 shows photoluminescence spectra of GaAsxP1−x (x = 0.34):N+, ND =
1.8 × 1017 cm−3, where N+ means heavy doping of N atoms (� 1019 cm−3). In the
region of weak excitation (500W/cm2), luminescence from the Γ conduction band
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Fig. 9.16 Photoluminescence
of excitons trapped at N
isoelectronic traps in GaP.
The peaks A and B are
no–phonon lines. T = 4.2K
and N = 5 × 1016 cm−3.
The energy gap of GaP
EG(T = 0K) = E(X)−E(Γ )

= 2.339 eV. [Dean [11]]

Fig. 9.17 Photoluminescence
spectra of
GaAsxP1−x (x = 0.34):N+,
ND = 1.8 × 1017 cm−3. In a
low excitation (500W/cm2),
the band to band transition
associated with the Γ

conduction band and
emission from the NX level
are well resolved. Increasing
the excitation power the
emission of the band to band
dominates the emission of
NX level. For excitation
power of 7 × 104W/cm2

laser oscillations of NX level
are observed, where the
shaded region consists of 10
lines of laser oscillations.
(After Holonyak and Lee [6])

and from NX is well resolved. Increasing the excitation power luminescence from
the Γ conduction band dominates the luminescence from NX level. For excitation
power 7 × 104 W/cm2, laser oscillations from NX level are observed. The shaded
region consists of well resolved 10 lines of laser oscillations.

Luminescence of p–type GaAsxP1−x (x = 0.34):N+:Zn is shown in Fig. 9.18,
where luminescence from N doped GaAsP substrate is shown by the dashed curve.
Luminescence from a p–type substrate with additional doping by Zn exhibit an
emission peak from NX at 29 meV lower than the emission peak of NX in n–type
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Fig. 9.18 Luminescence spectra of p–type GaAsxP1−x (x = 0.34):N+:Zn, ND = 1.8×1017 cm−3.
For low excitation (500W/cm2), the band to band transition associated with the Γ conduction band
and emission from the NX level are well resolved. Increasing the excitation power the emission of
the band to band dominates the emission of NX level. For excitation power 8 × 104 W/cm2 laser
oscillations of NX level are observed, where the dashed curve shows the luminescence from the
p–type GaAsxP1−x (x = 0.34):N+ in Fig. 9.17 and Zn doped p type GaAsxP1−x (x = 0.34):N+:Zn
exhibits luminescence peak 29meV lower than the substrate without Zn doping. (After Holonyak
and Lee [6])

GaAsP:N+. This emission peak is ascribed to the recombination of the electrons
captured by NX with the holes captured at Zn acceptors.

In GaAs doped with Zn and O, oxygen O behaves as a donor and Zn as a shallow
acceptor. When these two dopants occupy the nearest lattice sites, a pair of Zn·O
is formed. Electrons far from the pair see an electronically neutral complex, but for
an electron close to the pair the electronegativity of O is larger than Zn. Therefore
O atom forms electron trap of binding energy about 0.3eV. When an electron is
captured by the Zn·O complex, the complex is negatively charged and the resulting
Coulomb potential attracts a hole, forming an exciton. The photoluminescence due to
the recombination of the electron–hole pair exhibits a peak at about 1.8eV, emitting
red light.
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9.4.5 Luminescence from GaInNAs

In recent years GaInNAs (called gainnas) has attracted considerable attention as a
material for near infrared light emitting devices. In direct transition semiconductor
Ga1−x InxNyAs1−y , nitrogen atom N with low composition y < 0.01 acts as an
impurity. In the range y ∼ 1%, however, the distortion of the lattices surrounding
the N atom and its electronegativity deform the energy bands of the host crystal
and the bottom of the conduction band is lowered considerably. Therefore the wave
length of the near infrared light emission can be changed by introducing a small
amount of N impurity into GaInAs. From these reasons GaInNAs is believed to be
one of the best candidates for tuning the wave length in the near infrared region and
interesting results have been reported. [14] ∼ [15]

The effect of nitrogen (N) atom is explained with the help of Fig. 9.15. Impurity
level of nitrogen (N) of GaAs1−xPx is located in the Γ conduction band for the
composition x ≤ 0.2 [16]. In such a case a strong interaction between the N level
and the electrons in theΓ conduction band results in a deformation of the conduction
band. In other words, the interaction between N impurity level and the conduction
band gives rise to a band–crossing as shown in Fig. 9.19 and the conduction band
bottom shifts to the lower energy side. The band anti-crossing model was proposed
by Shan et al. [17] and shown below.

Let the conduction band ofGaInNAsEM(k), and assume the nitrogen levelwithout
interaction EN. These energy levels are measured from the top of the valence band.
When an interaction between these two levels, the conduction band is perturbed.
Assuming the interaction energy between the two levels as VMN, the energy levels
are obtained by solving the following eigenvalue equation.

∣∣∣∣
EM − E VMN

VMN EN − E
∣∣∣∣ = 0 . (9.86)

Fig. 9.19 Anti-crossing
model for
Ga0.96In0.04As0.99N0.01induced
by the interaction between
the Γ conduction band and
the N level located in the
conduction band. The arrows
are the optical transitions
observed by experiments.
([17, 18])
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Fig. 9.20 Pressure dependence of the optical transition energies to the E± levels in
Ga0.95In0.05As0.988N0.012. The solid curves are calculated by (9.86), � and � are the experimental
data obtained by photoreflectance. The calculated curves are obtained by taking account of the
pressure dependence of Γ and the X conduction bands, and NX level shown in the figure. ([17])

The interaction energyVMN gives rise to themixing of the two levels and anti-crossing
of the two levels occurs. The eigenvalues of (9.86) are given by

E±(k) = 1

2

(
EN + EM(k) ±

√
[EN + EM(k)]2 + 4V 2

MN

)
. (9.87)

The calculated results are shown in Fig. 9.19, where we assumed EN=1.65 eV,
VMN=0.27 eV, and EM=1.3 eV for the conduction band edge without interaction mea-
sured from the top of the valence band. This figure well explains the band–crossing
effect in GaInNAs and the experimental results reported so far on optical absorption,
ellipsometry and modulation spectroscopy are well explained. Figure9.20 shows a
comparison of the calculated results with the pressure dependence of the conduction
band edge measured from the top of the valence band obtained by photoreflectance
measurements, where we find a good agreement with each other. The calculations
basedon theband–crossingmodel are carriedout using (9.87)with themeasuredpres-
sure dependence of the conduction band edge andN level forGa0.95In0.05N0.012As0.988

EM = 1.35 + 0.1P [eV] , (9.88a)

EN = 1.65 + 0.0015P [eV] , (9.88b)

VMN = 0.2 eV , (9.88c)

where the hydrostatic pressure P is expressed in units of [Gpa]. In Fig. 9.20 the
pressure dependences of the Γ conduction band bottom EΓ

M and the X conduction
band bottom E X

M and the N level EN are also shown. From a comparison between the
experimental and calculated results the interaction energy VMN of Ga1−x InxNyAs1−y

varies from VMN=0.12 eV for x = 0.009 to 0.4 eV for x = 0.023.
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Fig. 9.21 Emission spectra
of representative Light
Emitting Diodes (LED)

9.4.6 Light Emitting Diodes (LEDs) in Visible Region

Commercially available LEDs cover visible light range using various combinations
of compound semiconductors and doping technologies. Also laser diodes (LDs) are
produced. The LEDs and LDs consist of pn junctions and the stimulated emission
due to the recombination of injected electrons and holes into the junction region play
an important role in the laser oscillations. Changing the composition x of GaAs1−xPx

and doping N, Zn, O, and so on, LEDs and LDs of the red light region are fabricated.
Here we will show emission spectra of typical light emitting diodes in Fig. 9.21.

9.5 Heterostructure Optical Waveguide

Semiconductor laser oscillations were first observed by Nathan et al. [19], Hall et al.
[20], and by Quist et al. [21] in GaAs p–n junctions in 1962. Also visible stimulated
emission from GaAs1−xPx was reported by Holonyak and Bevacqua [22] in 1962.
Such laser diodes (Laser Diodes: LDs) were fabricated in the form of pn junctions
with bulkmaterials, where electrons and holes are injected into the pn junction region
and electron–hole recombination results in stimulated emission. The spectrum has
a very sharp peak much narrower compared with LED and the output power is
very high. Later, double heterostructures were proposed by Hayashi et al. [23] using
AlGaAs/GaAs/AlGaAs, where the active region of GaAs layer is sandwiched by the
barrier layers of AlGaAs. The double heterostructure laser diode is schematically
illustrated in Fig. 9.22; (a) the energy band structure under the thermal equilibrium,
(b) injection of electrons from n–AlGaAs and holes from p–AlGaAs into the active
GaAs region under the forward bias, (c) the distribution of the refractive indices,
and (d) the confinement of the emitted light. The double heterostructure confines
emitted light in the GaAs layer in addition to the confinement of electrons and holes
in the active region. Therefore very high efficiency of laser emission is achieved.
Since then double heterostructure laser diodes (DH–LDs) became very popular and
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Fig. 9.22 Double heterostructure semiconductor laser diode (DH–LD) of AlGaAs/GaAs/AlGaAs.
a Thermal equilibrium of double heterostructure, b carrier injection under forward bias V , c refrac-
tive index n in the direction perpendicular to the heterointerface, and c confinement of the laser
emission

thus all the LDs used in various applications are fabricated in the form of DH–LDs.
Another approach was made to decrease the depth of the active region, resulting in
a formation of quantum well, which is called quantum well laser diode (QW–LD).
Here we deal with optical waveguide, and discuss optical confinement, propagation
and gain in double heterostructures.

9.5.1 Wave Equations for Planar Waveguide

In Chap.4 we derived the optical absorption coefficient by solving Maxwell’s equa-
tions. In this section we present the analysis of optical wave guide to be applied to
laser diodes (see Textbook by Suhara [24] for detailed treatments). First we deal with
a sandwiched structure by the planes of different refractive indices, where we neglect
the quantum confinement of electrons and holes which will be discussed in the later

http://dx.doi.org/10.1007/978-3-319-66860-4_4
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section. Consider a waveguide shown in Fig. 9.23 with distribution of the refractive
indices n(r). Dielectric constant is related to refractive index by ε/ε0 = n2. Let the
refractive index of the core (guiding) region nG sandwiched by the upper cladding
layer of nUC, and the lower cladding layer of nLC. The width of the core region is d.
In the planar waveguide shown in Fig. 9.23 we may write the dielectric constant as

κ(z) = [n(z)]2 , (9.89)

where n(z) is the refractive index. Maxwell’s equations are

∇ × H = ε
∂E
∂t

+ σE , (9.90a)

∇ × E = −μ
∂H
∂t

, (9.90b)

∇ · (εE) = 0 , (9.90c)

∇ · (μH) = 0 . (9.90d)

We assume plane waves for the electric field E and magnetic field H with the time
dependence exp(−iωt), and the wave guide is lossless (σ = 0). Using the vector
formula

∇ × ∇ × E = ∇(∇ · E) − ∇2E , (9.91)

the wave equation for the electric field E is written as

∇2E + ω2εμE = ∇
(
E

∇ε

ε

)
. (9.92)

In a similar fashion replacing the electric field E of (9.91) by the magnetic field H ,
and using (9.90a) and (9.90b), the following equation is derived for the wave function
of the magnetic field H .

∇2H + ω2εμH = ∇ε

ε
× (∇ × H) . (9.93)

For simplicity we assume the refractive index ni within the core (guiding) and
cladding layers is uniform, and then the right hand sides of (9.92) and (9.93) become
0. Therefore we obtain the following wave equations

∇2E + ω2εμE = 0 , (9.94a)

∇2H + ω2εμH = 0 . (9.94b)

Let the propagation direction of the light along the y axis as shown in Fig. 9.23, and
electric and magnetic fields propagate along the y axis with the form ∝ exp[i(βy −
ωt)], whereβ is called as propagation constant. Then thewave functions arewritten
as
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Fig. 9.23 Parallel waveguide structure with step–refractive index used for the analysis of optical
waveguide

E(x, y, z) = E(x, z) exp(iβy) (9.95a)

H(x, y, z) = H(x, z) exp(iβy) (9.95b)

Inserting (9.95a) into (9.94a) and approximating ∇κ(z) ∼= 0, (in a similar fashion
for H)

[∇2
⊥ + {k2

0κ(z) − β2
}]

E(x, z) = 0 . (9.96)

Here we defined the wavenumber k0

k0 = ω
√

ε0μ0 = ω

c
, (9.97)

where c is the light velocity in free space.4 In (9.96) we used∇2
⊥ = ∂2/∂x2+∂2/∂z2.

In the present analysis we assume the magnetic permeability is the value of the
vacuum, μ = μ0. When the wave E(x, z) is finite near the middle of the planes and
approaches 0 far from the center (z → ∞ in the case of Fig. 9.23), the waves are
confined and thus are called “guided modes”. The guided modes consist of finite
number of the solutions with discrete propagation constants. On the other hand,
when E(x, z) diverges for z → ∞, the waves radiate outward the center of the
guide and thus the waves are called “radiation modes”. In this textbook we define
the propagation constant

β = ñk0 , (9.98a)

n2 = ε(z)/ε0 = κ(z) , (9.98b)

where ñ is called the effective refractive index ormode refractive index.
Since the electric and magnetic fields in the waveguide shown in Fig. 9.23 are

independent in the x direction, we put ∂/∂x = 0, the other components of the

4In Chap.4 we defined the extinction coefficient by k0 which is the imaginary part of the complex
refractive index. Note the difference of k0 used here from the extinction coefficient.

http://dx.doi.org/10.1007/978-3-319-66860-4_4
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electric and magnetic waves are obtained by solving Maxwell’s equations (9.90a)
(putting σ = 0) and (9.90b) as follows.5

∂Hz

∂y
− ∂Hy

∂z
= iβHz − ∂Hy

∂z
= −iωεEx , (9.99a)

∂Hx

∂z
− ∂Hz

∂x
= ∂Hx

∂z
= −iωεEy , (9.99b)

∂Hy

∂x
− ∂Hx

∂y
= −∂Hx

∂y
= −iβHx = −iωεEz , (9.99c)

∂Ez

∂y
− ∂Ey

∂z
= iβEz − ∂Ey

∂z
= iωμ0Hx , (9.99d)

∂Ex

∂z
− ∂Ez

∂x
= ∂Ex

∂z
= iωμ0Hy , (9.99e)

∂Ey

∂x
− ∂Ex

∂y
= −∂Ex

∂y
= −iβEx = iωμ0Hz , (9.99f)

We find from (9.99a) ∼ (9.99f) the two solutions as follows.

9.5.1.1 (1) TE Modes

Putting Hx = 0 in (9.99b) and (9.99c), we find Ey = Ez = 0 and thus Hy and Hz

are written as

Hz = − β

ωμ0
Ex , Hy = − i

ωμ0

∂Ex

∂z
(9.100)

Since the electric filed vector has the component Ex only and is perpendicular to the
propagation direction y, the electromagnetic waves are called transverse electric
modes (TE modes). Inserting (9.100) into (9.99a) we obtain the wave equation for
the electric field

∂2Ex

∂z2
+ [k2

0n(z)2 − β2]Ex = 0 . (9.101)

TE modes are well expressed by

TE modes: E = (Ex , 0, 0), H = (0, Hy, Hz) .

5Equation (9.90a) may be rewritten in vector components as
(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
× (iHx + jHy + kHz) = ε

∂

∂t
(iEx + jEy + kHz)

and similarly for (9.90b). Putting ∂/∂x = 0 and ∂/∂y = iβ, and equating the same components of
the left and right hands we obtain (9.99a) ∼ (9.99f).
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9.5.1.2 (2) TM Modes

On the other hand, when we put Ex = 0 in (9.99e) and (9.99f), we obtain Hy =
Hz = 0, giving rise to the following results

Ez = β

ωε
Hx , Ey = i

ωε

∂Hx

∂z
. (9.102)

Since themagnetic field vector has the component Hx only and is perpendicular to the
propagation direction y, the electromagnetic waves are called transverse magnetic
modes (TM modes). The wave equation for the magnetic field Hy is obtained by
inserting (9.102) into (9.99d)

n(z)2
∂

∂z

(
n(z)−2 ∂Hx

∂x

)
+ [k2

0n(z)2 − β2
]

Hx = 0 . (9.103)

TM modes are well expressed by

TM modes: E = (0, Ey, Ez), H = (Hx , 0, 0) .

In the following we will discuss wave propagation of TE and TM modes in the
waveguide shown in Fig. 9.23. The refractive index distribution n(z) in Fig. 9.23 as

n(z) =
⎧
⎨

⎩

nUC (z > d/2)
nG (−d/2 < z < d/2) nG > nUC, nLC

nLC (z < −d/2)
(9.104)

When the refractive indices are uniform in each region, the wave equations (9.101)
for TE modes and (9.103) for TM modes are the same in the form. We define the
following coefficients using β = ñk0,

γUC = k0(ñ
2 − n2

UC)1/2 (9.105a)

κG = k0(n
2
G − ñ2)1/2 (9.105b)

γLC = k0(ñ
2 − n2

UL)
1/2 (9.105c)

where ñ is effective refractive index and determined from the boundary conditions
as discussed later.

Since we are interested in the wave functions confined mostly in the guiding layer
and decays in the cladding layers at x → ±∞, the solutions of the wave equations
(9.101) and (9.103) may be Ex (z), Hx (z) ∝ exp(±iκz) (∝ cos(z) or ∝ sin(z)) in
the guiding layer and ∝ exp(±γz) in the cladding layers. For such guiding modes, κ
and γ should be real and thus the following relation holds for the refractive indices,

nUC, nLC < ñ < nG . (9.106)
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9.5.2 Transverse Electric Modes

Using the wave equations derived above, we drive the solutions of the guided TE
modes,

Ex (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

EUC exp

[
−γUC

(
z − d

2

)]
(z > d/2)

EG cos

[
κG

(
z − d

2

)
+ ΦUC

]
(−d/2 < z < d/2)

ELC exp

[
+γLC

(
z + d

2

)]
(z < −d/2)

(9.107)

The other components Hy and Hz are obtained from (9.100). From the boundary
conditions and continuities of Ex and dEx/dz we may correlate the coefficients
introduced in (9.107). The boundary conditions at z = ±d/2 give

κGd − ΦUC − ΦLC = mπ (m = 0, 1, 2, . . .) , (9.108a)

ΦUC = tan−1

(
γUC

κG

)
, ΦLC = tan−1

(
γLC

κG

)
, (9.108b)

EUC = EG cos(ΦUC), ELC = (−1)m EG cos(ΦLC) . (9.108c)

The power flow in the y direction Py per unit width along the x direction is calculated
from the real part of Poynting vector P = (1/2)E × H∗ as

Py = β

2ωμ0

∫
E2

x (z)dz = ñ

4

(
ε0

μ0

)1/2

E2
Gdeff , (9.109)

where

deff = d + 1

γUC
+ 1

γLC
. (9.110)

In the case of symmetric waveguides with nUC = nLC = nC we obtain the
following solutions from (9.107)

Ex (z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

EG cos(ΦC) exp

[
−γC

(
z − d

2

)]
(z > d/2)

EG cos
(
κGz − mπ

2

)
(|z| < d/2)

(−1)m EG cos(ΦC) exp

[
+γC

(
z + d

2

)]
(z < −d/2)

(9.111)
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where

κGd − 2ΦC = mπ , ΦC = tan−1

(
γC

κG

)
, (9.112)

and note here that Ex (z) is symmetric with respect to z for even m and antisymmetric
for oddm. Therefore thewave functions are call evenmodes for even numberm = 0,
2, 4, . . ., and odd modes for odd number m = 1, 3, 5, . . .. These waves are named
as TE0, TE1, TE2, . . ..

9.5.3 Transverse Magnetic Modes

In a similar fashion the wave equation for the transverse magnetic modes is solved,
and we obtain expressions quite similar to the transverse electric modes.

Hx (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

HUC exp

[
−γUC

(
z − d

2

)]
(z > d/2)

HG cos

[
κG

(
z − d

2

)
+ ΦUC

]
(−d/2 < z < d/2)

HLC exp

[
+γLC

(
z + d

2

)]
(z < −d/2)

(9.113)

The other components Ey and Ez are obtained from (9.102). From the boundary con-
ditions and continuities of Hx (z) and n−2dHx/dz we may correlate the coefficients
introduced in (9.113). The boundary conditions at z = ±d/2 give

κGd − ΦUC − ΦLC = mπ (m = 0, 1, 2, . . .) , (9.114)

ΦUC = tan−1

[(
nG

nUC

)2 (γUC

κG

)]

, (9.115)

ΦLC = tan−1

[(
nG

nLC

)2 (γLC

κG

)]

, (9.116)

HUC = HG cos(ΦUC), HLC = (−1)m HG cos(ΦLC) . (9.117)

The power flow in the y direction Py per unit width along the x direction is

Py = 2β

ωε0

∫
H 2

x (z)

n2
dz = ñ

4

(
μ0

ε0

)1/2

H 2
Gdeff , (9.118)
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where

deff = d + 1

γUCqUC
+ 1

γLCqLC
, (9.119a)

qUC =
(

ñ

nG

)2

+
(

ñ

nUC

)2

− 1 , (9.119b)

qLC =
(

ñ

nG

)2

+
(

ñ

nLC

)2

− 1 . (9.119c)

In the case of symmetric waveguides with nUC = nLC = nC we obtain the
following solutions from (9.113)

Hx (z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

HG cos(ΦC) exp

[
−γC

(
z − d

2

)]
(z > d/2)

HG cos
(
κGz − mπ

2

)
(|z| < d/2)

(−1)m HG cos(ΦC) exp

[
+γC

(
z + d

2

)]
(z < −d/2)

(9.120)

where

κGd − 2ΦC = mπ , ΦC = tan−1

[(
nG

nC

)2 ( γC

κG

)]

, (9.121)

The electric field distributions of TE modes calculated from (9.111) are plotted
in Fig. 9.24, where we put the refractive indices as nG = 3.5 and nC = 3.3. Here we
have to note that the effective refractive index ñ depends on the mode number and
thus we have to determine it by solving (9.112), and we find ñ = 3.47808, 3.41418,
and 3.32125 for the modes m = 0, 1, and 2. In the figure we find that the fields

Fig. 9.24 Electric field
distribution of the TE mode
in a parallel waveguide
structure with step–refractive
index nG = 3.5 and
nC = 3.3. The effective
refractive index is evaluated
to be ñ = 3.47808, 3.41418,
and 3.32125 for TE0, TE1,
and TE2. (see text)
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are confined in the guiding layer and decay exponentially for |x | > d/2 and that m
represents the number of nodes.

9.5.4 Effective Refractive Index

Here we will show how to obtain the effective refractive index ñ numerically. First,
we define

Vd = k0d(n2
G − n2

LC)1/2 = ω

c
d(n2

G − n2
LC)1/2 (9.122)

where Vd is called the normalized frequency. The degree of asymmetry of the upper
and lower cladding layers is defined by

aTE = n2
LC − n2

UC

n2
G − n2

LC

. (9.123)

We define another parameter for the effective refractive index

b = ñ2 − n2
UC

n2
G − n2

LC

. (9.124)

Using these parameters we rewrite (9.108a) ∼ (9.108c) as

V (1 − b)1/2 − tan−1

(
b

1 − b

)1/2

− tan−1

(
a + b

1 − b

)1/2

= mπ , (9.125)

where Vd and aTE are simplified as V and a.
In a symmetric waveguide putting nUC = nLC = nC and thus a = 0, we obtain

the following relation.

V (1 − b)1/2 − 2 tan−1

(
b

1 − b

)1/2

= mπ , (9.126)

or

tan

(
1

2
V

√
1 − b − m

π

2

)
=

√
b√

1 − b
. (9.127)

Equations (9.126) and (9.127) are transcendental and give no analytical solutions.
We present numerical solutions in Fig. 9.25. As shown in Fig. 9.25 the number of
guided modes increases with increasing the normalized frequency V or the guiding
layer thickness d. In the region of V < π only the lowest mode m = 0 is excited
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Fig. 9.25 Normalized
effective refractive index
b = (ñ2 − n2

C)/(n2
G − n2

C) is
plotted as a function of
normalized frequency

V = k0d
√

n2
G − n2

C for
m = 0, 1, 2, and 3, in a
planar waveguide

and the mode is called the fundamental mode. Such a waveguide is referred to as
a single–mode waveguide. In the region V > π higher modes m = 1, 2, 3, . . .

are excited and such a waveguide is called a multimode waveguide. The effective
refractive index ñ of each mode increases monotonically with increasing V . On the
other hand when V is decreased, b approaches 0 and we find ñ = nC, resulting in no
mode confinement. Therefore the electromagnetic field propagate uniformly without
decaying. This condition is called the cutoff. The cutoff frequency of the mth mode
is given by

V cutoff
m = mπ tan−1(

√
a) . (9.128)

In a symmetrical waveguide we have a = 0 and V cutoff
0 = 0. From these considera-

tions the single–mode waveguide is achieved under the condition

tan−1 √
a < V < π + tan−1 √

a , (9.129)

or in a symmetrical waveguide 0 < V < π.

In the case of ñ < nC, we find γC = ik0
√

n2
C − ñ2 from (9.105a), and thus the

electric field in the clad layers is given by∝ exp[i|γC|(|x |−d/2)]. Such electromag-
netic waves propagate in the clad layers without decaying, and are called radiative
modes with the propagation coefficient |β| continuous in the range |β| < nCk0.

9.5.5 Confinement Factor

The electromagnetic field of the guided mode is distributed not only in the guiding
(active) layer but also in the cladding layers and thus the gain of the guided mode
strongly depend on the power distribution in the guided layer. Here we introduce
the confinement factor, which is defined as the ratio of the electromagnetic wave
power flowing in the guiding layer to the total power of the guided mode. When the
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confinement factor is small, enough power of the laser oscillations is not achieved
and thus higher threshold current is required for the laser oscillations. The mode
confinement factor Γ in a planar wave guide is expressed as

Γ =

∫ d/2

−d/2
|Ex(z)|2dz

∫ +∞

−∞
|Ex (z)|2dz

=

∫ d/2

0
|Ex (z)|2dz

∫ +∞

0
|Ex (z)|2dz

. (9.130)

Inserting (9.111) into (9.130) the confinement factor in a planar waveguide is
evaluated as

Γ = 1 + 2γcd/V 2
d

1 + 2/γCd
= Vd + 2

√
b

Vd + 2/
√

b
. (9.131)

Since the confinement factor Γ is expressed by the normalized frequency V
and the normalized effective refractive index b as shown in (9.131), V vs b curve is
uniquely determined. Figure9.26 shows the confinement factorΓ as a function of the
normalized frequency for the fundamental mode TE0 (m = 0) in a planar waveguide,
where b is calculated from (9.126) or (9.127) and substituted in (9.131). Once we
know materials of a waveguide, then using the refractive indices of the cladding and
guiding layers, and the thickness of the guiding layer d, b and V are estimated from
Fig. 9.25 and finally we obtain the confinement factor Γ . The calculated confinement
factor in double–heterostructures of AlxGa1−xAs/GaAs/AlxGa1−xAs is shown in
Fig. 9.27, where the confinement factor Γ is plotted as a function of the active layer
thickness d with the composition x as a parameter [25].

From the above analysis the confinement factor increases with increasing the
active layer thickness d and the optical power is effectively confined in the active
(guiding) layer, but the threshold current density for the laser oscillation increases
linearly with the active layer thickness. Decreasing the active layer thickness, on

Fig. 9.26 Confine factor Γ

as a function of the
normalized frequency V in a
planar waveguide, where the
results for the fundamental
mode are shown
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Fig. 9.27 The confinement
factor Γ as a function of the
active layer thickness d in
AlxGa1−xAs/GaAs/
AlxGa1−xAs
double–heterostructure laser
GaAs/AlxGa1−xAs. (After
Casey [25])

the other hand, optical power is not effectively confined and the threshold current
density increases. Therefore the minimum threshold current density is estimated to
be d ∼= 0.2 ∼ 0.3µm.

9.5.6 Laser Oscillations

A schematic structure of semiconductor lasers fabricated on semiconductor sub-
strates is shown in Fig. 9.28, where the Fabry–Perot resonator consists of the cleaved
parallel surfaceswith the resonator length L . For simplicitywe assume the reflectivity
of the left and right mirrors is R. We define the complex propagation constant β̃ by

β̃ = β + i
α

2
, β = ñk0 = ñ

ω

c
, (9.132)

where α (> 0) is the internal loss due to the free carrier absorption and the internal
reflection, and α (< 0) is the gain given by α = −Γ g. The optical wave in the

Fig. 9.28 Fabry–Perot resonator of semiconductor laser used for the analysis of laser oscillations.
The reflectivity is assumed to be the same for the right and left mirrors
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waveguide resonator may be written as

E(x, y, z) = E(x, z)
[

A+ exp(+iβ̃y) + A− exp(+iβ̃y)
]

, (9.133)

where the first and second terms in the square brackets represent the forward and
backward waves, respectively. Putting R be the power reflectivity of the mirrors, the
amplitude Ain of the wave incident from the left–hand side of the resonator and Atr

of the wave transmitted into the right–hand side are given by the following relations
from the boundary conditions for both facets,

A+ = (1 − R)1/2 Ain + R1/2 A− , (9.134a)

A− exp(−iβ̃L) = R1/2 A+ exp(+iβ̃L) , (9.134b)

Atr = (1 − R)1/2 A+ exp(+iβ̃L) . (9.134c)

Using these relations the power transmissivity T of the resonator is given by

T = |Atr|2
|Ain|2

= (1 − R)2 exp(−αL)

1 + R2 exp(−2αL) − 2R exp(−αL) cos(2βL)
. (9.135)

When the optical wave starts to propagate at the left–hand mirror z = 0, the power
transmissivity T reduces to

T = (1 − R) exp(−αL)

1 + R2 exp(−2αL) − 2R exp(−αL) cos(2βL)
. (9.136)

The transmissivity exhibits maximum at 2βL = 2mπ (m is an integer). The max-
imum condition is caused by the successive mirror reflections and the round trips
in the waveguide are superimposed in phase. Under this condition the amplitudes
of the wave increase, resulting in resonance. The calculated transmissivity T as
a function of the optical frequency is shown in Fig. 9.29. From (9.132) we find
δ(2βL) = 2L(∂β/∂ω)δω, and thus the separation of angular frequency δω between
the adjacent peaks is given by

δω = 2π

2L∂β/∂ω
= 2π

vg

2L
= 2π

c

2Lng
(9.137a)

vg = 1

∂β/∂ω
= c

ng
, ng = ñ + ω

∂ñ

∂ω
, (9.137b)

where vg is the group velocity, at which the optical power propagates in the
waveguide, and ng is called the group index of refraction.

Let’s consider the conditions for laser oscillation using Fig. 9.30. In a real semi-
conductor laser the optical power is not constant, but the optical waves are amplified
during the propagation back and forth in the resonator. When the gain factor of the
active region is given by g and the confinement factor by Γ , the effective gain factor
is given by Γ g. In a waveguide we have to take account of the propagation loss αint



590 9 Light Emission and Laser

Fig. 9.29 Transmissivity of
a Fabry–Perot resonator as a
function of optical frequency
calculated from (9.136), with
the reflectivity R = 0.35 and
the internal loss of
αL = −0.2, 0, 0.2. The
negative value of α
corresponds to a positive
gain (amplification)

Fig. 9.30 Fabry–Perot
cavity to calculate the
threshold of the laser
oscillations. The cavity
length is L and the
reflectivity is R. Optical
waves after a round trip
should be in phase and the
power amplitude is equal to
or larger than the initial wave

due to absorption and scattering. Then the net gain factor is given by gnet = Γ g−αint.
Defining β̃ = β + ignet/2, the optical amplification occurs when the amplitude after
a round trip is equal to or greater than the initial amplitude

R exp[2iβ̃L] · R exp[2β̃L] ≥ 1 , (9.138a)

and thus we find the following relation

exp[2iβ̃L] ≥ 1

R
. (9.138b)

The above equations may be rewritten as

exp[2iβ̃L] = exp [2iβL − gnetL] ≥ 1

R
(9.139)

This equation may be rearranged by separating the real and imaginary components
as
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exp[gnetL] ≥ 1

R
, Γ g ≥ αint + 1

L
ln

1

R
, (9.140a)

2β(ω)L = 2πm (m : integer) . (9.140b)

From (9.140a) we obtain

(Γ g)th = αint + 1

L
ln

(
1

R

)
. (9.141)

Since the gain factor g is proportional to the injected current density, the relation of
(9.141) well explains the experimental results on the threshold current vs the inverse
cavity length 1/L given by

ηJth ≥ αint + 1

L
ln

1

R
, (9.142)

where η is a constant.
Equation (9.140b) gives the same condition we discussed below (9.136). In other

words, the optical wave after a round trip propagation (distance is 2L) is in phase
with the original wave. The frequencies ωm satisfying the condition of (9.140b)
are called longitudinal mode frequencies. The frequency separation δω is quite
small compared to the frequency of the laser oscillations. For example assuming the
laser wave length λ = 750 [nm], the cavity length =1[mm] and the refractive index
ñ ∼= ng

∼= 3.5, the separation of the emission peaks is given by

δω

ω
= 2πc/2Lng

2πc/λ
= λ

2Lng

∼= 10−4 . (9.143)

Thus a high resolution monochromator is required to resolve the multiple peaks.
The threshold of the laser oscillations is well illustrated in Fig. 9.31, where the

gain curves are schematically drawn using the curves in Figs. 9.4 and 9.5. When
the injection current is increased, the mode gain Γ g(ωm) at the longitudinal mode

Fig. 9.31 Schematic
illustration of the threshold
condition for the laser
oscillations in a Fabry–Perot
semiconductor laser, where
the longitudinal mode gain
Γ g(ω) is plotted together
with the longitudinal mode
frequencies ωm . The
horizontal line shows the
sum of the internal loss and
the reflection loss given by
(9.140a)



592 9 Light Emission and Laser

frequency reach the value of the right–hand side in (9.140a) and the condition of
(9.141) and thus (9.142) is fulfilled, resulting in the start of laser oscillations.

9.6 Stimulated Emission in QuantumWell Structures

In the previousSect. 9.5 (Sect. 9.5.5)wedescribed the confinement of the opticalwave
in awaveguide by utilizing the difference in the refractive indices. This result reminds
us that confinement of the electrons and holes in the same regionwill produce a higher
efficiency of stimulated emission. When the well width of a double heterostructure
is reduced, the electrons and holes will be quantized to produce two dimensional
carriers as discussed in Chap.8 (Sect. 8.2). Figure9.32 shows a schematic structure
of a single quantum well laser AlGaAs/GaAs/AlGaAs, where the lowest subband
energy of the electrons in thewell of conduction band and the highest subband energy
of the holes in the well of the valence band are shown by the dashed lines.

Electrons in the subband recombinewith the holes in the subband and emit photons
of energy �ω. Quantized wave functions of electrons are easily calculated by solving
Schrödinger equation, but the wave functions of holes in the valence bands are not
obtained by a simple calculation,whichwill be discussed later. In order to evaluate the
subband energies and wave functions (envelop functions) we have to determine the
band discontinuities in the conduction and valence bands. The band discontinuities
are determined from the difference between the band gaps of the barrier region
EGB and the well region EGW, δEG = EBG − EGW, and the allocation of it on the
conduction band and the valence band. The allocation ratio depends on the materials
and a variety of the ratios are reported so far. For example, the band offset parameters

Fig. 9.32 Schematic illustration of AlGaAs/GaAs/AlGaAs single quantum well laser. The lowest
subband of the conduction band and the highest subband of the valence band are considered here.
The two dimensional electron gas recombines with the two dimensional hole gas to emit photon �ω
with high efficiency. The complicated subband structures of hole states is not shown here, which
will be discussed in the text

http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_8
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Fig. 9.33 Band gaps at Γ ,
X , and L point of
AlxGa1−xAs at room
temperature (T = 295K) are
plotted as a function of the
mole fraction x . Band
crossing of the Gamma and
X points occurs at
x = 0.405. The data are
from Lee et al. [26]

Qc = δEc/δEG are reported Qc = 0.661 ± 0.015 [27], 0.62 [28], 0.65 [29], and so
on. Here we use the following parameters in the present analysis,

ΔEc/ΔEG = 0.67 ± 0.01 , (9.144a)

ΔEv/ΔEG = 0.33 ± 0.01 , (9.144b)

for GaAs/AlGaAs heterostructures [24, 30], and

ΔEc/ΔEG = 0.39 ± 0.01 , (9.145a)

ΔEv/ΔEG = 0.61 ± 0.01 , (9.145b)

for InP/InGaAsP heterostructures [24, 31].
The energies of the band gaps at Γ , X , and L points in AlxGa1−xAs are plotted

as a function of the mole fraction in Fig. 9.33. The data are from Lee et al. [26]. The
analytical expressions are shown by the following relations.

EG(Γ ) = 1.425 + (2.980 − 1.425)x − 0.37x(1 − x) , (9.146a)

EG(X) = 1.911 + (2.161 − 1.911)x − 0.245x(1 − x) , (9.146b)

EG(L) = 1.734 + (2.363 − 1.734)x − 0.055x(1 − x) . (9.146c)

Using these data we may obtain ΔEG for AlxGa1−xAs (x = 0.3) = 0.3888 eV, which
gives us ΔEc = 0.2605 and ΔEv = 0.1283 eV at T = 300 K.

9.6.1 Confinement in Quantum Well

Here we discuss the confinement of electrons and holes in a quantum well. We have
already shown how to solve Schrödinger equation for electrons in a quantum well.
The conduction band of GaAs is well expressed by a parabolic function with scalar
effective mass m∗

e but the valence bands are specified by the heavy hole, light hole
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Fig. 9.34 The envelop functions for the electrons obtained by solving Schrödinger equation (9.147)
are shown for the lowest two states in AlGaAs/GaAs/AlGaAs quantum well with 100A well width.
Here the conduction band discontinuity is assumed to be 0.26eV, and the subband energies are
shown by the dashed lines. The electron effective mass is assumed to be m∗

e = 0.068m

and spin–orbit split–off bands. When we assume that the confinement direction is
along the z axis and ky = kz = 0, then the wave functions of electrons and holes
(envelop functions) are obtained by solving the following Schrödinger equation,6

[
− �

2

2m jz

d2

dz2
+ V (z)

]
ψnj (z) = Enjψnj (z) , j = e, hh, lh, so (9.147)

where j = e, hh, lh, and so correspond to the electron, heavy hole, light hole and
spin–orbit split–off hole, respectively. The electron energy is measured from the
conduction band edge and the hole energy is measured from the top of the valence
band.Whenwe neglect the potential produced by the electrons and holes, the solution
of (9.147) is easily obtained by discretizing (9.147) in N sections as described in
Chap.8 (Sect. 8.2) and diagonalizing the N × N matrix. An example is shown in
Fig. 9.34 for electrons in AlGaAs/GaAs/AlGaAs single quantum well of 100A well
width, where we assumed the electron effective mass is 0.068m and the conduction
band discontinuity is 0.26 eV. The envelop functions of the valence bands are shown
in Fig. 9.35 in AlGaAs/GaAs/AlGaAs single quantum well of 100A well width,
where we assumed the band offset is ΔEv = 0.1283 eV, and the effective masses of
heavy hole and light hole m∗

hh = 0.377m and m∗
lh = 0.091m, respectively. These

band parameters will be discussed later in connection with Luttinger parameters.
Quantization of holes in the valence bands is complicated because of the band

structures, where the heavy hole band, light hole band and spin–orbit split–off bands
arises from the mixing of the wave functions

∣∣ 3
2 ,± 3

2

〉
,
∣∣ 3
2 ,± 1

2

〉
and

∣∣ 1
2 ,± 1

2

〉
as shown

in Chap.2.When the spin–orbit interaction is taken into account, the matrix elements
of the valence bands are given by (2.64). Let’s consider the case of GaAs where the

6In this section the quantumwell confinement is taken to be in the z direction, although we assumed
the waveguide confinement is in the x direction in Sect. 9.5.

http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. 9.35 The envelop functions of holes in the valence bands for kx = ky = 0 obtained by solving
Schrödinger equation (9.147) are shown for the lowest three states of the heavy hole band (solid
curves) and for the lowest two states of the light hole band (dashed curves). The subband energies
are indicated by the dot–dashed lines. Parameters used are ΔEv = 0.1283eV, m∗

hh = 0.377m and
m∗

lh = 0.091m

spin–orbit splitting is large (0.34 eV) and the spin–orbit split–off band is neglected.
Then the Hamiltonian matrix is approximated by 4 × 4 matrix, which is deduced
from (2.64) or given by Luttinger and Kohn [32] and Ando [33]

H =

∣∣∣
∣∣∣∣∣∣
∣∣∣∣

1

2
P L M 0

L∗ 1

6
P + 2

3
Q 0 M

M∗ 0
1

6
P + 2

3
Q −L

0 M∗ −L∗ 1

2
P

∣∣∣
∣∣∣∣∣∣
∣∣∣∣

, (9.148)

where

P = �
2

2m

[
(A + B)(k2

x + k2
y) + 2Bk2

z

]
, (9.149a)

Q = �
2

2m

[
B(k2

x + k2
y) + Ak2

z

]
, (9.149b)

L = − 1√
3

�
2

2m
C(kx − iky)kz , (9.149c)

M = 1√
12

�
2

2m

[
(A − B)(k2

x − k2
y) + 2iCkx ky

]
, (9.149d)

with m being the free electron mass. The coefficients A, B and C (×�
2/2m) corre-

spond to L , M and N of (2.46a) ∼ (2.46c), respectively, and are related to Luttinger
parameters [34] γ1, γ2 and γ3 through,

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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γ1 = −1

3
(A + 2B) , (9.150a)

γ2 = −1

6
(A − B) , (9.150b)

γ3 = −1

6
C , (9.150c)

or

A = − (γ1 + 4γ2) , (9.151a)

B = − (γ1 − 2γ2) , (9.151b)

C = −6γ3 . (9.151c)

Let’s consider a simplified case of kx = ky = 0. Then (9.148) is written by two
sets of single component equations as shown by (9.147) with mhhz/m = −1/B and
m lhz/m = −3/(2A + B). The solutions of quantized hole states are evaluated in the
similar fashion of two dimensional electron gas. The results are shown in Fig. 9.35.
On the other hand, when the condition of kx = ky = 0 is not fulfilled, non-diagonal
components ofmatrix equation (9.148) result inmixing of thewave functions

∣∣ 3
2 ,± 3

2

〉

and
∣∣ 3
2 ,± 1

2

〉
and thus the quantized states depend on kx and ky . Here we will show

how to obtain the quantized states of the valence bands. Ando reported two different
methods to solve 4 × 4 matrix Hamiltonian (see paper by Ando [33] for detail). We
deal with the 4×4 Hamiltonian matrix (9.148) and the present method will be easily
extended to the case of 6× 6 Hamiltonian matrix.7 We are interested in quantization
of holes in the z direction and thus kx and ky are treated as constants, while kz is
given by

kz = −i
∂

∂z
. (9.152)

In order to avoid the complexity arising from the wave functions, we define the four
eigenfunctions as

∣∣∣∣
3

2
,
3

2

〉
= F1(z) (9.153a)

∣∣
∣∣
3

2
,
1

2

〉
= F2(z) (9.153b)

∣∣∣∣
3

2
,−1

2

〉
= F3(z) (9.153c)

∣∣
∣∣
3

2
,−3

2

〉
= F4(z) , (9.153d)

and discretize the z direction into N segments. The length L is taken to be larger
than the well width W so that the wave functions vanish at z = 0 and z = L . The
segment is then defined as dz ≡ h = L/N and the eigenfunction is written as

7The 6 × 6 Hamiltonian matrix is given by (V.13) of Luttinger and Kohn [35].



9.6 Stimulated Emission in Quantum Well Structures 597

Fi (z) = Fi (h · j) → Fi j (9.154)

i = 1, 2, 3, 4; j = 1, 2, 3, . . . , N − 1, N .

Using the definition of (9.152), the Hamiltonian matrix (9.148) is expressed by the
following components

d

dz
Fi (z) = Fi, j+1 − Fi, j

h
(9.155)

d2

dz2
Fi (z) = Fi, j+1 − 2Fi, j + Fi, j−1

h2
. (9.156)

Therefore the 4×4 matrix of (9.148) is rewritten by 4N ×4N matrix. Diagonalizing
4N × 4N matrix, we obtain the eigenvalues and corresponding eigenstates, which
are dependent of kx and ky values. As a result the energy of a subband is not parabolic
with respect to kx and ky and the constant energy surface is warped in the (kx , ky)

plane.
In order to obtain self–consistent solutions for a specific sheet density of holes, the

density of states is required which may be evaluated from the calculated eigenstates
in the (kx , ky) plane. Since both electrons and holes exist in a quantum well laser and
the resulting Hartree potentials cancel each other (not completely, but weakened),
we neglect the self–consistency for simplicity in the present calculations. A typical
example of the calculated subband energies as a function of kx (solid curves in the [10]
direction) and k‖ = √

2kx = √
2ky (dashed curves in the [11] direction) are shown

in the left figure of Fig. 9.36, where the results are obtained for a AlxGa1−xAs/GaAs/
AlxGa1−xAs (x = 0.3) quantumwell of 80Awell–width and the valence band offset
ΔEv = 0.15 eV. We used the notation HH0 and HH1 for the heavy hole subbands
and LH0 for the light hole subband. The right figure shows the density of states as a
function of hole energy. Here we find that the density of states is no more a simple
step–like function.

9.6.2 Optical Transition in Quantum Well Structures

Here we will concern with the optical transition in a quantum well structure based
on the direct transition model. The spontaneous and stimulated transition rates for
photon energy �ω are given by using (9.17) and (9.18),

rspon(�ω) = nre2ω

πε0m2�c3
|M |2ρ2Dred(�ω) f2(1 − f1) , (9.157)

rstim(�ω) = nre2ω

πε0m2�c3
|M |2ρ2Dred(E)( f2 − f1) , (9.158)

where ρ2Dred is the two–dimensional reduced density of states per unit area defined
by
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Fig. 9.36 The left figure shows the subband energies as a function of wave vectors obtained by
solving 4× 4 matrix Hamiltonian given by (9.148). The solid and dashed curves are the dispersion
of the subband energies in the [10] and [11] directions of wave vectors (in units of 2π/a), where
the heavy–hole subbands HH0 and HH1, and the light–hole subband LH0 are plotted. The right
figure shows the density of states as a function of the hole energy, where the dashed curves are the
density of states for the subbands HH0, HH1 and LH0, and the solid curve is the total density of
states. Parameters used are well–width W = 80 A, ΔEv = 0.150 eV, γ1 = −6.85, γ2 = −2.10 and
γ3 = −2.90

ρ2Dred(kx ky)dkxdky = 1

(2π)2
dkxdky , (9.159a)

ρ2Dred(�ω)d(�ω) = mred

2π�2
d(E1 + �ω − E2) , (9.159b)

where mred is the reduced mass and the spin degeneracy is not included because it is
already included in the momentum matrix element. More detailed discussion will be
given in Sect. 9.6.3. The spontaneous and stimulated transition rates are defined per
unit area or per sheet density of carriers. Then the gain and absorption coefficients
given by (9.35) may be rewritten for the subband transition as

g(�ω) = −α(�ω) = π2c2�3

n2
r (�ω)2

rstim(�ω)

= πe2

nrcε0m2ω
|M |2 ( f2 − f1)ρ2Dred(�ω) . (9.160)

Equations (9.157)–(9.160) are expressed per unit area and thus the values per unit
volume are obtained by dividing these expressions with the quantum well width Lz .

The momentum matrix element |M | used in (9.157), (9.158) and (9.160) are not
the same as the bulk matrix elements discussed in Sect. 9.4.3. In order to discuss the
gains of TE and TMmodes in a quantum well structure we deal with a more general
analysis taking account of the three bands, the heavy, light and spin–orbit split–off
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bands. In a quantum well structure of lattice matched AlGaAs/GaAs/AlGaAs the
strain effect is neglected and we may obtain the subband quantization using 4 × 4
Hamiltonian matrix. In a lattice mismatched quantum well like GaInP–AlGaInP,
however, the spin–orbit split–off is quite small, 0.11 eV, and thus the strain effect
introduces mixing of the three hole bands. In this text we will not deal with the
subband structure of GaInP–AlGaInP laser, but we present how to analyze such a
general case. The 6 × 6 Hamiltonian given by Luttinger and Kohn [35] is easily
extended to include the strain effect, using the basis functions of
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2 〉,
∣∣ 3
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1
2 〉,∣∣ 3
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2 〉,
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2 〉,
∣∣ 1
2 ,

1
2 〉 and

∣∣ 1
2 ,− 1

2 〉. The terms of the uniaxial and biaxial strain
effect in the 6 × 6 Hamiltonian are given by (4.173) and (4.174a) ∼ (4.174c), and
thus we obtain the following Luttinger Hamiltonian
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√
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√
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+V (z) , (9.161)

where V (z) is the potential energy at the band edge, Δso is the spin–orbit split–off
energy with strain effect as given below. The following expressions for the matrix
elements are newly defined,

1

2
Phh = 1

2
P + (Δhydro + Δshear) , (9.162a)

1

6
Plh = 1

6
P + (Δhydro − Δshear

)
, (9.162b)

N = P − 2Q

3
√
2

+
(√

2Δshear
)

, (9.162c)

Δso = Δ0 + (Δhydro
)

, (9.162d)

where the terms in the parentheses are the contribution from the strain. The terms
Δhydro and Δshear are hydrostatic and shear deformation energies, respectively, and
are given by the following relations using the strain Hamiltonian given by (4.171)
and (4.172a) under the strain (see also, (4.175a) and (4.175b)),

Hs = −av(exx + eyy + ezz) − 3b

[
(L2

x − 1

3
L2)exx + c.p.

]
, (9.163a)

Δhydro = −av
(
exx + eyy + ezz

)
, (9.163b)

Δshear = +b

2

(
exx + eyy − 2ezz

)
. (9.163c)

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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The hydrostatic and shear deformation energies under a biaxial stress are rewritten
as8

Δhydro = −2av

(
c11 − c12

c11

)
e‖ , (9.164a)

Δshear = −b

(
c11 + 2c12

c11

)
e‖ . (9.164b)

Here we used the notations c11 and c12 for the elastic stiffness constants, e‖ is the
biaxial strain, and av is the hydrostatic deformation potential in the valence band and
b is the shear deformation potential. The strain in the heterostructure is defined by
using the lattice constants asub for the substrate and aepi for the epitaxial layer as

exx = eyy = asub − aepi

aepi
≡ e‖ (9.165a)

ezz = −2
c12
c11

exx ≡ −2
c12
c11

e‖ . (9.165b)

From the definition of (9.165a), we find the following conditions. When the lattice
constant of an epitaxial layer is larger than that of a substrate, aepi > asub, a com-
pressive strain is induced. In the case of aepi < asub, on the other hand, the epitaxial
layer is expanded and thus a tensile strain is induced.

The subband wave functions (envelop functions) of the valence band in a het-
erostructure are obtained by solving the Hamiltonian H(k‖, kz → −i ∂

∂z ) discretized
into 6N × 6N matrix (4 × 4 matrix neglecting the spin–orbit split–off band). Then
the subband wave function is given by a linear combination of the 6 basis functions,
with the notation ν for the subband index and (kx , ky) = k‖,

ψν
v (k‖, z) = φν

1h(k‖)
∣∣∣
3

2
,
3

2

〉
+ φν

1l(k‖)
∣∣∣
3

2
,
1

2

〉
+ φν

2l(k‖)
∣∣∣
3

2
,−1

2

〉

+φν
2h(k‖)

∣∣
∣
3

2
,−3

2

〉
+ φν

1s(k‖)
∣∣
∣
1

2
,
1

2

〉
+ φν

2s(k‖)
∣∣
∣
1

2
,−1

2

〉
, (9.166)

where φν
ih(k‖), φν

i l(k‖), and φν
is(k‖) (i = 1, 2) are envelop functions of the heavy

hole (|3/2,±3/2〉), light hole (|3/2,±1/2〉), and spin split hole (|1/2,±1/2〉). Note
here that φν

iv (v= h, l, and so) include z direction dependence which is obtained from

8 Those relations are easily deduced by using the stress tensors, Txx = T1 = X, Tyy = T2 = X , and
Tzz = T3 = 0. The strain tensor is given by ei j ≡ eα = sαβTβ (α,β = 1, 2, 3, . . . , 6). Therefore
we obtain

exx = eyy = s11T1 + s12T2 = (s11 + s12)X

ezz = s12T1 + s12T2 = 2s12X ,

where s11 and s12 are the elastic compliance tensors and related to cαβ by

s11 = c11 + c12
(c11 − c12)(c11 + 2c12)

, s12 = − c12
(c11 − c12)(c11 + 2c12)

.

.



9.6 Stimulated Emission in Quantum Well Structures 601

the diagonalization of the Hamiltonian matrix. Writing the envelop functions of the
electron in the conduction band and holes in the valence bands as

ψμ
c (x, y, z) = φμ

c (z)|S〉 , (9.167)

ψν
v (x, y, z) =

∑

v

φν
v(k‖, z)|Γ25′ 〉 , (9.168)

we may evaluate the momentum matrix element for the transition between the con-
duction and valence bands,

|Mμν
cv (k‖)|2 =

∣∣∣〈ψμ
c

∣∣ p
∣∣ψν

v 〉
∣∣∣
2
. (9.169)

Since we are interested in a quantum well structure with the confinement direction
parallel to the z axis, we assume the propagation direction of the light along the y
axis. Then the TE mode gives rise to the polarization of the E = (Ex , 0, 0) and
H = (0, Hy, Hz). On the other hand TM mode is shown by H = (Hx , 0, 0) and
E = (0, Ey, Ez). Therefore the momentum matrix element for TE mode is given by

∣∣∣Mμν
cv (k‖)

∣∣∣
2 = 2〈S|px |X〉2

×
[
1

2
〈φμ

c |φν
1h(k‖)〉2 + 1

6
〈φμ

c |φν
2l(k‖)〉2 + 1

3
〈φμ

c |φν
2s(k‖)〉2

]
, (9.170)

and for TM mode

∣∣∣Mμν
cv (k‖)

∣∣∣
2 = 2〈S|pz|Z〉2

[
2

3
〈φμ

c |φν
1l(k‖)〉2 + 1

3
〈φμ

c |φν
1s(k‖)〉2

]
. (9.171)

The factor 2 in (9.170) and (9.171) is introduced to include the spin degeneracy,
and 〈φμ

c |φν
1h(k‖)〉 and so on are the overlap integrals of the envelop functions of the

electron in the conduction band and of the hole in the valence band with respect to
z in the quantum well width. As stated in Sect. 9.4.3, the momentum matrix element
are related to P by the relations derived in the footnote 3 of p. 568,

〈S|px |X〉2 = 〈S|py |Y 〉2 = 〈S|pz|Z〉2

= m2

�2
P2 = m2

2m∗
0

EG(EG + Δ0)

EG + 2Δ0/3
, (9.172)

where P2 given by (2.158) is used.
As mentioned in the case of GaAs, the spin–orbit split–off energy is appreciably

large and we may neglect the contribution from the spin–orbit split–off band, the last
terms of (9.170) and (9.171), except a case of a large strain. In this case the envelop
function of the lowest subband arises from the heavy hole band |3/2,±3/2〉 for lower
values of k‖ and thus optical transition is governed by the conduction band to the
heavy hole band. Therefore the TEmode oscillations dominates in the laser gain. The
TMmode will be excited by the transition between the conduction band and the light
hole band, and thus the TM mode oscillations will not take part in the GaAs based

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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quantum well structures. On the other hand in a lattice mismatched GaInP–AlGaInP
quantum well tensile strain results in a dramatic change in the subbands structures
of the valence bands and the light hole subband (|3/2,±1/2〉) is located at the band
edge [36]. Then the TM mode gain overcomes the TE mode gain. We will not deal
with the detail of the strained quantum wells here, but readers may analyze the laser
gain in strained layer quantum wells by using the relations derived above and the
strain effect described in Sect. 9.6.4.

9.6.3 Reduced Density of States and Gain

Herewewill discuss the density of states in a quantumwell structure. First we assume
that the electron and hole dispersions are approximated by the parabolic functions
as

E2 = Ec + Ec
μ + �

2k2
‖

2m∗
e

, (9.173a)

E1 = Ev − Ev
ν − �

2k2
‖

2m∗
h

. (9.173b)

The diagonal properties of the envelop functions give rise to the selection rule for
the quantum number μ, ν,
∫

φμ
c (z)φ

ν
v(z)dz = 1 for μ = ν , (9.174)

= 0 for μ �= ν . (9.175)

The wave vector conservation of k‖ and the energy conservation rule lead us to the
following relations,

E2 = Ec + Ec
n + mred

m∗
e

(�ω − EG,n) , (9.176a)

E1 = Ev − Ev
n − mred

m∗
h

(�ω − EG,n) , (9.176b)

where
1

mred
= 1

m∗
e

+ 1

m∗
h

, (9.177a)

EG,n = EG + Ec
n + Ev

n = (Ec − Ev) + Ec
n + Ev

n , (9.177b)

From these results we obtain the reduced density of states ρ2Dred,n(�ω) for the nth
subband,

ρ2Dred,n(�ω) = mred

2π�2
u
(
�ω − EG,n

)
, (9.178)

where u(x) is the unit–step function and u(x ≥ 0) = 1, u(x < 0) = 0.
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As shown in Sect. 9.6.2 the subband energy depends on the wave vector k‖ and
thus the density of states is not given by the above relations. Here wewill simplify the
calculation of ρ2Dred(k‖) by taking one direction in the plane (kx , ky, 0) as follows

ρ2Dred,n(k‖) = 1

(2π)2
d2k‖ � 1

(2π)2
2πk‖dk‖ . (9.179)

Then the density of states is expressed as

ρ2Dred,n(E) = 1

2π

∑

n

∑

k‖

k‖
∣
∣∣
∂En

∂k‖

∣
∣∣
−1

(per unit area) , (9.180a)

= 1

2π

∑

n

∑

k‖

k‖
∣∣∣
∂En

∂k‖

∣∣∣
−1 × 1

Lz
(per unit volume) , (9.180b)

where the spindegeneracy factor 2 is excludedbecause it is included in themomentum
matrix elements. When 6 × 6 or 4 × 4 matrix Hamiltonian is solved, we are able to
calculated the density of states by summing up all the k‖ points, which is shown in
Fig. 9.36.

Whenwedefine the subband energiesEe
n for the conduction band,Ehh

m for the heavy
hole band, and E lh

m ′ for the light hole band (n, m, m ′ = 0, 1, 2, . . .), the orthogonality
of the envelop functions gives rise to the selection rule of the optical transitions,

n = m, n = m ′ , (9.181)

or in other words, interband transitions between the same quantum numbers are
allowed. This is schematically shown in Fig. 9.37.

Fig. 9.37 Interband optical
transition in a quantum well
structure is shown, where the
dotted curves are the
conduction and valence
bands in a bulk material and
the step like curves are the
subbands. Only transitions
between the same quantum
numbers are allowed
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Assuming parabolic relations for the carrier energies vs wave vectors in the con-
duction and valence bands, the densities of electrons and holes in a quantum well of
well width Lz are given by using (8.15)

n = mckBT

π�2Lz

∑

n

ln

[
exp

(Ec
F − Ec

n

kBT

)
+ 1

]
, (9.182a)

p = mvkBT

π�2Lz

∑

n

ln

[
exp

(Ev
n − Ev

F

kBT

)
+ 1

]
(9.182b)

where Ec
F and Ev

F are quasi–Fermi levels, and Ec
n and Ev

n are n–th subbands in the
conduction and valence bands, respectively. The laser amplification gain under the
carrier injection into a quantum well structure is given by,

g(�ω) = −α(�ω)

= πe2

nrcε0m2ω
×
∑

n

∣∣M
∣∣2( f2 − f1)

mred

2π�2Lz
u
(
�ω − EG,n

)
, (9.183)

where mred is the reduced effective mass, EG,n is the gap energy of the subbands,
and the summation is carried out with respect to the subband quantum number n.
In Fig. 9.38 we show gain spectra in a simplified model of parabolic bands, where
the upper and lower parts of the curves are for a bulk double heterostructure laser
(DHL) and a quantum well laser (QWL), respectively. The left figures represent the
density of states, the middle figures for the gains as a function of photon energy �ω,
and the right figures for the maximum gains as a function of injection current. The
gain spectra reflect the shape of the density of states curves.

In more general form we obtain the gain

g(�ω) = πe2

nrcε0m2ω

∑

μ,ν

∑

k‖

ρ2Dred(k‖)
1

Lz

∣∣Mμν
cv (k‖)

∣∣2

× [ f c(k‖) − f v(k‖)
]

, (9.184)

where f c(k‖) and f v(k‖) are quasi–Fermi distribution functions of the electrons in
the conduction band and holes in the valence bands. The density of states is given
by

∑

k‖

ρ2Dred(k‖) = 1

2π

∑

k‖

k‖
∣∣∣
∂Ecv

μν(k‖)
∂k‖

∣∣∣
−1 × 1

Lz
, (9.185a)

Ecv
μν(k‖) = Ec

μ(k‖) − Ev
ν (k‖) , (9.185b)

where Ecv
μν(k‖) is the interband energy of the conduction band and valence band. In

Fig. 9.36 we presented the subband energies of the valence bands, where the results
are calculated by solving 4 × 4 Hamiltonian matrix of (9.148).

We have to mention here the effect of band tailing discussed in Sect. 9.3 for the
optical transition in a bulk material. The band tail effect is also expected to play an
important role in the laser oscillations in a quantum well. One of the most widely
used methods to take account of the band tail effect in quantum well structures is the

http://dx.doi.org/10.1007/978-3-319-66860-4_8
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Fig. 9.38 The density of states, gain spectra and maximum gains are compared in a bulk double
heterostructure laser (DHL) and b quantum well laser (QWL), where the gain reflects the shape of
density of states. (after Suhara [24])

relaxation broadeningmodel introduced byAsada andSuematsu [37]. They proposed
to use Lorentzian broadening given by

L(�ω) = �Γ/π

(Eμν
cv (k‖) − �ω)2 + (�Γ )2

, (9.186)

where Γ is the intra–band relaxation time. Therefore the linear–gain is given by
multiplying (9.184) by (9.186).

9.6.4 Strain Effect

Finally we discuss the strain effect of the energy bands. In Sect. 4.7.3 we dealt with
the stress induced change in the energy bands and found that the valence band shift
is given by (4.178). Figure9.39 shows the change of the valence bands induced
by uniaxial stress in GaAs, where we used Luttinger parameters γ1 = 6.85, γ2 =
2.1, deformation potentials ac = −7.17, av = −1.16, b = −1.7 [eV], elastic

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4


606 9 Light Emission and Laser

Fig. 9.39 The upper curve
is the uniaxial stress effect of
the conduction band edge.
The lower curve represents
the uniaxial stress effect of
the heavy hole, light hole and
spin–orbit split–off bands in
GaAs, where the shift of the
valence bands is calculated
by (9.161) and the top of the
valence bands at X = 0 is set
to 0. The stress X < 0 is
compressive and X > 0 is
tensile. In the compressive
stress X < 0 the light hole
band is located higher than
the heavy hole band
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compliance constants s11 = 0.1176 × 10−10, s12 = −0.0365 × 10−10 [m2/N], the
lattice constant a = 5.65 A, the energy gap EG = 1.425 [eV], and the spin–orbit
split–off energy Δ0 = 0.34 [eV]. The strain X is compressive for X < 0 and tensile
for X > 0. We find that the compressive uniaxial stress results in the light hole band
higher than the heavy hole band. In uniaxial stress case, the strain components are
given by

exx = eyy = s12X , (9.187a)

ezz = s11X , (9.187b)

exx + eyy + ezz = (s11 + 2s12)X , (9.187c)

exx + eyy − 2ezz = −2(s11 − s12)X , (9.187d)

and thus we obtain

Δhydro = −av(s11 + 2s12)X (= −δEH) , (9.188a)

Δshear = −b(s11 − s12)X

(
= −1

2
δE001

)
. (9.188b)

In Fig. 9.39 the effect of uniaxial stress on the conduction band edge calculated
by

Ec(X) + EG = ac (s11 + 2s12) X + 1.425 , (9.189)

and the valence band edges in GaAs calculated from the 6× 6 Hamiltonian given by
(9.161) are shown, where we find that the heavy and light hole bands split into two
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Fig. 9.40 Effect of the uniaxial stress on the valence bands of GaAs calculated by 6 × 6 Hamil-
tonian given by (9.161). Three valence bands are plotted as a function of the wave vectors k for a
compressive stress of X = −0.2 × 1010 [N/m2], b without stress (X = 0), and c tensile stress of
X = +0.2 × 1010 [N/m2]. The wave vectors k‖ (= √

2kx = √
2ky) and kz are in units of (2π/a)

bands and the compressive stress, X < 0, results in band edge locations of the light
hole band higher than the heavy hole band. Typical examples of the three valence
bands for the compressive stress X = −0.2 × 1010 [N/m2] and for the tensile stress
X = +0.2 × 1010 [N/m2] are plotted as a function of k, together with the bands for
X = 0 in Fig. 9.40.

Let’s consider the case of biaxial stress. In quantum well lasers AlGaAs/GaAs/
AlGaAs, the well region of GaAs are sandwiched by the lattice matched AlGaAs
barrier layers and the strain is quite small, enabling us to neglect the strain effect
on the valence bands. In a lattice mismatched quantum well structures, however, the
well region is subject to the strain effect. When the lattice constant of the well region
is larger than the barrier layer (substrate), a compressive strain is induced. On the
other hand, when the lattice constant of the well region is smaller than the barrier
layer, a tensile strain is induced. Such a tensile biaxial strain results in a dramatic
change in the subbands structures of the valence bands, and the light hole subband
(|3/2,±1/2〉) is located at the band edge for example in GaInP–AlGaInP [36]. In
general, a lattice–mismatched well regions grown on the (001) surface of a substrate
is subjected to a biaxial stress effect. In order to illustrate the biaxial effect on the
valence band structure, we deal with a bulk GaAs under a biaxial stress effect. For
the biaxial stress in the (001) plane, we obtain

exx = eyy = (s11 + s12)X , (9.190a)

ezz = 2s12X , (9.190b)

exx + eyy + ezz = 2(s11 + 2s12)X , (9.190c)

exx + eyy − 2ezz = 2(s11 − s12)X . (9.190d)

Therefore the matrix elements of the strain Hamiltonian are given by

Δhydro = −2av(s11 + 2s12)X , (9.191a)

Δshear = +b(s11 − s12)X . (9.191b)
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Fig. 9.41 Biaxial stress
effect of the heavy hole, light
hole and spin–orbit split–off
bands in GaAs, where the
shift of the valence bands is
calculated by 6 × 6 matrix
Hamiltonian, where the top
of the valence bands at
X = 0 is set to 0. The stress
X < 0 is compressive and
X > 0 is tensile. In the
tensile stress X > 0 the light
hole band is located higher
than the heavy hole band
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Defining the biaxial strain e‖, we find the following relations

exx = eyy ≡ e‖ , (9.192a)

X = 1

s11 + s12
e‖ . (9.192b)

Figure9.41 shows the biaxial stress effect of the valence band edges in GaAs cal-
culated by solving 6 × 6 Hamiltonian of (9.161). In contrast to the case of uniaxial
stress, we find that the band edge locations of the light hole band is higher than the
heavy hole band in the tensile biaxial stress. Typical examples of the three valence
bands in GaAs for the compressive biaxial stress X = −0.2 × 1010 [N/m2] and for
the tensile biaxial stress X = +0.2 × 1010 [N/m2] are plotted as a function of k,
in Figs. 9.42 and 9.43, respectively. These results are obtained by solving the 6 × 6
matrix Hamiltonian of (9.161). Assuming a biaxial strain e‖ = 0.5%, then the biax-
ial stress in GaAs is given by X = +0.0617 [1010N/m2], which gives the energy
separation Elh(0)−Ehh(0) = 34 [meV] and thus the strain effect cannot be neglected.

Since the strains is biaxial in a strained quantum well, the upper edge of the
valence band is the edge of the heavy hole band for a compressive strain, and is the
edge of the light hole band for a tensile strain, as seen in Fig. 9.41. Therefore the
major transition is the electron–HH transition for the compressive strain and is the
electron–LH transition for the tensile strain. The results indicate that the TE modes
is excited in a quantum well with a compressive strain (or in un–strained quantum
well) and that the TM mode oscillations will be observed in a quantum well laser
with a tensile strain.
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Fig. 9.42 Three valence
bands of GaAs under the
compressive biaxial stress of
X = −0.2 × 1010 [N/m2] as
a function of the wave vector
calculated from the 6 × 6
Hamiltonian given by
(9.161). The wave vectors
k‖ (= √

2kx = √
2ky) and kz

are in units of (2π/a)

Fig. 9.43 Three valence
bands of GaAs under the
tensile biaxial stress of
X = +0.2× 1010 [N/m2 as a
function of the wave vector
calculated from the 6 × 6
Hamiltonian given by
(9.161). The wave vectors
k‖ (= √

2kx = √
2ky) and kz

are in units of (2π/a)

In Table9.1we summarize the parameters ofGaAs used in the present calculations
together with some other materials. Detailed information of the band parameters in
various semiconductors are well reviewed by Van de Walle [38] and Vurgaftman,
Meyer and Ram–Mohan [39], and also listed by Chiao and Chuang [40] for GaAs,
InAs, and InPwhich are used to analyze the valence band structures.Note here that the
conduction and valence band deformation potentials of GaAs used in the present cal-
culations are determined to match the present calculations with the piezoreflectance
data of Pollak and Cardona [41]. For example, using EG = 1.415 [eV], the tran-
sition energies for the compressive uniaxial stress X = −0.08 × 1010 [N/m2] are
obtained as,

Ec − ELG = 1.416, Ec − EHH = 1.46, Ec − ESO = 1.78 , (9.193)
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Table 9.1 Material
parameters of GaAs, InAs
and InP at 300K. Note that
γ’s are given by positive
values and thus the valence
band parameters A, B, and C
(negative values) should be
defined by the relations
(9.150c). The value ac + av
gives the total band gap
dependence on the hydrostatic
pressure. The listed
parameters are estimated
from the data reported by Van
de Walle [38], Vurgaftman,
Meyer and Ram–Mohan [39],
and Chiao and Chuang [40]

Parameters GaAs InAs InP

a [Å] 5.6533 6.0583 5.8688

EG [eV] 1.425 0.36 1.344

Δ0 [eV] 0.34 0.38 0.11

γ1 6.85 20.0 5.08

γ2 2.1 8.5 1.60

γ3 2.9 9.2 2.10

c11 [1010

N/m2]
11.879 8.329 10.11

c12 [1010

N/m2]
5.376 4.526 5.61

ac + av [eV] −8.33 −6.08 −6.31

ac [eV] −7.17 −5.08 −5.04

av [eV] −1.16 −1.00 −1.27

b [eV] −1.7 −1.8 −1.8

m∗
c/m0 0.067 0.027 0.077

while the experimental values of Pollak and Cardona [41] are

Ec − ELH = 1.41, Ec − EHH = 1.47, Ec − ESO = 1.78 , (9.194)

all in units of [eV].
The values of the deformation potentials reported so far vary in a wide range and

adjustment is recommended to fit the experimental values. Also it should be reminded
that the deformation potentials are determined by using the definition of the 6 × 6
Hamiltonian used in the text. The shear deformation energy Δshear = +(b/2)(exx +
eyy −2ezz) of this textbook is sometimes cited asΔshear = −(b/2)(exx +eyy −2ezz).

In this section we discussed the strain effect of GaAs grown on the (001) sur-
face. Recently epitaxial layers grown on the different surfaces have been reported
to achieve higher mobility. The electronic properties of (110) surface under [110]
uniaxial stress have been shown to exhibit a quite different behavior by Kajikawa
[42].

9.7 Wurtzite Semiconductor Lasers

Wide-band-gap semiconductors are very important to produce laser diodes in blue
ray regions. Most of the Blu-rays, LEDs and LDs are fabricated by utilizing GaN,
AlN, and InN, and their ternary compounds, which are wurtzite. Nakamura et al.
[43, 44] reported blue–green light emitting diodes based on InxGa1−xN/AlyGa1−yN



9.7 Wurtzite Semiconductor Lasers 611

quantum well structures and Akasaki [45] demonstrated stimulated emission by
AlGaN/GaN/GaInN quantum well. Then Nakamura et al. [46] have demonstrated
room–temperature continuous–wave operation of strained InxGa1−xN/AlyGa1−yN
multiple quantum-well laser diodes with a long lifetime. Now LEDs and LDs based
on such materials are on the market. Here we discuss electronic properties and lasers
of wurtzite semiconductors.

9.7.1 Energy Band Structure of Wurtzite Crystals

We learned from Chaps. 1, 4 and 5 that the optical properties of semiconductors are
characterized by the energy band structures. However, most of the results concern
with semiconductors of face-centered-cubic lattices. In Chaps. 1 and 2 we discussed
energy band calculations of such crystals by the pseudopotential theory and by k ·
p perturbation theory. Here we will concern with the energy band calculation of
GaN, AlN, InN and their ternary alloys of wurtzite crystal using the pseudopotential
theory [47]. Up to now variousmethods of the energy band calculations of GaN,AlN,
InN, and their ternary alloys have been reported, by using first principle method,
local density approximation, empirical pseudopotential methods and so on [47–52].
Experimental data of nitrides and their ternary compounds have been reported by
many workers [53–55]. Also detailed experiments and analysis of the valence bands
have been reported [56–58]. Controversy about the narrow gap InN and detailed
discussions on the nitrides and their ternary alloys are reviewed by Furgaftman and
Meyer [59], Wu [60], and Van de Walle [61].

As far as the reported band structure calculations are concerned, the empirical
pseudopotential theory gives the most reliable results. Since this method is dis-
cussed in Chap.1, we will describe the method in detail for the case of III-V(N)
nitride compound semiconductors. Energy band structures of wurtzite crystals are
quite different from the diamond and zinc blende crystals because of the crystal
symmetries. Nitride semiconductors such as GaN, AlN and InN belong to hexago-
nal crystal and the hexagonal closed pack structure is shown in Fig. 9.44, where the
lattice distance in the basal plane is a and the next equivalent plane is displaced by
c = √

8/3a, resulting in a closed pack structure with atoms of radius a/2 with the
internal structural parameter u = (a/c)2 = 3/8 = 0.375. The equilibrium lattice
and internal structural parameters of nitride crystals GaN, InN and AlN are shown
in Table9.2, where we find the internal structural parameters are very close to that
of the hexagonal closed pack structure.

To begin with, we deduce the reciprocal lattice vectors and the first Brillouin zone
of the hexagonal crystal. When we choose the rectangular coordinates consisting
unit vectors [ex , ey, ez], an example of a set of the primitive vectors [a, b, c] of the
hexagonal lattice is defined as

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/
http://dx.doi.org/10.1007/978-3-319-66860-4_5
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_1
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Fig. 9.44 Hexagonal closed
pack crystal structure, where
c/a = √

8/3 = 1.63299
with lattice constants a and c

Table 9.2 Equilibrium lattice and internal structural parameters of three nitride crystal GaN, InN
and AlN after [48]. The sources of the experimental data are indicated by the reference numbers

a [Å] c [Å] u

GaN 3.19 [62] 5.189 [62] 0.377 [63]

InN 3.544 [64] 5.718 [64] 0.38 [63]

AlN 3.11 [62] 4.98 [62] 0.38 [63]

a = aex , b = a

(
1

2
ex +

√
3

2
ey

)

, c = cez , (9.195)

and then the reciprocal lattice vectors are given by

a∗ = 1

a

(
ex − 1√

3
ey

)
, b∗ = 1

a

2√
3
ey, c∗ = 1

c
ez , (9.196)

where the volume of the unit cell is a · (b × c) = 2(2π)3/(
√
3a2c). The reciprocal

lattice vectors are then defined by using a set of integers (l, m, n),

G = 2π(la∗ + mb∗ + nc∗) (9.197)
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which gives the squared magnitude of the reciprocal lattice vector

|G|2 =
(
2π

a

)2 [
l2 + (2m − l)2

3

]
+
(
2π

c

)2

n2 . (9.198a)

For a hexagonal closed pack structure we put c/a = √
8/3 and the reciprocal lattice

vector is given by

|G|2 =
(
2π

a

)2 [
l2 + (2m − l)2

3
+ 3

8
n2

]
. (9.198b)

Once we know the reciprocal lattice vectors, the first Brillouin zone is drawn by
using electron wave vector k and reciprocal lattice vector G. The boundaries of the
first Brillouin zone is defined by

|k + G|2 = G2, k · G = |G|/2 , (9.199)

and therefore the distance between the Γ point (k = 0) and the zone edge are
kM = 2π|a∗|/2 = 2π|b∗|/2 = (2π/a)/

√
3 and the c plane is kA = 2π|c∗|/2 =

(2π/c)/2. Using these results we obtain the first Brillouin zone shown in Fig. 9.45.
Since wurtzite crystal has six fold symmetry along the c axis, the box surrounded by
the critical points is 1/24 of the first Brillouin zone as seen in Fig. 9.45.

When the electron wave vector k = (kx , ky, kz) is defined as shown in Fig. 9.45,
the free electron band is obtained from the following relation for the reciprocal lattice
vector G given by (9.198b)

Fig. 9.45 The first Brillouin
zone of a hexagonal crystal
(C6v = 6mm) is shown
together with the critical
points
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E = �
2

2m
∇2 = �

2

2m

[
(kx + Gx )

2 + (ky + G y)
2 + (kz + Gz)

2
]

= �
2

2m

(
2π

a

)2
[

(kx + l)2 +
(

ky + 2m − l√
3

)2

+ 3

8
(kz + n)2

]

, (9.200)

where (kx , ky, kz) of the second line of (9.200) is redefined in units of (2π/a), and
the free electron bands are easily drawn by putting (kx , ky, kz) in (9.200). Since the
box surrounded by the critical points in Fig. 9.45 is one of the 24 equivalent boxes
and thus we may rotate the box along the six fold symmetry axis c. The energy
band calculations are carried out in a similar manner to the case of zinc blende
crystals [47]. The pseudopotential for wurtzite may be written in a similar form to
that of zinc blende crystal (see (1.92))

Vps(r) =
∑

G

[
SS(G)V S(|G|) + iSA(G)V A(|G|)] e−iG·r , (9.201)

where the symmetric and antisymmetric form factors V S(G) and V A(G) are given
by the half sum and difference of the form factor for the two atoms in the unit cell,
and the structure factor is written as (see (1.90c))

SS(G) = 1

Nα

∑

j

exp(−iG · δ j ) , (9.202a)

SA(G) = − i

Nα

∑

j

Pj exp(−iG · δ j ) , (9.202b)

where Nα is the number of atoms per unit cell (four for wurtzite), δ j is the basis
vector of the j th atom in the unit cell, and the index j runs all over atoms in the cell.
The operator Pj is +1 if j denotes one type of atom and −1 for the other type. The
definition leads to the magnitude of the structure factor to be ≤ 1 as in the case of
zinc blende crystal.

Explicit expressions for the wurtzite structure factors are obtained by choosing
standard primitive translational vectors and place atoms of one type at the following
two points,

r1 =
[
1

6
,
1

6
,
1

2

(
1

2
+ u

)]
, (9.203a)

−r2 =
[
−1

6
,−1

6
,−1

2

(
1

2
− u

)]
, (9.203b)

and then atoms of the second type are located at +r2 and −r1. For the reciprocal
lattice vector with (l, m, n) represents a relative translation of the primitive reciprocal

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
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lattice [a∗, b∗, c∗]. The symmetric and antisymmetric structure factors are then given
by

SS = cos

[
2π

(
l

6
+ m

6
+ n

4

)]
cos

(
2πnu

2

)
, (9.204a)

SA = cos

[
2π

(
l

6
+ m

6
+ n

4

)]
sin

(
2πnu

2

)
. (9.204b)

Once the pseudopotential form factors V S(G) and V A(G) are determined the
energyband structure ofwurtzite are easily calculated.Weknow from the energyband
calculations of zinc blende crystals that the pseudopotential form factors V S(|G|2)
and V A(|G|2) range form V S,A(3) to V S,A(11). Therefore it is very convenient to
define the pseudopotential form factors in similar range. For this purpose we define
the reciprocal lattice vector |G| of (9.198b) divided by the units of √

2π/a and thus
we obtain

|G|2 =
[
8

3
(l2 + m2 − lm) + 3

4
n2

]
. (9.205)

and then the free electron energy at the Γ point (kx = ky = kz = 0) is given by the
following relations

E(k = 0) = �
2

2m

(√
2π

a

)2

2 ×
[

l2 + (2m − l)2

3
+ 3

8
n2

]
,

= �
2

2m

(√
2π

a

)2

|G|2 , (9.206)

In the following we evaluate pseudopotential form factors by using newly defined
|G|2 of (9.205), because many papers dealing with energy band calculations of
wurtzite semiconductors use this definition. As described in Table1.2 in Chap. 1
pseudopotentials of diamond and zinc blende type semiconductors V (|G|2) becomes
very small for |G|2 > 11 as illustrated in Fig. 6.10 for Si, andwemay expect a similar
behavior for the empirical pseudopotentials of wurtzite semiconductors. However,
pseudopotentials of wurtzite are expected to be non-zero for many small values of
|G|2 and thus we choose the new definition |G|2. Using this definition pseudopo-
tentials of wurtzite semiconductors becomes very small beyond |G|2 = 15. As an
example, pseudopotentials used for the energy band calculation ofGaN are illustrated
in Fig. 9.46, where V S(|G|2) and V A(|G|2) in units of [Ry] are plotted as a function
of reciprocal lattice vector |G|2. Pseudopotentials are not continuous function of |G|,
but pseudopotential form factors are defined at typical values of |G|2. The reciprocal
lattice vectors |G|2 and structure factors are also tabulated in Table9.3 for u = 3/8.
The pseudopotential form factors are estimated by the present author and N. Mori
by modifying the reported values of Rezaei et al. [48] so that the calculated results
agree with the recent experimental data, such as the band gap of InN (∼0.7eV) and
the bowing of the direct band gaps for the ternary alloys as discussed below.

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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Fig. 9.46 Pseudopotentials
V s and VA plotted as a
function of reciprocal lattice
vector |G|2 (defined in
(9.205)) for wurtzite GaN,
where parameters listed in
Table9.3 are used

Table 9.3 Reciprocal lattice vectors G and |G|2 (defined by (9.205)), structure factors SS(G)

and SA(G), and pseudopotential form factors V S(|G|2) and VA(|G|2) in units of [Ry] of wurtzite
semiconductors GaN, InN, and AlN. The pseudopotential form factors are estimated from the
analytical equation (9.210) using the coefficients of the pseudopotentials form factors listed in
Table9.4

G (l, m, n) |G|2 |SS(G)| |SA(G)| GaN InN AlN

V S VA V S VA V S VA

000 0 1 0

001 3
4 0 0

100 2 23
1
2 0 −0.319 −0.323 −0.236

002 3 0.71 0.71 −0.290 0.247 −0.291 0.183 −0.212 0.296

101 3 5
12 0.33 0.80 −0.254 0.238 −0.252 0.180 −0.181 0.277

102 5 23 0.35 0.35 −0.066 0.192 −0.048 0.160 −0.021 0.192

003 6 34 0 0

210 8 1 0 0.091 0.099 0.119

211 8 34 0 0

103 9 5
12 0.80 0.33 0.144 0.128 0.120 0.128 0.172 0.101

200 10 23
1
2 0 0.157 0.102 0.188

212 11 0.71 0.71 0.156 0.106 0.094 0.115 0.187 0.077

201 11 5
12 0.33 0.80 0.152 0.101 0.084 0.112 0.183 0.072

004 12 0.00 1.00 0.094 0.107 0.064

202 13 23 0.35 0.35 0.105 0.077 0.036 0.095 0.130 0.048

104 14 23 0.00 0.50 0.068 0.088 0.041

213 14 34 0 0
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Table 9.4 The coefficients ai of the pseudopotential form factor V S(q) and VA(q) functions used
for the present calculations, which are readjusted to fit experimental data by modifying the form
factors reported by Rezaei et al. The functions are defined by (9.210) after Rezaei et al. [48]

V S(q) VA(q)

a1 a2 a3 a4 a1 a2 a3 a4

GaN 0.04258 13.079 0.226 20.393 0.5114 −20.122 0.0835 −41.557

InN 0.0459 12.542 0.299 17.691 0.0221 −35.605 0.0574 −18.261

AlN 0.0363 11.960 0.234 22.233 0.0323 −145.212 0.0947 −19.160

Energy band calculations of wurtzite semiconductors are straight forward by solv-
ing the pseudopotential Hamiltonian

Hps = − �
2

2m
∇2 + Vps(r) , (9.207)

where Vps(r) is the pseudopotential that can be expanded in reciprocal lattice vectors
G as:

Vps(r) =
∑

G

Vps(G)e−iG·r . (9.208)

In the present calculations the spin–orbit interactions are excluded. Using the defini-
tion of the structure factors derived above, thematrix elements of the pseudopotential
Hamiltonian between the plane waves states |i(k+ Gi )〉 = exp(−i(k+ Gi ) · r) and
|i(k + G j )〉 = exp(−i(k + G j ) · r) are given by

Vps(Gi − G j ) = SS(Gi − G j )V S(|Gi − G j |2)
+iSA(Gi − G j )V A(|Gi − G j |2) (9.209)

In the present calculation we adopt a suitable analytical expression for the
pseudopotential form factors reported by Rezaei et al. [48]

V S,A(q) = a1(2q2 − a2)

1 + exp[a3(2q2 − a4)] , (9.210)

where q2 = |G|2 is squared reciprocal lattice vector defined by (9.205), and the coef-
ficients a j are determined from the fitting procedure of the energy bands (Table9.4).

Calculated energy band structures of GaN, AlN and InN are shown in Figs. 9.47,
9.48 and 9.49, respectively, where 525 plane waves plane waves are used to form
matrix elements. We find that all the nitrides AlN, GaN and InN with wurtzite struc-
ture have direct band gaps and agree well with the reported band gaps. Recent investi-
gation reveals that the band gap of InN is quite small and ranges in the range 0.6 ∼ 0.9
eV as reported by the review articles of Furgaftman and Meyer [59], Wu [60], and
Van de Walle [61]. The advance in the growth technology provided high quality
nitrides and band parameters such as GaN [57], AlN [58] and GaInN [54]. The most
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Table 9.5 Composition dependence of the direct band gaps of ternary nitrides AlxGa1−xN,
Alx In1−xN, and Gax In1−xN calculated by the empirical pseudopotential method. The band gaps
in the braces ( ) and the bowing parameter b are the recommended values of Vurgaftman and
Meyer [59] based on various experimental data. The bowing parameter bps is introduced for the
ternary alloys to estimate the empirical pseudopotentials (see (9.214))

EG(x) [eV] = EG(1)x + EG(0)(1 − x) − bx(1 − x)

Ternary alloys EG(1) EG(0) b bps

AlxGa1−xN 6.183 (6.25) 3.510 (3.510) 0.7 0.10

Alx In1−xN 6.183 (6.25) 0.771 (0.78) 2.5 0.86

Gax In1−xN 3.510 (3.510) 0.771 (0.78) 1.4 0.30

Fig. 9.47 Energy band
structure of GaN calculated
by empirical pseudopotential
method
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Fig. 9.48 Energy band
structure of AlN calculated
by empirical pseudopotential
method
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Fig. 9.49 Energy band
structure of InN calculated
by empirical pseudopotential
method
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important feature of the nitrides is the narrow band gap on InN which recalls revised
calculations of the band structures. Energy band calculations are then carried out to
explain the new results by empirical pseudopotential, ab initio and density functional
method [50–52]. These results are reviewed by Furgaftman andMeyer [59],Wu [60],
and Van de Walle [61].

9.7.2 Bowing of the Band Gaps and the Effective Masses
in the Ternary Alloys

The composition dependence of the ternary alloys exhibit bowing (convex) and is
well approximated by a parabolic relation for AxB1−xN as

EG(AxB1−xN) = EG(AN) · x + EG(BN) · (1 − x) − b · x(1 − x) , (9.211)

where the linear relation between the composition x and the lattice constant a is
assumed;

a(AxB1−xN) = a(AN) · x + a(BN) · (1 − x) . (9.212)

Above relation (9.212) is called Vegard’s law [65]. The composition dependence of
the direct band gaps is calculated by the pseudopotential method. When we assume
the Vegard’s law for the pseudopotentials;

V S(AxB1−xN) = V S(AN) · x + V S(BN) · (1 − x) , (9.213)
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Fig. 9.50 Direct band gaps of ternary alloys as a function of the lattice constants, where the lattice
constants of the ternary alloys are assumed to obey Vegard’s law. The solid curves are calculated
by the empirical pseudopotential method with one additional parameter bps to explain the bowing
effect. The recommended curves for the ternary alloys by Vurgaftman and Meyer [59] are shown
by dotted lines

and similar relation for V A, the calculated results do not agree with the experimental
data, but the curves are convex instead.We propose the following method to estimate
pseudopotentials by introducing the bowing parameter bps for the pseudopotentials;

V S(AxB1−xN) = V S(AN) · x − bpsV
S
ave · x(1 − x) + V S(BN) · (1 − x) (9.214)

and similar relation for V A. In (9.214), V S
ave (similar relation for V A

ave) is the average
value of the binary crystals

V S
ave = 1

2

[
V S(AN) + V S(BN)

]
(9.215)

The most important point of the introduction of the bowing parameter for the
pseudopotentials bps is that only one additional parameter gives a good agreement
with the experiment data. Calculated direct band gaps of ternary alloys are shown
in in Fig. 9.50, where the present calculations are compared with the recommended
curves of Vurgaftman and Meyer [59] and we find a very good agreement with each
other. Theoretical calculations of the direct band gaps of the ternary nitrides have
been carried out by using the first principles (ab initio) methods [49–52], where they
adjust atomic positions of the cations (In or Ga) in the supercells so that the calculated
results agree well with experimental observation. Cluster with different number of
the cations and possible configurations are discussed in detail Caetano et al. [49].

The compositional dependence of the ternary alloys of nitrides are very useful
for band gap engineering. We have to note here that the energy band structures of
ternary alloys AxB1−xN are calculated by assuming that the lattice constants follow
Vegard’s law. Vurgaftman and Meyer [59] proposed the following relation for the
observed compositional dependence of the band gaps
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Fig. 9.51 Critical point
energies at Γ , L , M , A, K ,
and H points as a function of
the composition x for the
ternary alloys Ga1−x InxN.
The critical point energies
are measured from the top of
the valence band. The lowest
conduction band is located at
the Γ point and thus all the
alloys are direct bang gap
semiconductors

Fig. 9.52 Composition
dependence of the band edge
effective mass of Ga1−xInxN
obtained from the
pseudopotential calculations
of the energy bands of
Ga1−xInxN. The solid curves
are the best fitted empirical
expressions with the bowing
parameters as given by
(9.218) and (9.219)

EG(AxB1−xN) = EG(AN) · x + EG(BN) · (1 − x) − b · x(1 − x) , (9.216)

where −b · x(1 − x) is called “bowing term” and b is the bowing parameter. In
Table 9.5 calculated energy gaps of AlN, GaN, InN, and the bowing parameters b
of Vurgaftman and Meyer [59] and bowing parameters of pseudopotentials bps are
summarized. Here we present the critical point energies with respect to the valence
band top and the calculated band edge effectivemass as a function of the composition
x of the ternary alloys Ga1−x InxN in Figs. 9.51 and 9.52, where we find that all of the
ternary alloys have direct band gaps at theΓ point. The band edge effectivemasses are
estimated from the energy band calculations based on the pseudopotential method
as described below. As an example we present the conduction band dispersion of
GaN near the Γ point in Fig. 9.53, where the conduction band energy is plotted in
the vicinity of the Γ point in the direction k‖ (parallel to the c–axis) and k⊥ (in the
basal plane). The solid lines shows the best fit curve of the non–parabolic band given
by (2.97) of Chap.2

E
(
1 + E

EG

)
= �k2

2m∗ (9.217)

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. 9.53 Conduction band
dispersion of GaN near the
band edge. Data plotted by ◦
are the calculated result of
the pseudopotential method
and the solid curves are best
fitted to the calculations with
the masses m‖ = 0.135m
and m⊥ = 0.145m by using
the non–parabolic dispersion
given by (2.97)

where EG = 3.51 eV is the energy gap and m‖ and m⊥ are the band edge effective
masses in the direction ‖ and ⊥ (basal plane) to the c-axis. We find a very good
agreement between the pseudopotential calculations and the non–parabolic band
with m‖ = 0.135m and m⊥ = 0.145m. On the other hand the parabolic band
dispersion deviates from the calculated energy band in the higher energy region.
It is very interesting to point out that the effective mass anisotropy is quite small
but the mass m‖ < m⊥ in the whole range of the composition x . The composition
dependence of the effective masses m⊥ and m‖ exhibits bowing characteristics and
well approximated by the following relations. in the case of Ga(1 − x)InxN

m⊥/m = 0.145(1 − x) − 0.070x(1 − x) + 0.045x , (9.218)

m‖/m = 0.135(1 − x) − 0.060x(1 − x) + 0.040x . (9.219)

We have to note here that the effective mass of the conduction band in GaN
is m∗ = 0.20m reported so far by Vurgaftman et al. [59] as shown in Table9.6,
which is a little bit larger than the effective mass m∗ �= 0.145m calculated by the
pseudopotential energy band calculations.

In Fig. 9.54 valence band dispersions near the band edge at Γ point are plotted,
where the pseudopotential calculations give the crystal field splitting Δcr = 0.0213
eV and the heavy and light hole bands are slightly split in the k⊥ direction. The
solid curves are best fitted parabolic functions with m‖ = m⊥ = 0.155m, and the
anisotropy of the heavy hole band is quite small, while the crystal field split valence
band exhibits considerable anisotropy, mch‖ = 0.12m and mch⊥ = 0.16m. Here we
have to note that the spin–orbit interaction is not included in the present energy band
calculations. The spin–orbit interaction results in additional valence band splitting of
the heavy hole and light hole bands as discussed later. For comparison we estimate
the valence band tops using the parameters of Vurgaftman et al. [59] in Table9.6,
Δcr = 0.010 eV and Δso = 0.017 eV, we obtain Ehh = 0, Elh = −0.0061 eV, and
Ech = −0.0218 eV, where we assumed Δ2 = Δ3 = Δso/3.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Table 9.6 Energy band parameters of wurtzite nitrides at T = 300K. (After Chuang and Park [71]
and Vurgaftman and Meyer [59])

Parameters GaN [71] GaN [59] AlN [59] InN [59]

Lattice constant a
[Å]

3.1892 3.189 3.112 3.545

Lattice constant c
[Å]

5.1850 5.185 4.982 5.703

EG [eV] 3.44 3.510 6.25 0.78

Δcr [eV] 0.016 0.010 −0.169 0.040

Δso [eV] 0.012 0.017 0.019 0.005

m‖
e/m0 0.20 0.20 0.32 0.07

m⊥
e /m0 0.18 0.20 0.30 0.07

A1 −6.56 −7.21 −3.86 −8.21

A2 −0.91 −0.44 −0.25 −0.68

A3 5.65 6.68 3.58 7.57

A4 5.65 −3.46 −1.32 −5.23

A5 −3.13 −3.40 −1.47 −5.11

A6 −4.86 −4.90 −1.64 −5.96

a1 [eV] −4.9 −3.4 −3.5

a2 [eV] −11.3 −11.8 −3.5

a [eV]a −8.16 −10.0 −9.0 −3.5

ac = 0.5a [eV]b −4.08 −5.0 −4.5 −1.75

D1 [eV] 0.7 −3.7 −17.1 −3.7

D2 [eV] 2.1 4.5 7.9 4.5

D3 [eV] 1.4 8.2 8.8 8.2

D4 [eV] −0.7 −4.1 −3.9 −4.1

D5 [eV] −4.0 −3.4 −4.0

D6 [eV] −5.5 −3.4 −5.5

c11 [1010 N/m2] 29.6 39.0 39.6 22.3

c12 [1010 N/m2] 13.0 14.5 13.7 11.5

c13 [1010 N/m2] 15.8 10.6 10.8 9.2

c33 [1010 N/m2] 26.7 39.8 37.3 22.4

c44 [1010 N/m2] 2.41 10.5 11.6 4.8

e31 [C/m2] (−1.7)c −0.35 −0.50 −0.57

e33 [C/m2] (+3.4)c 1.27 1.79 0.97

Psp [C/m2]d −0.034 −0.090 −0.042
aVarious values of the hydrostatic deformation potential a have been reported and the values listed
above are not yet fixed.
bThe hydrostatic deformation potential ac is assumed to be ac = 0.5a (see [71]).
cThe values in the parentheses are d31 and d33 [10−12 m/V] (from [66]).
d Psp is the spontaneous polarization.
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Fig. 9.54 Valence band
dispersion of GaN near the
band edge. The effective
masses are determined by
assuming a parabolic relation
with the hole masses shown
in the figure

9.7.3 Valence Band Structure in the Presence of Strain

In order to discuss the quantum well lasers based on the wurtzite crystals we have to
note the following features. (1) The degeneracy of the valence bands of wurtzite is
removed by the crystal field, and (2) strong piezoelectric field modifies the electronic
and optical properties of the quantumwell structures.However, the treatments ofGaN
based laser diodes are easily extended from the LDs based on the zinc blende type
materials discussed in the previous sections. Strain Hamiltonian for wurtzite crystals
are easily obtained from (4.168) by defining D1, D2, D3, D4, D5, and D6 using 4–th
rank tensor for wurtzite (or D11, D12, D13, D33, D44, and D66 = (1/2)(D11 − D12)),
which are given by Park and Chuang [66] and also expressed by using different
notation based on Picus–Bir strain Hamiltonian [67–70].

The valence band structure of strained wurtzite semiconductors with piezoelectric
field is determined by the 6×6 Hamiltonian given by Park and Chuang [66]. In order
to diagonalize the Hamiltonian we may use the same method used in the case of zinc
blende semiconductors such as GaAs given in the previous sections. The energy
states in strained quantum well of GaN are also calculated in a similar fashion as in
the case of zinc blende semiconductors. The detailed treatment is given by Chuang
[71].

The band structures of zinc blende andwurtzite crystals are illustrated in Fig. 9.55,
where the effect of crystal field and the spin–orbit interactions in a wurtzite crystal
are shown to result in the splitting of the valence bands, A, B and C. The crystal–field
splitting leads to the band–edge energies (see the treatment of spin–orbit interaction
given in Chap.2):

〈X
∣∣Hcr

∣∣X〉 = 〈Y ∣∣Hcr

∣∣Y 〉 = Ev + Δ1 , (9.220a)

〈Z
∣
∣Hcr

∣
∣Z〉 = Ev , (9.220b)

where Δ1 is the crystal–field–splitting energy between the |X〉, |Y 〉 bands from the
|Z〉 band. The spin–orbit splitting is parameterized by the following relations:

〈X
∣∣H(so)z

∣∣Y 〉 = −iΔ2 , (9.221a)

〈Y ∣∣H(so)x

∣∣Z〉 = 〈Z
∣∣H(so)y

∣∣X〉 = −iΔ3 . (9.221b)

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. 9.55 Schematic illustration of the crystal–field splitting and spin–orbit splitting in wurtzite
crystals as compared to zinc blende crystals

Here we will summarize the 6 × 6 Hamiltonian in the wurtzite symmetry, using the
basis functions
∣∣V1〉 = − 1√

2

∣∣(X + iY ) ↑〉 ,
∣∣V2〉 = 1√

2

∣∣(X − iY ) ↑〉 ,
∣∣V3〉 = ∣∣Z ↑〉 ,

∣∣V4〉 = 1√
2

∣∣(X − iY ) ↓〉 ,
∣∣V5〉 = − 1√

2

∣∣(X + iY ) ↓〉 ,
∣∣V6〉 = ∣∣Z ↓〉 .

The corresponding 6× 6 matrix splits into two identical 3× 3 matrices as shown by
(2.59) of Chap.2. The 3 × 3 matrix may be expressed by

∣∣∣
∣∣∣

Δ1 + Δ2 0 0
0 Δ1 − Δ2

√
2Δ3

0
√
2Δ3 0

∣∣∣
∣∣∣
. (9.222)

The above equation gives the eigenstates for the valence–band edges, EHH, ELH, and
ECH,

EHH = Δ1 + Δ2 , (9.223a)

ELH = 1

2

(
Δ1 − Δ2 +

√
(Δ2 − Δ1)

2 + 8Δ2
3

)
, (9.223b)

ECH = 1

2

(
Δ1 − Δ2 −

√
(Δ2 − Δ1)

2 + 8Δ2
3

)
. (9.223c)

When we include the strain effect in wurtzite crystal, the 6 × 6 Hamiltonian is
given by [66]

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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∣∣
∣∣∣∣∣∣
∣∣∣∣

F −K ∗ −H∗ 0 0 0
−K G H 0 0 Δ

−H H∗ λ 0 Δ 0
0 0 0 F −K H
0 0 Δ −K ∗ G −H∗
0 Δ 0 H∗ −H λ

∣∣
∣∣∣∣∣∣
∣∣∣∣

, (9.224)

where

F = Δ1 + Δ2 + λ + θ , (9.225a)

G = Δ1 − Δ2 + λ + θ , (9.225b)

λ = �
2

2m0

[
A1k2

z + A2(k
2
x + k2

y)
]+ λε , (9.225c)

θ = �
2

2m0

[
A3k2

z + A4(k
2
x + k2

y)
]+ θe , (9.225d)

K = �
2

2m0
A5(kx + iky)

2 + D5e+ , (9.225e)

H = �
2

2m0
A6(kx + iky)kz + D6ez+ , (9.225f)

λe = D1ezz + D2(exx + eyy) , (9.225g)

θe = D3ezz + D4(exx + eyy) , (9.225h)

e+ = exx − eyy + 2iexy , (9.225i)

ez+ = exz + ieyz , (9.225j)

Δ = √
2Δ3 . (9.225k)

Here the A,
i s are the valence–band effective–mass parameters which are similar to the

Luttinger parameters in zinc blende crystals, and D,
i s are the deformation potentials

for the wurtzite crystals. The crystal–field splitting energy is defined by Δcr = Δ1,
and the spin–orbit splitting energy Δso = 3Δ2 = 3Δ3 is often used. The values
of these parameters are tabulated for several wurtzite crystals by Vurgaftman [39],
and by Park and Chuang [66]. The estimated values of the parameters are listed in
Table9.6.

The piezoelectric contribution to the total polarization is taken into account by
the following relation for the piezoelectric polarization,

Ppz
i = ei jkei j = di jk Tjk , (9.226)

where ei jk and di jk are the piezoelectric coefficients and are often rewritten as eiα

(and diα)

ei jk =
{

eiα, (i = 1, 2, 3; α = 1, 2, 3) ,
1
2eiα, (i = 1, 2, 3; α = 4, 5, 6) .

(9.227)
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with the notations

tensor notation jk; 11 22 33 23, 32 13, 31 12, 21
matrix notation α; 1 2 3 4 5 6

The stress tensor Ti j is related to the strain tensor ekl by

Ti j = ci jklekl or ei j = si jkl Tkl (9.228)

where ci jkl and si jkl are the elastic stiffness and elastic compliance constants, respec-
tively (see also Appendix C for the stress–strain relations). Non–zero components of
the piezoelectric constants eiα (similarly for diα) are e14 = e15 = e16 for zinc blende
crystals and e15 = e24, e31 = e32 and e33 for wurtzite crystals. The piezoelectric
coefficients eiα for zinc blende crystals are then given by

∣∣∣∣∣
∣

0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e14

∣∣∣∣∣
∣
, (9.229)

and for wurtzite crystals (C6v = 6mm symmetry)

∣∣∣∣∣
∣

0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

∣∣∣∣∣
∣
. (9.230)

Using the matrix notations for the strain tensors

∣
∣exx , eyy, ezz, {eyz, ezy}, {exz, ezx }, {exy, eyx }

∣
∣ = ∣∣e1, e2, e3, e4, e5, e6

∣
∣ ,

i th component of the piezoelectric polarization is given by

Ppz
i = ei1e1 + ei2e2 + ei3e3 + ei4e4 + ei5e5 + ei6e6 . (9.231)

Therefore the piezoelectric polarization components Ppz
i for zinc blende crystals are

Ppz
i = e14 (e4 + e5 + e6) = e14e jk , j �= k , (9.232)

and for wurtzite crystals are

Ppz
x = e15e5 = e15 (exz + ezx ) ,

Ppz
y = e15e4 = e15

(
eyz + ezy

)
, (9.233)

Ppz
z = e31e1 + e31e2 + e33e3 = e31

(
exx + eyy

)+ e33ezz .
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Calculating the electric field component Epz due to the piezoelectric polarization9

and rewriting the potential as V (z)+eEpzz, then wemay solve the 6×6Hamiltonian
as described before in the case of (9.161). Various parameters of the wurtzite nitrides
GaN, AlN, and InN are summarized in Table9.6.

The strain effect on theGaN based lasers is treated as follows. Consider a quantum
well structure of AlxGa1−xN /GaN /AlxGa1−xN. The GaN well region is grown
pseudomorphically along the c axis (z axis) on a thick AlxGa1−xN layer and the
strain tensor in the well region has the following components,

exx = eyy = asub − aepi

aepi
, (9.234a)

ezz = −2
c13
c33

exx , (9.234b)

exy = eyx = ezx = 0 , (9.234c)

where asub and aepi are the lattice constants of the AlxGa1−xN barrier (substrate) and
the GaN well layers, respectively. The hydrostatic energy shift in the band–gap is
written as

EG(X) = a1ezz + a2
(
exx + eyy

)+ EG(0) , (9.235)

where a1 and a2 are the overall deformation potentials parallel to the c axis and
perpendicular to the c axis, respectively. Sometimes the anisotropy is neglected and
approximation is made as a1 = a2 for simplicity. The values a and ac shown in
Table9.6 are estimated by the following relation

EG(X) � a
(
exx + eyy + ezz

)+ EG(0) , (9.236a)

a � a1 + 2a2

3
, (9.236b)

ac � 0.5a . (9.236c)

Here we have to note the validity of the reported values of the band parameters
for wurtzite GaN, AlN, and InN listed in Table9.6, where we revised the values of
the data by Furgaftman et al. [39] (used in the second edition) by using new data by
Furgaftman andMeyer [59]. These values are not yet well established for InN and all
other data are subject to revision in the future. When we use the parameters reported
by Furgaftman et al. [39], the strain dependence of the valence bands are too big, and
the band edge of the valence band (HH) increases rapidlywith the compressive strain,
resulting in an anomalous behavior. Instead the parameters reported by Chuang [71]
give a reasonable change in the valence bands labeled HH, LH, and CH, where HH,
LH, and CH are heavy–hole–like, light–hole–like, and crystal–field (plus spin–orbit)
split bands, respectively. Therefore the valence bands of GaN calculated by using the
parameters ofChuang [71] are presented here. Figure9.56 shows the conduction band
edge Ec and the three valence bands as a function of biaxial strain exx = eyy defined

9Electric displacement is given by Dz = εzz Ez + Ppz
z with the dielectric constant εzz . No external

charge gives rise to Dz = 0 and thus Ez = −Ppz
z /εzz .
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Fig. 9.56 Band–edge
energies of wurtzite GaN as
a function of biaxial strain
exx = eyy . The upper figure
is for the conduction band
edge and the lower figure
shows the HH, LH, and CH
bands as a function of biaxial
strain

Fig. 9.57 Valence band
dispersions of HH, LH, and
CH bands without strain as a
function of kx and ky in units
of the zone boundary
M = (2π/a)[1/√3, 0, 0]

by (9.234a)∼ (9.234c). Here we find that the valence band ordering is unchanged for
the compressive strain, but the ordering of HH and LH is changed at a higher tensile
strain.

The first Brillouin zone of wurtzite crystal is shown in Fig. 9.45 with the critical
point notations, where we have to note that the valence band dispersions in the case
of the biaxial strain are the same for kx and ky . The valence band dispersions of HH,
LH, and CH in GaN without strain are shown in Fig. 9.57. We find in Fig. 9.57 that
the LH and CH bands exhibit anti-crossing due to the crystal–field and spin–orbit
interactions. The valence band dispersions under biaxial strain given by (9.234a)
∼ (9.234c) are shown for a compressive biaxial strain of −0.005% (exx = eyy =
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Fig. 9.58 Valence band
dispersions of HH, LH, and
CH bands with a
compressive strain of −0.5%
(exx = eyy = −0.005) as a
function of kx and ky in units
of the zone boundary
(2π/a)[1/√3, 0, 0]

Fig. 9.59 Valence band
dispersions of HH, LH, and
CH bands with a tensile
strain of +0.5%
(exx = eyy = +0.005) as a
function of kx and ky in units
of the zone boundary
(2π/a)[1/√3, 0, 0]

−0.005) in Fig. 9.58 and for a tensile biaxial strain of +0.005% (exx = eyy =
+0.005) in Fig. 9.59. Here the energy bands are plotted as a function of kx and ky

in the units of the zone boundary M = (2π/a)[1/√3, 0, 0]. Chuang [71] reported
the calculated results on the subband energies of the valence bands and the optical
gain in a strained Al0.3Ga0.7N /GaN /Al0.3Ga0.7 quantum–well structure. The band
gaps of the nitrides calculated by the authors are shown in Figs. 9.47, 9.48, and 9.49,
for GaN, AlN, and InN, respectively, and their ternary compounds are shown in
Fig. 9.50 as a function of the lattice constants. Chuang [71] used a similar relation for a
ternary compound and the band gap discontinuity is estimated by ΔEv = 0.33ΔEG.
The lattice constants of GaN and AlN are a = 3.19 and 3.11 [Å], respectively,
and the strain in AlxGa1−xN/GaN/AlxGa1−xN (x = 0.3) is estimated by the linear
interpolation of the lattice constants, giving rise to the compressive strain in GaN
well region.

The subband energies in the valence bands are plotted in Fig. 9.60 for the well
width Lw = 26 [A] and Fig. 9.61 for the well width Lw = 50 [A] as a function of

kt , where kt =
√

k2
x + k2

y is the magnitude of the wave vector in the (kx , ky) plane.

From the results we find that HH1 and LH1 subbands are involved with the laser
oscillations, and that the TE mode oscillations due to the transition between the
electron subband and the HH1 subband dominate the laser oscillations.
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Fig. 9.60 The valence
subband structures of a
strained Al0.3Ga0.7N
/GaN/Al0.3Ga0.7N quantum
well with well width of
Lw = 26 A. The reference
energy is set at the valence
band edge of unstrained
GaN. After Chuang [71]

Fig. 9.61 The valence
subband structures of a
strained Al0.3Ga0.7N
/GaN/Al0.3Ga0.7N quantum
well with well width of
Lw = 50 A. The reference
energy is set at the valence
band edge of unstrained
GaN. After Chuang [71]

Fig. 9.62 Optical gain
spectra for a strained
Al0.3Ga0.7N
/GaN/Al0.3Ga0.7N quantum
well with well width of
Lw = 26 A, at carrier
concentrations n = 1× 1019,
2 × 1019, and 3 × 1019

cm−3. The solid curves are
for the TE mode polarization
and the dashed curves are for
the TM mode polarization.
After Chuang [71]

9.7.4 Optical Gain of Nitride Quantum Well Structures

The calculations of the optical gain coefficients are straight forward. The results
obtained by Chuang [71] are shown in Fig. 9.62 for the quantum well with well
width Lw = 26 A and in Fig. 9.63 for the quantum well with well width Lw = 50
A for the carrier concentrations 1 × 1019, 2 × 1019 and 3 × 1019 cm−3, where solid
curves are for TEmode and dashed curves are for TMmode. Here we see that the TE
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Fig. 9.63 Optical gain
spectra for a strained
Al0.3Ga0.7N
/GaN/Al0.3Ga0.7N quantum
well with well width of
Lw = 50 A, at carrier
concentrations n = 1× 1019,
2 × 1019, and 3 × 1019

cm−3. The solid curves are
for the TE mode polarization
and the dashed curves are for
the TM mode polarization.
After Chuang [71]

mode gain is much higher than the TMmode gain, as expected from the valence band
structures. The reason of the higher gain for TE mode is due the larger contribution
from the HH subbands, while the TMmode oscillations arise from the LH subbands,
as shown by (9.170) and (9.171).

9.8 Problems

(9.1) Luminescence experiments in direct gap semiconductors such as GaAs are
used to evaluate hot electron distribution function. When a high electric
filed is applied to a semiconductor, electrons are accelerated and resulting
in hot electron state. Assuming the electron distribution is given by Maxwell–
Boltzmann distribution function, plot luminescence spectra at Tlattice = 77 K
and Telectron = 150 K for GaAs, where the energy band gap is assumed to be
EG = 1.50 eV.

(9.2) Derive the relation (9.34) between the absorption coefficient α and stimulated
emission rate rstim for direct transition.

(9.3) Double heterostructure is very important for the quantum well lasers. Assume
a double heterostructure laser consisting of the guiding region with higher
refractive index nguide = 3.5 sandwiched by symmetric cladding layers with
lower refractive index nclad = 3.3, and calculate the effective refractive index
ñ.

(9.4) Using above result for the effective refractive index ñ, calculated the electric
field distribution of TE0 mode wave and discuss the confining of the waves in
the guiding layer.

(9.5) Energy band calculations are carried out as follows: (1) calculate the reciprocal
vectors G and then (2) plot the free electron bands in the full Brillouin zone.
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Chapter 10
Answers for Problems

(1.1) The computer program to evaluate reciprocal vectors (in atomic units) is given
below, where the program is written by using Octave (free software, compat-
ible to MATLAB):
Efree=Gx2+ Gy2+ Gz2; free electron energy
Plane waves 59 for Efree = 16 for example

% Start of program
R = 1;
for Nx = -4:4;
for Ny = -4:4;
for Nz = -4:4;
Efree = 16;
N2=(Nx - Ny + Nz)2 + (Nx + Ny - Nz)2 + (- Nx + Ny + Nz)2;
if N2 ≤ = Efree;
Gx(R) = Nx - Ny + Nz;
Gy(R) = Nx + Ny - Nz;
Gz(R)= - Nx + Ny + Nz;
R = R + 1;
endif;
endfor;
endfor;
endfor;
Ncut = R - 1; % Number of plane waves for a given Efree
% End of plane waves
% A set of reciprocal lattice vectors is given by [Gx(R),Gy(R),Gz(R)]
% Compare the calculated results with Table10.1.
% Use sort program to list from the lowest value to the highest value.
% Print [Gx(R),Gy(R),Gz(R)]

© Springer International Publishing AG 2017
C. Hamaguchi, Basic Semiconductor Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-66860-4_10
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Table 10.1 Fundamental vectors a, b, c, and unit cell volume v of single cubic, body centered,
face centered and hexagonal closed pack crystals

Simple cubic Body centered cubic Face centered cubic Hexagonal c p

a aex (a/2)− ex + ey + ez) (a/2)(ey + ez) aex
b aey (a/2)(ex − ey + ez) (a/2)(ex + ez) (a/2)(ex + √

3ey)

c aez (a/2)(ex + ey − ez) (a/2)(ex + ey) cez
v a3 (1/2)a3 (1/4)a3 (

√
3/4)a2c

(1.2) Using Bohr radius aB = 0.5.2917706 [Å] and energy Rydberg Ry in atomic
units for energy E and wave vector k in atomic units with a as lattice constant
are given by

k = 2π

a
→ k · aB = 2π

aB
a

≡ D in [a.u]

E = �
2

2m ∗ a2B
= 2.1799 × 10−18 [J] = 1 [Ry] = 1[a.u]

Ry/e = 13.6077 [eV]

Ry = 13.6077; ! Rydberg in [eV]
See also (1.117a)–(1.117c) of the textbook.

(1.3) We define D = 2π(aB/a) with the lattice constant a, and then wave vector
kx = k in the first Brillouin zone for fcc crystal is given by [−2π/a,+2π/a],
which is rewritten as [−1,+1] in atomic unit. Equation (1.35) is written as,

E(k) = 1

2

{
D2

[
k2 + (k − 1)2 + 2

]

±
√
D4[k2 − (k − 1)2]2 − 2|V (G1)|2

}

Energy in [eV] is evaluated by E × Ry with Ry = 13.605 [eV].
(1.4) As shown in Fig. 1.7, the lower three free electron bands for kx = k, ky =

kz = 0 are

E(k) = Ry × k2,

E(k) = Ry × (k ± 1)2 + 2,

which are plotted by dashed curves in Fig. 10.1.
As an example we calculate the energy band structure by nearly free electron
approximation, taking account of the lowest two band. We use parameters
of Si, where a = 5.43 [Å], V (G0) = 0, V (G1) = V s

3 = −0.21 [a.u.], and
Gn = 1πn/a with G1 = ±1 in [a.u.]. The calculated results are shown by
solid curves in Fig. 10.1.

(1.5) The results are tabulated in Table10.1. For hexagonal closed pack crystal
refer Fig. 9.44 of Chap.9.

(1.6) For hexagonal closed pack crystal refer Figs. 9.44 and 9.45 of Chap.9. The
results are summarized in Table10.2.

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
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Fig. 10.1 Nearly free
electron approximation
based on 2 bands are shown
by solid curves in the
direction [kx , 0, 0]. The
energy is given by
multiplying Ry× D2(k ± 2)2

Table 10.2 Reciprocal lattice vectors [a∗, b∗, c∗] and the volume of the first Brillouin zone �BZ

Simple cubic Body centered c Face centered c Hexagonal closed p

a∗ (1/a)ex (1a)(ey + ez) (1/a)(−ex + ey + ez) (1/a)[ex−(1/
√
3)ey]

b∗ (1/a)ey (1/a)(ex + ez) (1/a)(ex − ey + ez) (2/
√
3a)ey

c∗ (1/a)ez (1/a)(ex + ey) (1/a)(ex + ey − ez) (1/c)ez
�BZ (2π/a)3 2 (2π/a)3 4 (2π/a))3 2(2π)3/(

√
3a2c)

(1.7) Non–zero matrix element of the spin states is

〈↑ |σz| ↑〉 = 1 ,

and thus we obtain

−i�〈X (Γ l
25′) ↑

∣
∣
∣
(
x

∂

dy
− y

∂

dx

)
σz

∣
∣
∣Y (Γ l

25′) ↑〉

= −i�〈X (Γ l
25′)

∣
∣
∣
(
x

∂

dy
− y

∂

dx

) ∣
∣
∣Y (Γ l

25′)〉 .

Since the basis functions are given by |X〉 = |yz〉 and |Y 〉 = |zx〉, non–zero
component of the above equation results in

−i�〈X (Γ l
25′)

∣
∣
∣
(

−y
∂

dx

) ∣
∣
∣Y (Γ l

25′)〉 ≡ i�l
25′/3 ,

where�l
25′/3 is defined to express the strength of the spin–orbit splitting. The

result is just the same as (1.149a). In a similar fashion, (1.149b) and (1.149c)
are derived.

(1.8) The symmetry points and the distances between the symmetry points are
summarized in Table10.3:

(2.1) Since cyclotron resonance condition is given by ω = ωc = eB/m∗ with the
microwave angular frequency ω = 2π × 24 × 109, the required magnetic

http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
http://dx.doi.org/10.1007/978-3-319-66860-4_1
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Table 10.3 Symmetry points (critical points) and the lengths between the points for a face centered
cubic crystal, where wave vector k is given in atomic units

Brillouin zone Length Symmetry points

Γ to X: |k| = 1 [0,0,0] to [1,0,0]

X to W: |k| = 1/2 [1,0,0] to [1,1/2,0]

W to K: |k| = √
2/4 [1,1/2,0] to [3/4,3/4,0]

K to Γ : |k| = 3/(2
√
2) [3/4,3/4,0] to [0,0,0]

X to U (K): |k| = √
2/4 [1,0,0] to [1, 1/4, 1/4]

L to Γ : |k| = √
3/2 [1/2,1/2,1/2] to [0,0,0]

field is given by for
(1) m∗ = 0.3m:

B = ω × m∗

e
= 2π2.4 × 1010 × 0.3 × 9.11 × 10−31

1.602 × 10−19
= 0.257 [T]

(2) m∗ = 0.067m:

B = 0.0574 [T]

(3) Cyclotron resonance condition ωτ � 1 is satisfied for Ge and Si at low
temperature. As discussed in Chap. 6, electron mobility μ = eτ/m∗ and thus
the condition is rewritten asωcτ = μB � 1. In the case ofGaAs the resonance
magnetic field is quite low and thus μB � 1 (μ � 1.0 ∼ 10 [m2/Vs]), not
enough to observe clear resonance. Instead cyclotron resonance of GaAs is
observed at higher frequency (infrared radiation) and at higher magnetic field
at room temperature, where the condition μB � 1 is satisfied.

(2.2) We derive the following relation for an arbitrary scalar function f (x):

[ f (x), px ] = i�
∂ f (x)

∂x
≡ −px f (x)

Weoperate the commutation relation [ f (x), px ] to an arbitrary scalar function
g(x), and we find

[ f (x), px ] g(x) = ( f (x)px − px f (x)) g(x)

= −i�

(
f (x)

∂g(x)

∂x
− ∂ ( f (x)g(x))

∂x

)

= −i�

(
f (x)

∂g(x)

∂x
− ∂ f (x)

∂x
g(x) − f (x)

∂g(x)

∂x

)

= +i�
∂ f (x)

∂x
g(x)

≡ − (px f (x)) g(x) ,

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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and then we obtain

[ f (x), px ] = i�
∂ f (x)

∂x
≡ −px f (x) .

The commutation relation

[A, p] = A · p − p · A ,

is rewritten as follows by separating in xCyCz direction. Since Ai · p j ≡
Ai p jδi, j , only the case i �= j gives non–zero components and we obtain

[Ax , px ] = −px Ax ,
[
Ay, px

] = −py Ay ,
[
Az, px

] = −pz Az .

These relations give

[A, p] = − p · A = i�∇ · A .

Vector potential is defined as A = ∇ × B and ∇ · A = ∇ · ∇ × B = 0.
Therefore we obtain the following commutation relation

[A, p] = 0; A · p = p · A .

(2.3) Non–parabolic conduction band is given by (2.97)

�
2k2

2m∗
0

≡ γ(E) = E
(
1 + E

EG

)
.

In the limit EG → 0, we obtain

E =
√

�2

2m∗
0

k ,

and thus the energy band exhibits a linear dispersion relation for a narrow
gap semiconductor.

(2.4) The constant energy contour of the valence band in Si shown in Fig. 2.13
exhibit convex surface (heavier effective mass) in the direction < 1, 1, 1 >

and concave surface (lighter effective mass) in the direction < 0, 0, 1 >.
Cyclotron motion of a hole is in the plane perpendicular to the magnetic
field. When a magnetic field is applied in the [1, 1, 1], heavy holes rotate
crossing the convex region and exhibit heavier cyclotron mass. On the other
hand, when a magnetic field is applied in the [0, 0, 1] direction, heavy holes
rotate crossing convex regions, resulting in lighter cyclotron mass. As shown

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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in Fig. 2.13, light hole band is almost spherical and the θ dependence of the
cyclotron mass is almost constant. The warping of the light hole band is
reversed as shown in Fig. 2.13b, c.

(2.5) Inserting given parameters into (2.158) and (2.159),

1

m∗
0

= 1

m
+ EP0

3m

2�0 + 3EG
EG(�0 + EG)

,

g∗
0

2
= 1 + EP0

3

(
1

EG + �0
− 1

EG

)
= 1 +

(
1 − m

m∗
0

)
�0

2�0 + 3EG ,

we obtain the following results.

m∗
0/m = 0.0227 ,

g∗
0 = −14.5 .

These values are in good agreement with the experiments m∗
0 = 0.024m and

g∗
0 = −14.7. We may conclude that k · p perturbation theory is valid for the
conduction band and valence band analysis.

(2.6) Following the procedure to derive (2.61) of Sect. 2.3 we obtain the following
result:

〈u−α|L · σ|u−α〉 = −� ,

(2.7) Density of states ρc(E)dE is defined in terms of electronic states per volume
in the energy range between E and E + dE . Since the electronic states are
defined by the wave vector kx = 2πnx/L , ky = 2πny/L , kz = 2πn=z/L
with nx , ny, nz = ±0, 1, 2, 3, · · ·

ρc(k)D3k = 2

L3

(
L

2π

)3

4πk2dk,

where the factor 2 arises from the spin-degeneracy and k =
√
k2x + k2y + k2z .

(1) Using the relation between energy and wave vector for parabolic band:

E = �
2

2m∗
0

k2

and rewrite the density of states in energy E we obtain

ρc(E)dE = (2m2
0)

3/2

4π2�3
E1/2dE

(2) For non–parabolic band the relation between energy and wave vector is
given by (2.97):

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2


10 Answers for Problems 641

�
2k2

2m∗
0

≡ γ(E) = E
(
1 + E

EG

)
.

Therefore we obtain

ρc(E)dE = (2m2
0)

3/2

4π2�3

√
γ(E)

dγ(E)

dE dE ,

where

dγ(E)

dE dE =
(
1 + 2

E
EG

)
dE .

(2.8) Magnetic field B is expressed by using vector potential A as B = ∇ × A D
(a) This relation is rewritten by separating into its components:

Bx = ∂Az

∂y
− ∂Ay

∂z

By = ∂Ax

∂z
− ∂Az

∂x

Bz = ∂Ay

∂x
− ∂Ax

∂y

(b) When A = (0, B x, 0) used,

Bz = ∂B x

∂x
+ 0 = B, Bx = By = 0 ,

then magnetic field Bz = B is derived and it is called Landau gauge). In this
textbook, we use Landau gauge for Hamiltonian in a magnetic field.
(c) We A = (−B y/2, B x/2, 0) used, and insert it in the last equation of (a),
we obtain

Bz = ∂(B x/2)

∂x
− ∂(−B y/2)

∂y
= (B/2)(1 + 1) = B, Bx = By = 0 ,

and thus this representation is allowed.
(d) If A = (−By, 0, 0) is used, we find

Bz = 0 − ∂(−B y)

∂y
= B, Bx = By = 0 .

This representation is also called Landau gauge.
(3.1) J. M. Luttinger and W. Kohn: Phys. Rev. 97, (1955) 869.
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This paper is based on the k · p perturbation theory and the validity of the
effective mass equation for k � 0 and very important to analyze the Landau
levels in the valence bands.

(3.2) Electron motion in a magnetic field is solved by Newton’s law.
(1) Since the Lorentz force acting to an electron with its effective mass m∗ is
given by

F = −e [E + v × B] .

Without electric field, E = 0, the electron motion is written as

m∗ v

dt
= −ev × B

With the magnetic field B = (0, 0, Bz), the electron motion is written as

m∗ vx

dt
= −evy Bz ,

m∗ vy

dt
= evx Bz ,

m∗ vx

dt
= 0 .

Take time derivative of the first equation and rewrite it by inserting the time
derivative of the second equation dvy/dt , and apply the same procedure to
the second equation:

m∗ d
2vx

dt2
= (eBz)

2vx ,

m∗ d
2vy

dt2
= (eBz)

2vy .

We define

ωc = eBz

m
,

where ωc is the cyclotron angular frequency. We obtain the following solu-
tions:

vx = v cos(ωct) ,

vy = v sin(ωct) ,

and thus we obtain vx + ivy = v exp(iωct). The result means that the electron
makes cyclotron motion with angular frequency ωc.
(2) Since Lorentz force is balanced with the centripetal force, we obtain

m∗ v2

r
= evB
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and then

r = mv

eB
≡ Rc .

(3) From Bohr’s quantization condition
∫
p = h

∫
pdl = (m∗v)2πRc = h ,

is deduced. Therefore we find

Rc = 1

2π

h

m∗v
−→ (m∗v)2 = h

2π
eB = �eB .

Combining these relations we obtain the cyclotron radius given by

Rc =
√

�

eB
≡ l .

This radius is exactly the cyclotron radius of the ground state of the electron
motion, which is obtained as (2.108) of Chap.2.

(4.1) Using reflectivity R given by (4.18), the results are plotted in Fig. 10.2. Note
here that the reflectivity R � 0.2 ∼ 0.3 for many III-V compound semicon-
ductors.

(4.2) The joint density of states for parabolic bands are calculated as follows.
(1) From (4.42)

Jcv(�ω) =
∑

k

δ[Ecv(k) − �ω] = 2

(2π)3

∫
d3k · δ[Ecv(k) − �ω] ,

= 2

(2π)3

∫
4πk2dk · δ[(�2/2μ)k2 + EG − �ω]

Fig. 10.2 Reflectivity R as a
function of κ1 for κ2 = 0.1,
5.0 and 10

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Here we use the formula (A.12) and (A.16) of Appendix A

δ(ax) = 1

a
δ(x), a > 0

δ(x2 − a2) = 1

2a
[δ(x − a) + δ(x + a)] , a > 0

and we find the following relation:

δ(c1k
2 − c2) = 1

c1
δ
(
k2 − c2/c1

) = 1

c1
δ
(
k2 − c0

)
.

where c0 = c2/c1 = (
�ω − EG)/(�2/2μ

)

∫
k2δ

[(
�
2

2μ
k2 + EG − �ω

)]
dk =

∫
k2

(
�

2μ

)−1

δ(k2 − c0)dk

=
∫

k2
(

�

2μ

)−1 1

2
√
c0

[
δ(k − √

c0) + δ(k + √
c0)

]
dk

= 2μ

�2
c0

1

2
√
c0

= 1

2

(
2μ

�2

)3/2 √
�ω − EG .

Finally we obtain

Jcv(ω) = 4π

(2π)3

(
2μ

�2

)3/2 √
�ω − EG .

(2) Next we evaluate the joint density of states for parabolic bands from (4.44)

Jcv(�ω) = 2

(2π)3

∫

�ω=Ecv

dS

|∇kEcv(k)| .

We rewrite the combined bands as

Ecv(s) = s2 + EG − �ω

∇Ecv(s) = 2s∫
dS = 4πs2

and then the joint density of states is expressed as

Jcv(ω) = 2

(2π)3

(
2μ

�2

)3/2 4πs2

2s
, for Ecv = �ω

= 4π

(2π)3

(
2μ

�2

)3/2 √
�ω − EG .

Therefore two different methods give the same joint density of states.

http://dx.doi.org/10.1007/978-3-319-66860-4_4


10 Answers for Problems 645

(4.3) These two features are explained in terms of excited phonon number.
(1) The number of excited phonons is given by Bose–Einstein statistics and
increases with increasing temperature, resulting in larger absorption coeffi-
cient at higher temperatures.
(2) At higher temperature, electron–phonon or hole–phonon interactions
increase, leading stronger broadening of the density of states. Therefore the
absorption coefficient looses its clearness at higher temperatures.

(4.4) Using (4.128) and (4.130a), we obtain the following relations:

κ2(x0) = AP2
0 ω

−3/2
0

1

x20
(x0 − 1)1/2

κ1(x0) = 1 + AP2
0 ω

−3/2
0

1

x20

[
2 − (1 + x0)

1/2 − (1 − x0)
1/2

]

(4.5) The coefficient C0 = AP2
0 ω

−3/2
0 is given by

C0 = e2�1/2

2πε0m2

mEP0

2

(
2μ

�2

)3/2 (EG
�

)−3/2

= 4.31

where the value P2
0 is evaluated from P2

0 = (m/2)EP0.
(4.6) From the above result we may rewrite the dielectric functions:

κ1(x0) = 1 + C0
1

x20

[
2 − (1 + x0)

1/2 − (1 − x0)
1/2

]
for x < x0 ,

= 1 + C0
1

x20

[
2 − (1 + x0)

1/2
]
for x > x0

κ2(x0) = C0
1

x20
(x0 − 1)1/2

Using the parameters provided the dielectric functions are plotted in Fig. 10.3.
The results are obtained for the direct E0 transition from the heavy hole
and light valence bands to conduction band, and the contributions from the

Fig. 10.3 Dielectric
functions κ1(x0) and κ2(x0)
for the transition between the
heavy hole band and the
conduction band

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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other interband transitions are neglected. Although the analysis is based on a
simplified case, the obtained feature explains the experimental results quite
well.

(4.7) We use (4.130a).
(1) Inserting the parameters in (4.130a) and putting x0 = 1 we obtain

κ1(ω) = 1 + AP2
0 ω

−3/2
0

1

x20

[
2 − (1 + x0)

1/2 − (1 − x0)
1/2

]

= 1 + C0
1

x20

[
2 − (1 + x0)

1/2 − (1 − x0)
1/2

]

� 1 + C0
1

x20

[
2 − √

2
]

= 3.33

(2)Whenwe use (4.130a), we obtainκ1 = 7.37. This value is very close to the
experimental value κ1 = 10.7 and the k · p theory gives a good explanation of
the dielectric function. (3) Inserting EG = 1.43eV, we find (1) κ1(x0) = 3.52
and (2) κ1(x0) = 7.88.

(5.1) Two-dimensional band with reduced mass μy and μz is given by

E = �
2

2μy
k2y + �

2

2μz
k2z + EG .

The density of states for this band is obtained applying the same procedure
dealt in Chap.8, where the density of states of two–dimensional electron gas
is deduced from (8.12). First we define k ′

i = ki/
√

μi/m and rewrite the 2D
electronic state as

E = �
2

2m

(
k ′2
y + k ′2

z

) + EG = �
2

2m
k ′2 + EG ,

Since

dkyDkz =
√

μyμz

m
dk ′

ydk
′
z

dk ′
ydk

′
z = 2πk ′dk ′ = π d(k ′2) = π

2πm

�2
d(E − EG)

dkyDkz = 2

(2π)2
dkyDkz == 2

(2π)2

√
μyμz

m

2πm

�2
d(E − EG)

Finally we obtain the following relation for the joint density of states:

J 2D
cv (E)d(E − EG) =

√
μyμz

π�2
d(E − EG), E ≥ EG ,

where we included factor 2 for the spin degeneracy.
For optical transition we may rewrite this equation in the following form.

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_8
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Fig. 10.4 Reflectivity
calculated R(ω) for E0
point, where only the direct
transition form the heavy and
light hole bands to the
conduction band are
included. Dielectric
functions κ1(x0) and κ2(x0)
for the transition between the
heavy hole band and the
conduction band

J 2D
cv (�ω)d(�ω − EG) =

√
μyμz

π�2
d(�ω − EG), �ω ≥ EG ,

(5.2) Calculations are straight forward inserting the parameters. We use analyti-
cal expressions of the dielectric functions κ1(w) and κ2(ω) and 2C0 which
include the contribution from the heavy hole and light hole bands. The cal-
culated result is shown in Fig. 10.4.

(5.3) The weak structure of observed in R(ω) spectra is due to the strong back-
ground of the real part of the dielectric constant. As shown in Fig. 10.3,
Kramers–Kronig relation of the imaginary part κ2 of the dielectric function
give rise to a big background of the real part κ1. There exist various critical
points beyond E0 point and these critical points give rise the strong back-
ground of the real part κ1 and the structure of R(ω) near the E0 critical points
disappear.

(5.4) First we derive the relations (5.28d) ∼ (5.28d) using n + ik = √
κ1 + iκ2,

n2 = 1

2

(
κ1 +

√
κ2
1 + κ2

2

)
,

k2 = 1

2

(
−κ1 +

√
κ2
1 + κ2

2

)
,

and insert analytical functions of dielectric functions for the critical point
E0 used for Problem 4.7. Then we evaluate (5.27) and the result is given in
Fig. 10.5. Note here that the coefficients are calculated for themodel dielectric
functions of the E0 critical points and real coefficients are affected by the
contribution from other critical points. Although the model calculations of
Seraphin coefficients α and β are almost same order in the magnitude around
the E0 critical points, experimental data of�R/R is explained in terms of the
derivative of the imaginary part of the dielectric constant κ2. This is due to
the fact that experimental data are obtained by modulation technique, where
the derivative form of κ2 is rich in fine structures as shown in the Problem
5.5.

http://dx.doi.org/10.1007/978-3-319-66860-4_5
http://dx.doi.org/10.1007/978-3-319-66860-4_5
http://dx.doi.org/10.1007/978-3-319-66860-4_5
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Fig. 10.5 Seraphin
coefficients α(κ1,κ2) and
β(κ1,κ2) are plotted for the
model dielectric functions of
the E0 critical point

Fig. 10.6 Calculated
electroreflectance spectra for
(1) 3D and (2) 2D from
(5.48)

(5.5) We use the analytical form of (5.48):

�R

R
= �

⎡

⎣
∑

j

C je
iθ j (E − E j + iΓ j )

−m j

⎤

⎦ , j = 3, 2 .

Using the parameters we plot the results for (1) 3D (mi = 5/2) and (2) 2D
(m j = 3) in Fig. 10.6

(5.6) For the free carrier absorption we obtain the following relations

ωp =
√

ne2

κ∞ε0m∗ = κ∞
[
1 − (ωpτ )2

(ωτ )2 + 1

]
,

κ1(ω) = κ∞ − ne2τ 2

ε0m∗(ω2τ 2 + 1)
= κ∞

ω2
p

ω2

1

ω2τ 2 + 1
,

κ2(ω) = ne2τ

ε0m∗ω(ω2τ 2 + 1)
.

Inserting the dielectric functions for free carrier plasma into (5.27), and
assuming ωpτ = 10 we obtain the result shown in Fig. 10.7, where calcu-
lated reflectivity R is plotted as a function of ωp/ω = λ/λp normalized by

http://dx.doi.org/10.1007/978-3-319-66860-4_5
http://dx.doi.org/10.1007/978-3-319-66860-4_5
http://dx.doi.org/10.1007/978-3-319-66860-4_5
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Fig. 10.7 Reflectivity due to
free carrier plasma, where
parameters ωpτ = 10 and
κ∞ = 10 are used

the plasma wavelength λp = 2πc/ωp corresponding to the plasma frequency
ωp.
We find here the calculated reflectivity R represents the observed character-
istics in Fig. 5.33.

(6.1) The scattering probability is calculated according to quantum mechanics and
given by the relation (6.129) for the interaction Hamiltonian Hel:

P(k, k′) = 2π

�
|〈k′|Hel|k〉|2δ [Ek′ − Ek] ,

The scattering rate per second wac [1/s] is given by taking all the possible
final states, as shown by (6.130):

wac = 2π

�

∑

k′
|〈k′|Hel|k〉|2δ [Ek′ − Ek]

= 2π

�

L3

(2π)3

∫
d3k′|〈k′|Hel|k〉|2δ [Ek′ − Ek] .

The matrix element for the acoustic phonon scattering is given by (6.156):

〈nq ′ |Hel(k
′ − k)|nq〉

= 〈nq ′ |C(k′ − k)ak′−k + C†(k − k′)a†k−k′ |nq〉

=
{
C(q)

√
nq (k′ = k + q; absorption),

C†(q)
√
nq + 1 (k′ = k − q; emission) ,

where

C(q) = Dac

√
�

2MNωq
(ieq · q) .

http://dx.doi.org/10.1007/978-3-319-66860-4_5
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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Inserting these relations into the scattering ratewac (6.331), we obtain (6.332)

wac = (2m∗)3/2D2
ackBT

2π�4ρv2
s

E1/2 ,

where we assumed nq � nq + 1 � kBT/�ωq = kBT/�vsq. The assumptions
used are (1) isotropic scattering and (2) purely elastic scattering: qmax =
2k(1 ± m∗vs/�k) � 2k.

(6.2) The relaxation time τac is defined as

1

τac
= L3

(2π)3

∫
P(k, k′)

(
1 − k ′ cos θ′

k cos θ

)
d3q

which reduces to

1

τac
= L3

2π�

∫ qmax

qmin

1

k
A(q)

{
(nq + 1)

(
q

2k
+ m∗vs

�k

)

+nq

(
q

2k
− m∗vs

�k

)}
m∗q2

�2k
dq .

This equation is easily evaluated under the approximation qmax = 2k(1 ±
m∗vs/�k) � 2k, and the two terms of the left hand side gives

2
∫ 2k

0

∫ 2k

0

q

2k
dq = 4k3 .

Then we obtain the result (6.341) and we find the equality of wac = 1/τac.
(6.3) We define q± = 2k(1 ± m∗vs/�k) and the integral of the right hand side of

1/τac is carried out:
∫ q+

0

(
q

2k
+ m∗vs

�k

)
dq +

∫ q−

0

(
q

2k
− m∗vs

�k

)
dq

= 4k3
[

1 + 10

(
m∗vs
�k

)2

+ 7

3

(
m∗vs
�k

)4
]

The result indicate the anisotropy of scattering event (see Fig. 6.13 is given by
the second and third terms of above equation and very small for±m∗vs/�k �
1, and we may assume 1/τac = wac

(6.4) The electron mobility due to polar optical phonon is evaluated by using the
averaged relaxation time (6.116):

〈τpop〉 =

∫ ∞

0
τpopE3/2 f0dE

∫ ∞

0
E3/2 f0dE

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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Fig. 10.8 Electron mobility
of GaAs limited by polar
optical phonon scattering
which is calculated by
numerical integration

Inserting (6.356) into above equation and carrying out the integration numer-
ically we obtain the curve shown in Fig. 10.8, where numerical integration is
carried out in the region [0, Emax] with Emax = 100 × �ωLO . We see that the
polar optical phonon scattering plays an important role in high temperature
region.

(6.5) Electron mobility at low temperatures are limited by acoustic phonon scat-
tering for lo impurity density and μ ∝ m∗−3/2 and we may estimate the
electron mobility by the effective mass. We have to note that the electron
effective mass is not well fixed by experiments and in this text we used the
value m∗ = 0.22m determined by the energy band calculations based on
the empirical pseudopotential method as shown in Chap.9. Using the relation
(6.402) the followingmobility values are estimated for the cases ofm∗ = 0.22
and m∗ = 0.10m.

μ(100) = 1.75, μ(300) = 0.225, for m∗ = 0.22m
μ(100) = 7.10, μ(300) = 0.967, for m∗ = 0.10m

(7.1) The answers are as follows.
(1) The type of carriers is determined by the direction of Hall field Ey . Since
Ey < 0, carriers are electrons and the sample is n–type. Electrons move
in the −x direction and Lorentz force is F = (−e)v × B and thus Fy =
−[−e(−vx )Bz = −|evx Bz| < 0. Since Fy + (−e)Ey = 0, we find Ey =
Fy/e = −|vx Bz| < 0. It confirms the type of carriers as electrons. (2) Using
(7.6) we obtain

|RH| = VHt

Ix Bz
= 1.0 × 10 −3 × 1.0 × 10−3

1.0 × 10−3 × 0.4
= 2.5 × 10−3 [m3/C]

Therefore the electron density is given by

n = 1

|RH|e = 1

2.5 × 10−3 × 1.60 × 10−19
= 2.5 × 1021 [m−3]

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_7
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(3) Resistance of the sample is R = V/I x = 25.0×10−3/1×10−3 = 25 [�]
and then its resistivity is given by

ρ = Rwt

lx
= 25 × 4.0 × 10−3 × 1 × 10−3

10 × 10−3
= 1.0 × 10−2 [�m] ,

σ = 1/ρ = 1.0 × 102 [1/�m] .

(4) Hall mobility is given by μH = |RH|/σ = 0.25 [m2/V s].
(7.2) Using the parabolic bandwith isotropic effectivemass, we obtain the relations

(7.48) and (7.47b) and insert them in (7.51b). Then we obtain the relation
given (7.51b).

(7.3) Using the parabolic bandwith isotropic effectivemass, we obtain the relations
(7.48) and (7.49) and insert them in (7.47c). Then we obtain the relation given
(7.51c).

(7.4) (1) Insertingm∗ = 0.0135m and n = 2×1024 [m−3] into equation (7.81) we
find

EF = �
w

2m∗
(
3π2n)2/3

)
/e = 0.429 [eV]

(2) The oscillation period is given by (7.83)

�

(
1

B

)
= 2e

�

(
3π2n

)−2/3
. = 0.020 [1/T]

(3) For GaSb we obtain EF = 0.111 [eV] and �(1/B) = 0.0267 [1/T]. The
result is in good agreement of the oscillations for GaSb shown in Fig. 7.2.

(7.5) Inserting the given parameters in (7.136)

σosc ∼ exp(−0.5ωLO/ωc) cos

(
2π

ωLO

ωc

)
,

we obtain the result shown in Fig. 10.9.

Fig. 10.9 Calculated
oscillatory term of
magnetophonon resonance
as a function of applied
magnetic field, where
parameters are for GaAs

http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_7
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(7.6) Polaron effect is estimated by using equation (7.165) and the following para-
meters:

α = e2

�ε0

(
1

κ∞
− 1

κ0

) (
m∗

2�ωLO

)1/2

.

GaAs InAs
m∗/m 0.067 0.022
κ0 12.90 15.15
κ∞ 10.92 12.25
�ωLO 35.36 29.58

We obtain

α(GaAs) = 0.02836, α(InAs) = 0.0197

Therefore we find that the polaron mass m∗
pol is

m∗
pol(GaAs)/m = 0.06732, m∗

pol(InAs)/m = 0.02207

These results mean that the effective mass change due to the polaron effect
is small, but effective mass correction is required in some case.

(8.1) Density of two–dimensional electron gas in subband Ei is given by

nvimdi

π�2

∫ ∞

0

d(E − Ei )
exp [(E − EF)/kBT ] + 1

= nvimdi

π�2

∫ ∞

Ei

dE
exp [(E − EF)/kBT ] + 1

.

We find the following relation:

1

e−x + 1
= ex

1 + ex
= d

dx
ln(1 + ex ) ≡ d

dx
F0(x) .

Defining x = E/kBT , xF = EF/kBT , and xi = Ei/kBT , the above integration
is easily carried out and leads to

[
F0(xF − x)

]∞
xi

= F0 [(EF − Ei )/kBT ] .

Then we obtain (8.15).
(8.2) Acoustic deformation potential scattering is dealt with (8.69) and for intra–

subband scattering we obtain:

http://dx.doi.org/10.1007/978-3-319-66860-4_7
http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_8
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wac = 1

b

m∗

�3

kBT D2
ac

2ρv2
s

,

μac = b e �
3

m∗2
2ρv2

s

kBT D2
ac

≡ Cac
1

T
,

where we used the relation of (8.208) to derive the mobility;

〈τ 〉 =

∫ ∞

0
Eτ f0dE

∫ ∞

0
E f0dE

.

Whenwe put b = W/3 andW = 100Å and using the parameters in Table6.3,
we find

muac = 1.789 × 104
1

T

(8.3) For non–polar optical phonon scattering (intra–subband scattering) from
(8.71):

wop = 1

b

D2
opm

∗

4ρ�2ω0

[
n(ω0) + 1

2
± 1

2

]
u(E ∓ �ω0) ,

Here we introduce new parameter

x0 = �ω0

kBT
, n(x0) = 1

ex0 − 1
,

and we find that

Aop =
[
n(x0) + 1

2
± 1

2

]−1

u(E ∓ �ω0) = ex0 − 1

1 + ex0u(x − x0)

and

Aav
op =

∫ ∞

0
Aop x e

−xdx = (ex0 − 1)(ex0 − x0)

ex0 + 1

μop = e b

m∗2
4ρ�

2ω0

D2
op

Aav
op ≡ CopA

av
op ,

where we use the relation Dop = Eopω0/vs and Eop = Dac/0.4.
(8.4) For polar optical phonon scattering in a quantum well (W � 100nm) the

scattering rate and mobility are given by using (8.96) for Wk0 > 1

http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_8
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wpop(W ) � 3

W

e2

8�ε0

(
1

κ∞
− 1

κ0

) [
n(ω0) + 1

2
± 1

2

]
u(E ∓ �ω0)

μpop(W ) � W

3m∗
8�ε0

e

(
1

κ∞
− 1

κ0

)−1

Aav
op ≡ CpopA

av
op .

In a narrow quantum well, on the other hand, Wk0 < 1 we have a approxi-
mated relation (8.97)

wpop(k) �
(
2m∗ω0

�

)1/2 e2

8�ε0

(
1

κ∞
− 1

κ0

) [
n(ω0) + 1

2
± 1

2

]
u(E ∓ �ω0)

μpop(k) �
(

�

2m∗ω0

)1/2 1

m∗
8�ε0

e

(
1

κ∞
− 1

κ0

)−1

Aav
op ≡ CpopA

av
op .

(8.5) For piezoelectric potential scattering due to transverse mode of acoustic
phonons with sound velocity vt and piezoelectric coefficient e14, the scat-
tering rate and electron mobility are given by using (8.108)

1

τpiez
=

√
m∗

√
2π�2ε2

[
13

32

(e · e14)2
ρv2

t

]
kBT√E

μpiez =
√
2πe�2ε2

m∗3/2

[
32

13

ρv2
t

(e · e14)2
]
3
√

π

4
(kBT )−1/2 ≡ Cpiez (kBT )−1/2

(8.6) For ionized impurity scattering rate, we assume a quantum well ζ1(z) =√
2/W sin(πz/W ) with its width W (∼100Å) and the impurity is uniformly

distributed along z direction with its volume density nion [m−3]. The sheet
density of the impurity is then given by Nion = ∫

g0(z0)dz0 = nionW . In
addition we assume Qz0 � 1, and therefore we get I00(Q) � 1, and then we
have

J ion
11 (Q) = ANion .

Since Q = √
2k(1 − cos θ) we obtain from (8.125), we obtain

1

τion
=

∑

n

(
e4

2π�(κε0)2

) ∫ 2π

0

Nion

2k2
dθ =

(
e4

2π�(κε0)2

)
2πNion

2k2
,

=
(

e4

2�(κε0)2

)
�
2Nion

2m∗ E−1 ,

where we neglect the screening effect and put P = 0. Then we obtain the
electron mobility due to ionized impurity as;

μion = e〈τion〉
m∗ =

(
4π�(κε0)

2

m∗e3

)
kBT

Nion
≡ CionkBT ,

When we use wave functions confined at the interface like MOSFETs and
single heterostructures, we obtain J ion

11 /A � nionzav, where zav is estimated

http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_8
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Fig. 10.10 Temperature dependence of two-dimensional electron gas mobilities (1) acoustic defor-
mation potential scatteringμac, (2) non–polar optical phonon scatteringμop, (3) polar optical phonon
scattering μpop(k), (4) piezo–electric potential scattering μpiez, and (5) ionized impurity scattering
μion

Fig. 10.11 Temperature
dependence of
two-dimensional electron
gas mobilities due to polar
optical phonon scattering,
where the dashed curve
(μpop) is obtained from
(8.97) and the solid curves
are obtained from (8.96)
with the well width
W = 5, 10, 20, 50 [nm] as a
parameter

by using Stern–Howard empirical function, and themobilityμion is evaluated.
above relation for the simplified conditions.

(8.7) All the results are plotted in Fig. 10.10, where we find that ionized impu-
rity scattering plays an important role in low temperature region and other
scattering processes exhibit decrease in the mobility at higher temperatures.

(8.8) Using the results of previous problems, mobilities of two–dimensional elec-
tron gas are calculated, which are shown in Fig. 10.11. Temperature depen-
dence of mobilities due to polar optical phonon scattering are plotted in
Fig. 10.11,where themobility expressions derived above are used. The dashed
curve μpop is obtained from (8.97) and the solid curves are obtained from
(8.96) with the well width W = 5, 10, 20, 50 [nm] as a parameter. It is evi-
dent that the electron mobility depends strongly on the well width and that
the two models agree well for W � 10 [nm] (200Å).

(8.9) Using the expressions derived above the right hand side of the above equation
is easily obtained. The calculated result is shown in Fig. 10.12.

(8.10) Since the density of states of Landau level for quantized electron gas in
a magnetic field is given by a delta function (eB/h)δ(E − EN ) as shown in
Fig. 10.13, where each straight bar has the areal density eB/h, and Fig. 10.13a

http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_8
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Fig. 10.12 Temperature dependence of two-dimensional electron gas mobility μ2D given by
1/μ2D = ∑

1/μ j including the scattering processes of (1) acoustic deformation potential, (2)
piezoelectric potential scattering, (3) ionized impurity scattering, and (4) polar optical phonon
scattering

Fig. 10.13 Density of states for Landau levels in a high magnetic field. Occupied states of electron
gas are shown for a filling factor i = 1 and b filling factor i = 4

is the case for Ns fills the lowest Landau level. Figure10.13b shows the case
where the sheet density Ns is increased and four Landau levels are filled.
The plateaus observed by von Klitzing is explained later by introducing the
broadening of the Landau levels and the mobility edges.

(8.11) Two methods are possible. (1) Solve the lattice vibrations numerically and
obtain the modes of the phonons such as confined mode and interface mode
in double heterostructures, and half–space mode and interface mode in single
heterostructures. Then calculate the electron phonon interactions. (2) Using
dielectric continuum model and calculate electron–optical phonon interac-
tion. The latter method was used by Mori and Ando. They found the sum
rule in which summation of the interactions are the same as the electron–
bulk phonon interaction. See the detailed treatment of the following paper:
N. Mori and T. Ando: “Electron–optical-phonon interaction in single and
double heterostructures,” Phys. Rev. B Vol.40, No.9, (1989) 6175–6188.
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Fig. 10.14 Luminescence
spectra in GaAs for electron
temperature Te = 77K and
150K, where we see the high
energy tail is well expressed
by exp[(�ω − EG)/(kBTe)]

(9.1) Photoluminescence intensity as a function of photon energy is given by (9.55):

I (�ω) ∝ rspon ∝ √
�ω − EG exp

(
−�ω − EG

kBT

)
.

Using this expression the calculated photoluminescence spectra at Te =
Tlattice = 77K, and Te = 150K are shown in Fig. 10.14. Hot electrons are
produced by applying high electric fields to a semiconductor or by intense
excitations of a semiconductor. The latter method leads to the heating the
carriers and the generation of nonequilibrium phonons. The method provide
a information of carrier–carrier interaction and dynamics of excited phonons
by changing the excitation intensities. See the following paper for the detail.
Jagdeep Shah: “Hot Electrons and Phonons under High Intensity Photoexci-
tation of Semiconductors,” Solis–State Electronics, Vol. 21, (1978) 43–50.

(9.2) Compare (4.58) and (9.15) or (9.18);

α(E) = e2|M |2
2πε0m2cnrω

(2π2)ρred(E) ,

rstim(E) = nre2E
πε0m2�2c3

|M |2ρred(E)( f2 − f1) .

Using the relation �ω = E and putting f2 = 0 and f1 = 1, the above two
equations lead to the relation (9.34).

α(E) = −π2c2�3

n2r E2
rstim(E) ,

(9.3) For a symmetric wave guide, the refractive indices for the cladding layers are
the same and we put nUC = nLC = nC and

k0 = ω/c = 2πν/c = 2π/λ,

http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
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In the followingweuse the values normalized byλ and the boundary condition
of (9.112) is rewritten as, (putting d/λ → 1)

2πκG − 2�C = mπ , �C = tan−1

(
γC

κG

)
.

where

κG = (n2G − ñ2)1/2, γC = (ñ2 − n2UC)1/2 .

This equation has no analytical solutions and we solve it by using numerical
method, and the following results are obtained as given in the text.

ñ = 3.47808, 3.41418, and 3.32125; for TE0, TE1, and TE2 .

(9.4) From (9.111) we obtain the following solutions for the TE0 mode (m = 0),

Ex (z) = EG cos(κG/2) exp [−γC(z − 1/2)] , (z > 1/2)

Ex (z) = EG cos(κGz), (|z| < 1/2)

Ex (z) = EG cos(κG/2) exp [+γC(z + 1/2)] , (z < −1/2)

The results calculated by using the refractive indices are plotted in Fig. 10.15,
where we find the curve is continuously connected at the boundaries z/λ =
±1/2. We see the fundamental mode (m = 0) is well confined in the guiding
region.

(9.5) The free electron bands are easily obtained by putting (kx , ky, kz) into (9.200)

E(kx , ky, kz) = �
2

2m

(
2π

a

)2
[

(kx + l)2 +
(
ky + 2m − l√

3

)2

+ 3

8
(kz + n)2

]

.

or youmaycalculate using the following computer programswritten inOctave
(MATLAB).

Fig. 10.15 Electric field
distribution along the z
direction, where we see the
boundary conditions are well
treated and the curve is
smoothly connected at
z/λ = 1/2

http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
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First, decide the lines to connect the critical points of the Brillouin zone. Next,
choose (l,m, n) and put (kx , ky, kz), then we obtain the free electron bands,
which are obtained by the following programs:

% Plane Waves of hexagonal closed pack
% This program is a part of energy band calculations of GaN
% Nx=Ny=Nz=4 leads to 135 plane waves
Nx = 4;
Ny = 4;
Nz = 4;
% Wave vectors of plane waves at k=0
R=1;
for I = -Nx:Nx;
for J = -Ny:Ny;
for K = -Nz:Nz;
% G2=(8/3)*(I2+J2-I*J)+(6/8)*K2

G2=2*I2+(2/3)*(2*J-I)2+(3/4)*K2;
if (G2<15)
Gx(R)=I;
Gy(R)=J;
Gz(R)=K;
R=R+1;
endif
endfor
endfor
endfor
Ncut = R-1
% PRINT ”number of plane waves Ncut

% Free electron bands are obtained by the following program;

Fig. 10.16 Free electron full
bands plot of GaN
(wurtzite), where the critical
points are shown
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for I = 1:Ncut;
A(I,I)=EGA*((kx+Gx(I))2+(ky+(2*Gy(I)-Gx(I))/sqrt(3))2

+(3/8)*(kz+Gz(I))2);
endfor
% End of Matrix Elements
% Plot A(I, I ) as a function of (kx , ky, kz) along the lines of the critical points
in the first Brillouin zone of Fig. 9.45

where Eg=2* π*Bohr/La in [a.u] with Bohr=5.29177 [Å] and lattice constant
La. Energy in [eV] is obtained by Eg*Ry with Ry=13.6058. Obtained results
are shown in Fig. 10.16.



Appendices

Abstract For better understandings of readers, several important mathematics and
derivation of relations used in the text are given here. They are (A) Dirac delta
function and Fourier transform, (B) uniaxial strain and strain components in cubic
semiconductors, (C) boson operators, (D) random phase approximation, (E) density
matrix, and (F) derivation of spontaneous and stimulated emission rates.

A Delta Function and Fourier Transform

A.1 Dirac Delta Function

The Delta function is very important for understanding semiconductor physics and
some important relations will be discussed in this section. The Dirac delta function
is defined by

δ(ω) = 1

2π

∫ +∞

−∞
eiωtdt . (A.1)

In the integral with respect to ω the following relation holds for ε > 0

lim
ε→+0

1

ω − iε
= P 1

ω
+ iπδ(ω) , (A.2)

where P[1/ω] is the Cauchy principal value of 1/ω. This relation is called the
Dirac identity.

First, we consider the integral

∫ ∞

0
eiωtdt .

This integral does not converge when ω is real. Then we introduce an infinitesi-
mal positive value ε, and replace ω by ω + iε. The integral may be equivalently

© Springer International Publishing AG 2017
C. Hamaguchi, Basic Semiconductor Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-66860-4
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written as1

∫ ∞

0
eiωtdt = lim

ε→0

∫ ∞

0
ei(ω+iε)tdt = lim

ε→0

i

ω + iε
. (A.3)

In a similar fashion, we obtain

∫ 0

−∞
eiωtdt = lim

ε→0

−i

ω − iε
. (A.4)

These expressions lead to the following relation:

∫ ∞

−∞
eiωtdt = lim

ε→0

[
i

ω + iε
− i

ω − iε

]
= lim

ε→0

2ε

ω2 + ε2
. (A.5)

Let us consider the following function

FL(ω) = ε/π

ω2 + ε2
,

which is called the Lorentz function. The Lorentz function has a peak at ω = 0 with
full width of the half maximum of 2ε and the integral with respect to ω is unity.2 In
the limit ε → 0, the Lorentz function behaves like a delta function, or in other words

∫ ∞

−∞
FL(ω)dω =

∫ ∞

−∞
ε/π

ω2 + ε2
dω =

∫ ∞

−∞
δ(ω)dω = 1 .

Using this result we find the following expression for the Dirac delta function:

1

2π

∫ ∞

−∞
eiωtdt = lim

ε→0

ε/π

ω2 + ε2
= δ(ω) . (A.6)

1Strictly speaking, we need to prove the validity of the interchange between the limit (lim) and the
integral (

∫
).

2This is proved by the following relation.
∫ ∞

0

dx

a2 + b2x2
= 1

ab

[
arctan

b

a
x

]∞

0
= 1

ab
· π

2
.

The evaluation of the integral is made by introducing a new variable bx/a = tan z = sin z/ cos z.
When the region of the integral is set to be [−∞,+∞], we easily find the following result:

ε

π

∫ +∞

−∞
dω

ω2 + ε2
= ε

π

[∫ 0

−∞
dω

ω2 + ε2
+

∫ +∞

0

dω

ω2 + ε2

]
= 2ε

π

∫ ∞

0

dω

ω2 + ε2

= 2ε

π

[
1

ε

π

2

]
= 1 .

.
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Next, the second relation, the Dirac identity, is understood in the following way.
When we rewrite 1/(ω − iε) as

1

ω − iε
= ω

ω2 + ε2
+ i

ε

ω2 + ε2
,

the first term on the right-hand side has the value 1/ω in the limit ε → 0. The second
term may be replaced by a delta function. Therefore, we obtain

lim
ε→0

1

ω − iε
= P 1

ω
+ iπδ(ω) , (A.7)

where P is the Cauchy principal value and is defined by

∫ +∞

−∞
f (ω′)P

[
1

ω − ω′

]
dω′ = P

∫ +∞

−∞
f (ω′)

ω − ω′ dω
′

= lim
ε→0

(∫ ω−ε

−∞
f (ω′)

ω − ω′ dω
′ +

∫ +∞

ω+ε

f (ω′)
ω − ω′ dω

′
)

. (A.8)

Several important relations of Dirac delta function are summarized in the follow-
ing.

δ(x) = δ(−x) (A.9)∫
f (x)δ(x − a)dx = f (a) (A.10)

xδ(x) = 0 (A.11)

δ(ax) = 1

a
δ(x), a > 0 (A.12)

∫
δ(a − x)δ(x − b)dx = δ(a − b) (A.13)

∫
δ(x − a)δ(a − b)dx = δ(x − b) (A.14)

f (x)δ(x − a) = f (a)δ(x − a) (A.15)

δ(x2 − a2) = 1

2a

[
δ(x − a) + δ(x + a)

]
, a > 0 (A.16)

−δ′(x) = δ′(−x) (A.17)∫
f (x)δ′(x)dx = − f ′(a) (A.18)
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A.2 Cyclic Boundary Condition and Delta Function

In Appendix A.1 the Dirac delta function is defined in the region of integration
[−∞,+∞]. In solid state physics, however, the dimension of a crystal of length L is
defined by the region [−L/2, L/2] and the cyclic boundary condition is adopted. For
example, considering the one-dimensional case and letting the lattice constant be a,
thewavevectorsq = 2πn/L (n = 0,±1,±2, · · · ) are those in thefirstBrillouin zone
[−π/a,+π/a], which correspond to the lattice points N (n = −N/2, . . . , N/2).
The calculations with respect to the wave vectors, therefore, can be carried out in
the first Brillouin zone [−π/a,+π/a] of the reciprocal lattice vector 2π/a. Here we
take account of the wave vector q of the lattice vibrations, but we may draw the same
conclusion for the wave vectors of an electron in a crystal.

With this definition we find

1

L

∫ L/2

−L/2
ei(q−q ′)xdx = δq,q ′ , (A.19)

∑
q

eiq(x−x ′) = Lδ(x − x ′) . (A.20)

In the case of a crystal with d dimensions, we obtain

1

Ld

∫
V
ei(q−q ′)·rdd r = δq,q ′ , (A.21)

∑
q

eiq·(r−r ′) = Ldδ(r − r ′) . (A.22)

First, we will prove the one-dimensional case. The cyclic boundary condition
leads to the following relation

eiqL = 1, q = 2πn

L
.

For q =�= q ′ we find

∫ L/2

−L/2
ei(q−q ′)xdx =

[
ei(q−q ′)x

i(q − q ′)

]L/2

−L/2

= 2 sin[(q − q ′)L/2]
(q − q ′)

, (A.23)

and putting q = 2πn/L and q ′ = 2πm/L (m �= n), the above equation becomes
equal to zero. On the other hand, for q = q ′ we have
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∫ L/2

L/2
ei(q−q ′)xdx =

∫ L/2

−L/2
1dx = L ,

and thus we obtain the following relation:

1

L

∫ L/2

−L/2
ei(q−q ′)xdx = δq,q ′ ,

and (A.19) is proved.
The relation given by (A.20) is just the inverse Fourier transform of (A.19), which

will be understood from the following discussion of the Fourier transform. For sim-
plicity we put x ′ = 0 and prove the following relation:

∑
q

eiqx = Lδ(x) .

Multiplying both sides of this equation by (1/L) exp(−iq ′x) and integrating over
the region [−L/2, L/2] leads to the following result with the help of (A.19):

Left-hand side =
∑
q

1

L

∫ L/2

−L/2
ei(q−q ′)xdx =

∑
q

δq,q ′ = 1 ,

Right-hand side =
∫ L/2

−L/2
e−iq ′xdxδ(x) = 1 ,

and therefore the relation (A.20) is proved. The same result is obtained when the
summation is replaced by the integral

∑
q

= L

2π

∫
dq ,

which leads to the following relation

∑
q

eiq(x−x ′) = L

2π

∫
eiq(x−x ′)dq = Lδ(x − x ′) .

From these results we may understand the relations between the delta function and
the cyclic boundary condition.

In the case of the three-dimensional lattice we may deduce the same result. Con-
sider a crystal with N lattice points and let the position vector be R j . Assuming the
cyclic boundary condition, we rewrite the integral over the crystal as the sum of the
integral over the unit cell Ω:



668 Appendices

I = 1

L3

∫
V
exp[i(q − q ′) · r]d3r

= 1

NΩ

N∑
j

exp

[
i(q − q ′) · R j

] ∫
Ω

exp[i(q − q ′) · r]d3r

= δq,q ′
1

Ω

∫
Ω

exp[i(q − q ′) · r]d3r

=
{
1 (for q = q ′)

0 (for q �= q ′) ,
(A.24)

where

N∑
j

exp
[
i(q − q ′) · R j

]
=

N−1∑
j=0

exp
[
i(q − q ′) · R j

]

= 1 − exp[i(q − q ′) · RN ]
1 − exp[i(q − q ′) · R]

= 0 (for q − q ′ �= 0) , (A.25)

which is shown in the following. Rewriting q and R in their vector components
such as qx = (2π/L)nx (nx = 0,±1,±2,±3, · · · ) and Rx = amx (mx =
0, 1, 2, . . . , N − 1), then we find

2π

L
nxaN = 2πnx . (A.26)

For q − q ′ = 0, we obtain

N−1∑
j=0

exp
[
i(q − q ′) · R j

]
= N . (A.27)

In general, therefore, the following relations hold for the wave vectors of electrons
and phonons, k and q:

∑
j

exp
[
i(k − k′) · R j

]
= Nδk,k′ , (A.28)

∑
j

exp
[
i(q − q ′) · R j

]
= Nδq,q ′ . (A.29)
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In addition, we have the relation

1

Ω

∫
Ω

exp[i(q − q ′) · r]d3r = 1 (for q = q ′) , (A.30)

and therefore we obtain the final result.
1

Ld

∫
exp[i(q − q ′) · r]dd r ≡ δq,q ′ (A.31)

=
{
1 (for q = q ′)

0 (for q �= q ′) .

A.3 Fourier Transform

As is well known in mathematics, the Fourier transform is expressed as

f (x) = 1√
2π

∫ ∞

−∞
F(k) exp(ikx)|dk , (A.32)

F(k) = 1√
2π

∫ ∞

−∞
f (x) exp(−ikx)dx , (A.33)

where the function F(k) is called the Fourier transform of the function f (x) and
the function f (x) is the Fourier transform of the function F(k).

The Fourier transform given by (A.33) is realized when the function f (x) satisfies
the following condition

∫ ∞

−∞
| f (x)|2dx < ∞ . (A.34)

The Fourier transform discussed above is shown for the one-dimensional case. It
is easy to extend it the three-dimensional case, which is written as

f (x, y, z) =
(

1

2π

)3/2 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
F(kx , ky, kz)

× exp
[
i(kx x, ky y, kzz)

]
dkxdkydkz . (A.35)

When we introduce the vector notation (x, y, z) = r , dxdydz = d3r , (kx , ky, kz) =
k, and dkxdkydkz = d3k, the Fourier transform may be rewritten as

f (r) =
(

1

2π

)3/2 ∫ ∞

−∞
F(k) exp(ik · r)d3k , (A.36)

F(k) =
(

1

2π

)3/2 ∫ ∞

−∞
f (r) exp(−ik · r)d3r . (A.37)
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It is very important in solid state physics to express the Fourier transform under
the cyclic boundary condition. For one-dimensional space we find the following
relations:

f (x) =
∑
q

F(q)eiqx , (A.38)

F(q) = 1

L

∫
f (x)e−iqxdx . (A.39)

Here again (A.38) is called the Fourier transform of the function f (x), and the
coefficient F(q) is the Fourier coefficient, or (A.39) is called the Fourier transform
of f (x). In general, the Fourier transform in d dimensional space is given by the
following relations:

f (r) =
∑
q

F(q)eiq·r , (A.40)

F(q) = 1

Ld

∫
f (r)e−iq·rdd r . (A.41)

When we replace the summation in q space by an integral, (A.40) is written as
follows.

f (r) = Ld

(2π)d

∫
F(q)eiq·rdd r . (A.42)

It may be proved as follows that the Fourier coefficient of (A.38) is given by
(A.39). Inserting (A.38) into (A.39) and using (A.19), the following result follows:

F(q) =
∑
q ′

1

L

∫
F(q ′)ei(q

′−q)xdx =
∑
q ′

F(q ′)δq ′,q = F(q) .

In contrast, inserting (A.39) into (A.38), we find

f (x) =
∑
q

1

L

∫
f (x ′)eiq(x−x ′)dx =

∫
f (x ′)δ(x − x ′)dx = f (x)

and thus (A.20)

∑
q

eiq(x−x ′) = Lδ(x − x ′)

should hold.
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B Gamma Function

Gamma function (Γ function) plays a very important role in the analysis of electron
transport and electron statistics evaluated by using distribution function (exponential
function). In Chap.6, electron mobility is evaluated by averaging the relaxation time
with the electron distribution and thus Γ function appears. Gamma function Γ (z) is
defined by the following relation

Γ (z) =
∫ ∞

0
xz−1e−xdx . (B.1)

From this definition, Γ (z + 1) has the following relation:

Γ (z + 1) = zΓ (z) , (B.2)

which is proved by partial integration,

Γ (z + 1) = [−xze−x
]∞
0 +

∫ ∞

0
xz−1e−xdx = zΓ (z) . (B.3)

Next we show Γ (1) and Γ (1/2) have the following values.

Γ (1) = 1, Γ

(
1

2

)
= √

π . (B.4)

The first relation is obtained by using partial integration. When z=1, Γ (1) is
evaluated as

Γ (1) =
∫ ∞

0
x (1−1)e−xdx =

∫ ∞

0
e−xdx = [−e−x

]∞
0 = 1 .

Then we obtain for all integer n,

Γ (n) = nΓ (n) = (n − 1) · (n − 2) · · · 3 · 2 · 1 = (n − 1)! (B.5)

Second relation for Γ (1/2) is normally obtained by using β function in mathe-
matical textbooks, but here we derive it by the following method, because we will
not concern with β function in semiconductor physics. Now, we consider

I =
∫ ∞

−∞
e−x2dx = 2

∫ ∞

0
e−x2dx

I =
∫ ∞

−∞
e−y2dy = 2

∫ ∞

0
e−y2dy .

Putting y2 = t , we find 2ydy = dt , and thus we have the relations

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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dy = 1

2

1√
t
dt ,

and

I = 2
∫ ∞

0

1

2

1√
t
e−tdt =

∫ ∞

0
t−1/2e−tdt = Γ

(
1

2

)
. (B.6)

Let’s try the following manipulation

I 2 =
∫ ∞

−∞
e−x2dx

∫ ∞

−∞
e−y2dy =

∫ ∫
e−(x2+y2)dxdy . (B.7)

Integration over the space [x, y] is changed into the spherical space integration over
r and angle θ.

x2 + y2 = r2

dxdy → rdθdr → 2πrdr∫ ∞

−∞

∫ ∞

−∞
dxdy =

∫ 2π

0

∫ ∞

0
rdθdr =

∫ ∞

0
2πrdr .

Since we have the relation

I 2 =
∫ ∞

0
2πre−r2dr = π

∫ ∞

0
e−tdt = π

[−e−t
]∞
0 = π . (B.8)

Here the relation r2 = t, 2rdr = dt is used. From this relation C

I = √
π

and thus we obtain the desired relation

Γ

(
1

2

)
= √

π . (B.9)

When n is a positive integer, then we have the following relations:

Γ (n + 1) = (n − 1) · (n − 2) · · · · 3 · 2 · 1 = (n − 1)! (B.10)

Γ

(
n + 1

2

)
=

(
n − 1

2

)
Γ

(
n − 1 + 1

2

)
= (2n)!

4nn!
√

π (B.11)
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C Uniaxial Stress and Strain Components in Cubic Crystals

Denoting the displacement of a crystal by u the strain tensor is defined by

ei j =
(
dui
dx j

+ du j

dxi

)
. (C.1)

When we define the force per unit area in the direction along the i axis in the plane
perpendicular to the j axis by the stress tensor Ti j , Hooke’s law is expressed as

Ti j = ci jklekl , (C.2)

where ci jkl is called the elastic constant. Let us define the notations

i j : xx yy zz yz, zy zx, xz xy, yx

α : 1 2 3 4 5 6
. (C.3)

We may therefore rewrite (C.2) as

Tα = cαβeβ

eα = sαβTβ ,
α,β = 1, 2, 3, 4, 5, 6 (C.4)

where sαβ is the elastic compliance constant. When we define

cαβ = ci jkl , (C.5)

we find for strain tensors the relations

exx = e1, eyy = e2, ezz = e3,

2eyz = 2ezy = e4, 2ezx = 2exz = e5, 2exy = 2eyx = e6,
(C.6)

and for the elastic compliance constants the relations

sxxxx = s11, sxxyy = s12, sxxzz = s13,

2sxxyz = s14, 2sxxzx = s15, 2sxxxy = s16,

4syzyz = s44, 4syzzx = s45 = s45, 4syzxy = s46 = s64.

(C.7)

Let us calculate the strain components under the application of a uniaxial stress
in the (110) plane. We consider coordinates (x ′, y′, z′) such that a uniaxial stress X
is applied in the z′ direction, and the directions x ′, y′ are perpendicular to the stress.
Then the stress tensor is written as
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||T ′|| =

∣∣∣∣∣∣∣∣∣∣∣∣

0
0
X
0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣
. (C.8)

We transform the stress tensor into the coordinates (x, y, z) of the crystal. Since the
transform in general is expressed as

xi = (a−1)i j x
′
j , (C.9)

the transform matrix is given by

||a−1|| =

∣∣∣∣∣∣∣

1√
2

1√
2
cos θ 1√

2
sin θ

− 1√
2

1√
2
cos θ 1√

2
sin θ

0 − sin θ cos θ

∣∣∣∣∣∣∣
, (C.10)

where θ is the angle between the z and z′ axes. The transform of the stress is written
as

Tik = (a−1)i j (a
−1)kl T

′
jl , (C.11)

and thus the stress in the coordinates (x, y, z) is given by the following relation:

||T || =

∣∣∣∣∣∣∣∣∣∣∣∣

Txx
Tyy

Tzz
Tyz

Tzx
Txy

∣∣∣∣∣∣∣∣∣∣∣∣
= X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2 sin

2 θ
1
2 sin

2 θ

cos2 θ
1√
2
sin θ cos θ

1√
2
sin θ cos θ

1
2 sin

2 θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (C.12)

From these results the strain tensor components are expressed as TableB.1

||e|| =

∣∣∣∣∣∣∣∣∣∣∣∣

e1
e2
e3
e4
e5
e6

∣∣∣∣∣∣∣∣∣∣∣∣
= X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s11
1
2 sin

2 θ + s12(
1
2 sin

2 θ + cos2 θ)

s11
1
2 sin

2 θ + s12(
1
2 sin

2 θ + cos2 θ)

s11 cos2 θ + s12 sin2 θ
1√
2
s44 cos θ sin θ

1√
2
s44 cos θ sin θ

1
2 s44 sin

2 θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (C.13)
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Table B.1 Character table of the Td group and the basis functions

KST BSW MLC E 3C2 6S4 6σ 8C3 Basis functions
Γ1 Γ1 A1 1 1 1 1 1 xyz

Γ2 Γ2 A2 1 1 −1 −1 1 x4(y2 − z2) + y4(z2 − x2) +
z4(x2 − y2)

Γ3 Γ12 E 2 2 0 0 −1 (x2 − y2), z2 − (x2 + y2)/2

Γ5 Γ25 T1 3 −1 1 −1 0 x(y2 − z2), y(z2 − x2),
z(x2 − y2)

Γ4 Γ15 T2 3 −1 −1 1 0 x , y, z

KST : Notation of Koster,
BSW : Notation of Bouckaert, Smoluchowski and Wigner,
MLC : Molecular notation.

Since the relation between the strain tensors eα and ei j is given by (C.6), we obtain
the following result:

exx = eyy = X

[
1

2
s11 sin

2 θ + s12

(
1

2
sin2 θ + cos2 θ

)]

ezz = X [s11 cos2 θ + s12 sin
2 θ]

exy = X

4
s44 sin

2 θ (C.14)

ezx = eyz = X

2
√
2
s44 cos θ sin θ .

As stated above, the strain tensor is a second-rank tensor and its six independent
components are exx , eyy, ezz, eyz = ezy, ezx = exz, exy = eyx . The strain tensor
is related to the symmetry of the crystal and the analysis of the Raman scattering
tensor and the deformation potentials is classified with the help of the group theory
analysis of the strain tensor. In this Appendix we briefly describe the irreducible
representation of the strain tensor for a crystal with cubic symmetry, where we use
the notation of group theory for the zinc blende-type crystals of the Td group. In
Table B.1 the character table for the Td group is shown. From Table B.1 a symmetric
strain tensor ei j is classified into the irreducible representations of one-dimensional
Γ1, two-dimensional Γ3 and three-dimensional Γ4. In other words, we obtain

Γ1 : exx + eyy + ezz ,

Γ3 : exx − eyy , ezz − (exx + eyy)/2 ,

Γ4 : exy , eyz , ezx . (C.15)
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It is also possible to express the strain tensor ei j by the following three matrices:

[
ei j (Γ1)

] = 1

3

⎡
⎢⎣
exx + eyy + ezz 0 0

0 exx + eyy + ezz 0

0 0 exx + eyy + ezz

⎤
⎥⎦

[
ei j (Γ3)

] = 1

3

⎡
⎢⎣
2exx − (eyy + ezz) 0 0

0 2eyy − (ezz + exx ) 0

0 0 2ezz − (exx + eyy)

⎤
⎥⎦

[
ei j (Γ4)

] =
⎡
⎢⎣

0 exy exz
exy 0 eyz
exz eyz 0

⎤
⎥⎦ .

D Boson Operators

In the main text we have discussed the quantization of the lattice vibrations, where
boson operators appear. Here we will describe the boson operators to supplement the
treatment. For simplicity we disregard the subscripts. The Hamiltonian for a simple
harmonic oscillator is written as

H = 1

2M

(
p2 + M2ω2q2

)
, (D.1)

where the following commutation relation holds:

[q, p] = i� . (D.2)

Defining new variables by

P =
√

1

M
· p , (D.3)

Q = √
Mq , (D.4)

the Hamiltonian is rewritten as

H = 1

2

(
P2 + ω2Q2

)
(D.5)

and the commutation relation is expressed as

[Q, P] = i� . (D.6)



Appendices 677

As described in Sect. 6.1.2, we introduce new variables defined by

a =
(

1

2�ω

)1/2

(ωQ + iP) , (D.7)

a† =
(

1

2�ω

)1/2

(ωQ − iP) , (D.8)

where a and a† are Hermite conjugates. Using these operators we may define Q and
P , which are given by

Q =
(

�

2ω

)1/2(
a + a†

)
, (D.9)

P = −i

(
�ω

2

)1/2(
a − a†

)
. (D.10)

From these results we easily find the following relations:

a†a = 1

�ω

(
H − 1

2
�ω

)
, (D.11)

aa† = 1

�ω

(
H + 1

2
�ω

)
. (D.12)

The commutation relation between a and a† is written as

[
a, a†

] = aa† − a†a = 1 . (D.13)

Finally, the Hamiltonian is rewritten with new operators as

H =
(
a†a + 1

2

)
�ω . (D.14)

We have to note here that the operators a† and a are not observable, but that when
the operators are applied to a state, they change the state. As shown in Sect. 6.1.2,
we use the number operator n̂ in the following.

Denoting the eigenstate of a simple harmonic oscillator by |n〉 and its eigenvalue
by En , we may write The Schrödinger equation as

H |n〉 = �ω

(
a†a + 1

2

)
|n〉 = En|n〉 . (D.15)

This may be rewritten as follows by using the commutation relation given by (D.13):

�ω

(
aa† − 1 + 1

2

)
|n〉 = En|n〉 . (D.16)

http://dx.doi.org/10.1007/978-3-319-66860-4_6
http://dx.doi.org/10.1007/978-3-319-66860-4_6
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Multiplication by a† from the left to both sides of this equation leads to

�ω

(
a†aa† − a† + 1

2
a†
)

|n〉 = Ena†|n〉 . (D.17)

Transposition of the second term on the left-hand side to the right-hand side results
in

�ω

(
a†a + 1

2

)
a†|n〉 = Ha†|n〉 = (En + �ω) a†|n〉 . (D.18)

This equation is understood to be an eigenequation with eigenstate a†|n〉 and eigen-
value En +�ω. In other words, when a† operates on the eigenstate |n〉, the eigenvalue
is changed from En to En + �ω. Considering this fact we may write new eigenstate
and eigenvalue as

a†|n〉 = cn|n + 1〉 (D.19)

En + �ω = En+1 . (D.20)

Here the constant cn of (D.19) is introduced to normalize the state |n + 1〉 and is
determined later. Inserting these results in (D.18), we obtain

H |n + 1〉 = En+1|n + 1〉 . (D.21)

In a similar fashion, multiplying a from the left to both sides of (D.16) and applying
a similar treatment, we obtain

Ha|n〉 = (En − �ω) a|n〉 . (D.22)

Here the above equation means that the eigenvalue for the eigenstate a|n〉 is given
by En −�ω. Therefore, in a similar fashion to the previous treatment we may rewrite
as follows:

a|n〉 = c′
n|n − 1〉 , (D.23)

En − �ω = En−1 , (D.24)

where c′
n is a constant to normalize the eigenstate |n − 1〉. These relations lead to

H |n − 1〉 = En−1|n − 1〉 . (D.25)

It is evident from the process of deriving (D.21) and (D.25) that starting with
an eigenstate |n〉 and an eigenvalue En all other eigenstates and eigenvalues are
calculated. In addition, these energy eigenvalues are equally spaced with the interval
�ω. If |n〉 is not the ground state, the eigenstate a|n〉 exists and its energy eigenvalue
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lower than En by �ω. If a|n〉 is not the ground state, there exists the eigenstate a2|n〉
and its energy is lower than that of |n〉 by 2�ω. In this way we find the lowest
eigenstate |0〉 and its eigenenergy E0, where the eigenenergy E0 should be positive.
The lowest state is understood to be the ground state. When a operates on the ground
state, we find

Ha|0〉 = (E0 − �ω)a|0〉 . (D.26)

Since the eigenstate with eigenenergy lower than the ground state energy is not
allowed, we find

a|0〉 = 0 . (D.27)

Taking account of these results, the eigenequation of (D.25) for the ground state |0〉
is written as

H |0〉 = 1

2
�ω|0〉 = E0|0〉 , (D.28)

and thus the energy eigenvalue for the ground state is given by

E0 = 1

2
�ω . (D.29)

From (D.20) or (D.24) the following relation is deduced.

En =
(
n + 1

2

)
�ω , n = 0, 1, 2, . . . . (D.30)

Using (D.16) and (D.30) we may obtain

H |n〉 = �ω
(
n̂ + 1

2

) |n〉 = �ω
(
n + 1

2

) |n〉 , (D.31)

n̂|n〉 = a†a|n〉 = n|n〉 . (D.32)

The above equation tells us that the eigenvalue for the operator n̂ = a†a is n. In
a similar fashion, using the commutation relation of (D.13)–(D.16), the following
relation is derived:

aa†|n〉 = (n + 1)|n〉 . (D.33)

Let us determine the normalization constants cn and c′
n . The normalization of the

eigenstates |n〉, |n + 1〉 and |n − 1〉 is written as

〈n|n〉 = 〈n + 1|n + 1〉 = 〈n − 1|n − 1〉 . (D.34)
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Multiplying the Hermite conjugate of (D.19) to both sides and using (D.33) and
(D.34), we obtain

〈n + 1|c∗
ncn|n + 1〉 = 〈n|aa†|n〉

= (n + 1)〈n|n〉 = n + 1 , (D.35)

which leads to

|cn|2 = n + 1 . (D.36)

Assuming the phase factor of cn to be zero, (D.19) can be rewritten as

a†|n〉 = √
n + 1|n + 1〉 . (D.37)

In a similar fashion, we obtain

a|n〉 = √
n − 1|n − 1〉 . (D.38)

Since the eigenfunctions are diagonal, i.e. 〈n|n′〉 = δn,n′ , the non-zero matrix ele-
ments of the operators a† and a are as follows:

〈n + 1|a†|n〉 = √
n + 1 , (D.39)

〈n − 1|a|n〉 = √
n . (D.40)

The operator a† is called the creation operator and the operator a is called the
annihilation operator.

We have mentioned that a known eigenstate will determine all the other eigen-
states. An arbitrary eigenstate |n〉 is therefore derived from the ground state |0〉. Since
(D.37) leads to (n!)1/2|n〉 = (a†)n|0〉, we find the following relation:

|n〉 = (n!)−1/2(a†)n|0〉 . (D.41)

As stated in Sect. 6.1.2, the lattice vibrations are expressed by a summation over
the modes. Here we use the notation μ for the mode. The eigenstate of the lattice
vibrations is given by |n1, n2, . . . , nμ, . . .〉 and therefore the following relations hold:

aμ|n1, n2, . . . , nμ, . . .〉 = √
nμ|n1, n2, . . . , nμ − 1, . . .〉 , (D.42)

a†μ|n1, n2, . . . , nμ, . . .〉 = √
1 + nμ|n1, n2, . . . , nμ + 1, . . .〉 , (D.43)

aμaν − aνaμ = a†μa
†
ν − a†νa

†
μ = 0 , (D.44)

aμa
†
ν − a†νaμ = δμν , (D.45)

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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or [
aμ, aν

]
− = [

a†μ, a
†
ν

]
− = 0 , (D.46)[

aμ, a
†
ν

]
− = δμν , (D.47)

aμa
†
μ| . . . , nμ, . . .〉 = √

nμ + 1aμ| . . . , nμ + 1, . . .〉
= (

nμ + 1
) | . . . , nμ, . . .〉 , (D.48)

a†μaμ| . . . , nμ, . . .〉 = √
nμa

†
μ| . . . , nμ − 1, . . .〉

= (
nμ

) | . . . , nμ, . . .〉 . (D.49)

E Random Phase Approximation and Lindhard Dielectric
Function

In this section we follow the treatment of Haug and Koch3 and discuss the plasma
screening effect. The electron density operator 〈ρ(q)〉 is defined, as shown in Appen-
dix F by

〈ρ(q)〉 = − e

L3

∑
k

〈c†k−qck〉 . (E.1)

Denoting the Coulomb potential V (r) and the potential induced by electron fluctu-
ations by Vind(r), the effective potential energy Veff(r) for an electron is written as

Veff(r) = V (r) + Vind(r) . (E.2)

This effective potential energy should be determined self-consistently. The Fourier
transform of the effective potential energy leads to

Veff(q) = V (q) + Vind(q) . (E.3)

The electron Hamiltonian is then given by

H =
∑
k

E(k)c†kck +
∑
k,q ′

Veff(q ′)c†k+q ′ck . (E.4)

The Heisenberg equation for c†k−qck gives the following relation:

3H. Haug and S.W. Koch: Quantum Theory of the Optical and Electronic Properties of Semicon-
ductors (World Scientific, Singapore, 1993) Chaps. 7 and 8.
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d

dt
c†k−qck = i

�

[
H, c†k−qck

]

= i

�

(
E(k − q) − E(k)

)
c†k−q ′ck

− i

�

∑
q ′

Veff(q ′)
(
c†k−qck−q ′ − c†k+q ′−qck

)
. (E.5)

Here we use the random phase approximation to evaluate the above equation. The
random phase approximation is based on the following assumption. We assume that
the expectation value 〈c†kck′ 〉 is approximated by 〈c†kck′ 〉 ∝ exp[i(ωk − ωk′)t]. In
the summation

∑
k,k′ exp[i(ωk − ωk′)t], the term k �= k′ oscillates and the average

contribution is assumed to vanish. Therefore, only the term for k = k′ will contribute
to the summation. This assumption is called the random phase approximation.
Applying the random phase approximation to the last two terms on the right hand
side of (E.5) we obtain (see the reference in the footnote of p. 682)

d

dt
〈c†k−qck〉 = i

�

(
E(k − q) − E(k)

)
〈c†k−qck〉

− i

�
Veff(q)

(
f (k − q) − f (k)

)
, (E.6)

where we use the following relation

f (k) = 〈c†kck〉 . (E.7)

When we assume that the electron density fluctuate as 〈c†k−qck〉 ∝ exp[−i(ω +
iΓ/�)t , the following relation may be obtained from (E.6)

(�ω + iΓ + E(k − q) − E(k)) 〈c†k−qck〉
= Veff(q)

[
f (k − q) − f (k)

]
. (E.8)

Multiplying by −e/L3 on both sides, summing up with respect to k, and using the
relation given by (E.1), we obtain

〈ρ(q)〉 = − e2

L3
Veff(q)

∑
k

f (k − q) − f (k)
�ω + iΓ + E(k − q) − E(k)

. (E.9)

Since the potential due to the induced charge follows Poisson’s equation, it is given
by

∇2Vind(r) = eρ(r)
ε0

. (E.10)
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The Fourier transform of this equation results in

Vind(q) = − e

ε0q2
ρ(q) = e2

ε0q2L3
Veff(q)

∑
k

f (k − q) − f (k)
�ω + iΓ + E(k − q) − E(k)

= V (q)Veff(q)
∑
k

f (k − q) − f (k)
�ω + iΓ + E(k − q) − E(k)

. (E.11)

Inserting this into (E.3), (6.261) is derived as the following:

κ(q,ω) = 1 − V (q)
∑
k

f (k − q) − f (k)
�ω + iΓ + E(k − q) − E(k)

= 1 − e2

ε0q2L3

∑
k

f (k − q) − f (k)
�ω + iΓ + E(k − q) − E(k)

. (E.12)

F Density Matrix

In this section the density matrix is summarized. A good introduction to the density
matrix method is given in the text of Kittel,4 which we shall follow here.

First, we assume a complete and orthonormal set of functions un . Any function
may be expanded by using these functions and therefore an eigenstate for the Hamil-
tonian H is expressed as

ψ(x, t) =
∑
n

cn(t)un(x) , (F.1)

where the orthonormality of the functions gives the following relation:

〈un|um〉 =
∫

u∗
numdx = δnm . (F.2)

The density matrix is defined by

ρnm = c∗
mcn . (F.3)

We have to note that the order ofm and n on the two sides of (F.3) is interchangeable.
The bar indicates the ensemble average over all the systems in the ensemble. Several
important properties of the density matrix are summarized in the following.

1.
∑

n ρnn = Tr {ρ} = 1.
This property leads to the following relation:

4C. Kittel, Elementary Statistical Mechanics (John Wiley, New York, 1958).

http://dx.doi.org/10.1007/978-3-319-66860-4_6
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〈ψ|ψ〉 =
∑
n

c∗
ncn =

∑
n

ρnn = Tr {ρ} = 1 . (F.4)

2. 〈F〉 = Tr {Fρ}.
Here 〈F〉 represents the ensemble average of the expectation value of an observ-
able F . This relation is derived as follows:

〈F〉 = 〈ψ|F |ψ〉 =
∑
m,n

Fmnc∗
mcn =

∑
m,n

Fmnρnm (F.5)

and thus

〈F〉 =
∑
m

(Fρ)mm = Tr {Fρ} . (F.6)

It is very important to point out that traces are independent of the representation
and thus that the ensemble average 〈F〉 is independent of the representation.

3. i�
∂ρ

∂t
= −[ρ, H ] = −(ρH − Hρ) .

The above equation gives the time dependence of the density matrix ρ of the
Hamiltonian H . In order to derive the equation, we begin with the wave function
(F.1) and insert it into the Schrödinger equation

i�
∂ψ

∂t
= Hψ . (F.7)

First, we insert (F.1) into (F.7)

i�
∂ψ

∂t
= i�

∑
k

∂ck
∂t

uk(x) = Hψ =
∑
k

ck Huk(x) , (F.8)

and then multiplying by un(x) from the left and integrating over all space we
obtain the equation

i�
∂cn
∂t

=
∑
k

Hnkck , (F.9)

where we have used the orthonormality property (F.2) and

Hnk = 〈un|H |uk〉 =
∫

u∗
n(x)Huk(x)dx . (F.10)

In a similar fashion we obtain

−i�
∂c∗

m

∂t
=

∑
k

H∗
mkc

∗
k . (F.11)
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From (F.3) we obtain

i�
∂ρnm

∂t
= i�

∂

∂t
c∗
mcn = i�

(
∂c∗

m

∂t
cn + c∗

m

∂cn
∂t

)
. (F.12)

Inserting (F.9) and (F.11) into (F.12), we find

i�
∂ρnm

∂t
= − (ρH − Hρ)nm . (F.13)

4. Z = Tr
{
e−βH

}
Here, Z is the partition function. For a canonical ensemble (see the reference in
the footnote of page 684)

ρ = eβ(F − H) , (F.14)

where F is the Helmholtz free energy and H is the Hamiltonian. In the quantum
mechanical representation the partition function Z is given by (see the reference
of the footnote of p. 684)

Z =
∑
i

e−βEi , (F.15)

where β = kBT . Using the relation between the Helmholtz free energy and the
partition function log Z = −βF , we find

Z = e−βF =
∑

e−βEn = Tr
{
e−βH

}
. (F.16)

Since the trace is invariant under unitary transformations, the partition function
may be calculated by taking the trace of e−βH in any representation. Using these
results one may find

ρ = e−βH

Tr
{
e−βH

} , (F.17)

which is a very important relation and is used to evaluate the ensemble average
of an observable quantity.

G Spontaneous and Stimulated Emission Rates

Here we will derive the relations between absorption, spontaneous emission, and
stimulated emission.

Let’s define a vector potential by A and put B = rot A = ∇ × A, then we obtain
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∇ · B = ∇ · ∇ × A = 0 , (G.1)

and thus the vector potential satisfies the relation for the magnetic flux B of (9.90d),
(∇ · B = 0). We insert the relation B = rot A = ∇ × A into Maxwell’s equation
(9.90b), we find

∇ × E = − ∂

∂t
∇ × A . (G.2)

Therefore we obtain the following relation

E = iωA . (G.3)

Since we deal with the squared values of the vector potential and electric field, we
put

E = ωA . (G.4)

The electromagnetic field interact with an electron of charge −e, and the interac-
tion is given by the Hamiltonian

H = 1

2m

(
p + eA

)2

+ V (r) , (G.5)

where V (r) is the periodic potential of a crystal. This equation is rewritten as5

H = p2

2m
+ V (r) + e

m

(
A · p

)
+ 1

2m

(
eA

)2

(G.6)

and neglecting the last term because of its small contribution, we may rewrite

H = H0 + H1 (G.7)

H0 = p2

2m
+ V (r) , (G.8)

H1 = e

m

(
A · p

)
. (G.9)

Treating H1 as a perturbation term, the transition probability between the initial state
|i〉 and the final state |f〉 is given by

5In (G.5), we operate A · p+ p · A to a scalar function f and taking account of the vector potential
of the electromagnetic field A = A0 exp(ikp · r) and of the momentum operator p = −i�∇,

(A · p + p · A) f = A · ( p + p + �kp) f = 2A · p f
is obtained. The last relation was deduced from the fact that the electromagnetic field is transverse
wave, resulting in A · kp = 0.

http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
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wif = 2π

�

∣∣〈f∣∣H1

∣∣i〉∣∣2 δ [Ef − Ei − �ω] . (G.10)

The transition rate between the valence band state |ck〉 and the conduction band
state |vk′〉 is given by (4.31) in Sect. 4.2

wcv = 2π

�

∣∣〈ck′∣∣ e
m

A · p∣∣vk〉∣∣2δ [Ec(k′) − Ev(k) − �ω
]

= πe2

2�m2
A2
0

∣∣〈ck′∣∣exp(ikp · r)e · p∣∣vk〉∣∣2δ [Ec(k′) − Ev(k) − �ω
]

.

Writing the vector potential A using the unit vector of the vector potential e as
A = e · A, the matrix element is given by

|M | = |〈ck′| exp(ikp)e · p|vk〉| , (G.11)

and we have

|M |2 = 1

3

(
|Mx |2 + |My|2 + |Mz|2

)
, , (G.12a)

Mx = −i�
〈
ck′∣∣exp(ikp) ∂

∂x

∣∣vk〉 . (G.12b)

Since kp is very small, we put δ(k′−k−kp) ≡ δ(k′−k) = 0 and thus the summation
of the allowed k′ and k give rise to Kronecker delta δk′,vk ′ .

Using (4.21) and (4.38) or (4.39), the absorption coefficient is given by

α = ωκ2

nrc
= 2�ω

nrcε0ω2A2
o

wcv

= πe2

nrcε0m2ω

∑
k,k′

|M |2 δ
[Ec(k′) − Ev(k) − �ω

]
δk,k′ . (G.13)

In the case of semiconductor lasers, high densities of electrons and holes are
injected in to the active region and occupy the conduction band and valence bands.
Therefore the absorption coefficient depends on the occupation factors of the electron
and holes. Let the occupation factor of the electrons in the upper and lower states as
f (E2) and f (E1), respectively, and the net rate of the photon absorption and emission
is proportional to f (E1)[1− f (E2)]− f (E2)[1− f (E1)] = f (E1)− f (E2). Then the
absorption coefficient is given by

α = πe2

nrcε0m2ω

×
∑
k

|M |2 δ [E2(k) − E1(k) − �ω] δk,k′ [ f (E1) − f (E2)] . (G.14)

In the above equation
∑

is carried out over the pair states of the valence band |vk〉
and the conduction band |ck〉, and thus we obtain

http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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∑
k

δ[Ecv(k) − �ω] = 1

(2π)3

∫
d3k · δ[Ecv(k) − �ω]

≡
∫

ρred(�ω) · d(�ω) , (G.15)

Ecv = Ec(k) − Ev(k) , (G.16)

where only one direction of spin orientation is considered. The last relation of (G.15)
is obtained by putting the photon energy as �ω and defining the density of states
between the energies �ω = E and �ω + d(�ω) = E + dE as ρred(E)dE . When
the effective masses of the conduction and valence bands are isotropic, putting the
electron effective mass as mc and the hole effective mass as mh, we may write

Ecv = �
2k2

2mc
+ �

2k2

2mh
+ EG = �

2k2

2μ
+ EG , (G.17)

where 1/μ = 1/mc + 1/mh and μ is called reduced mass. Then the density of states
is given by

ρred · d(�ω) = 1

(2π)3
4πk2 · dk ,

= 2π

(2π)3

(
2μ

�2

)3/2 √
�ω − EG d�ω . (G.18)

Writing the photon energy as �ω = E , we find

ρredd(E) = 2π

(2π)3

(
2μ

�2

)3/2 √
E − EG dE . (G.19)

Next we discuss quantum theory of spontaneous and stimulated emissions [1].
First, we deal with the radiation of the electromagnetic waves based on the classical
theory. Using Poynting vector of the electromagnetic waves and vector potential A
given by ∇ × A = B, and (9.90b), the flux of the waves is given by the following
relation

〈S〉 = 1

2
Re(E × H) = 1

2
Re

[
(−iωA) × (ikp × A)/μ0

]

= ω

2μ0
Re

[
(A · A)kp − (A · kp)A

]
= nrω2

2cμ0
|A|2 kp

|kp| , (G.20)

where μ0 is the magnetic permeability in free space, 1/(ε0μ0) = c2 (c:the light speed
in free space) and kp/|kp| is a unit vector in the propagation direction of the vector

http://dx.doi.org/10.1007/978-3-319-66860-4_9
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potential A. The last relation is derived for the transverse waves in uniform medium,
and putting kp · A = 0.

Next, we discuss Planck’s radiation theory. Since the number of plane waves
modes in a volume V in an element dkxdkydkz of the kp space is V (2π)−3dkxdkydkz ,
and is independent of the shape of the sample or of the boundary conditions provided
the dimensions are large compared to the wavelength. Putting kp = |kp| = nrω/c,
and taking account of two independent polarization directions for each wave vector
of the electromagnetic waves, the density of modes per unit volume between ω and
ω + dω is given by G(ω)dω with

G(ω) = 2

(2π)3
4πk2p

dkp
dω

= k2p
π2vg

= n2rω
2

π2c2vg
. (G.21)

Here the group velocity vg = dω/dkp is used and assumed to be constant except
strong absorption region with the anomalous dispersion.

The average energy of a mode with angular frequency ω at temperature T under
the thermal equilibrium is given by

〈E(ω)
〉 = �ω

exp(�ω/kBT ) − 1
. (G.22)

Thus the energy density of blackbody radiation u(ω)dω = 〈E(ω)〉G(ω)dω in the
range between ω and ωdω is obtained as

u(ω) = n2r �ω3

π2c2vg

1

exp(kBT ) − 1
. (G.23)

Since the velocity of the energy flow of the electromagnetic waves in a dielectric
is the group velocity, the time average of the radiation with wave vector kp lying an
element of solid angle dΩ , with polarization vector e lying in an angular interval dθ
in a plane perpendicular to kp, and with an angular frequency in a range dω, is

|〈S〉| = u(ω)vg
dΩ

4π

dθ

2π
dω

= n2r �ω3

π2c2
1

exp(kBT ) − 1

dΩ

4π

dθ

2π
dω . (G.24)

Averaging (G.24) in the solid angle Ω and polarization direction, we find

∫
dω

4π

∫
dθ

2π
= 1 ,

and thus we obtain,

|〈S〉| = n2r �ω3

π2c2
1

exp(kBT ) − 1
dω . (G.25)
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Using (G.11), the spontaneous emission rate from the upper state E2 to the lower
state E1 is given by

rspon(E) = πe2|A|2
2m2�

|M |2ρred(E)[ f (E2)(1 − f (E1)] . (G.26)

Equating (G.20) and (G.25), and eliminating |A|, we find

rspon(E) = nre2μ0ω

πm2c
|M |2ρred(E) f (E2)[1 − f (E1)] . (G.27)

Using the relation ε0μ0 = 1/c2, and putting �ω = E , the spontaneous emission rate
between the energy separation E and E + dE , is then given by

rspon(E) = nre2E
πε0m2�2c3

|M |2ρred(E) f (E2)[1 − f (E1)] , (G.28)

and thuswe obtain the spontaneous emission rate given by (9.14). In a similar fashion,
the stimulated emission rate (9.15) is given by

rstim(E) = nre2E
πε0m2�2c3

|M |2ρred(E)( f2 − f1) . (G.29)

H Spin–Orbit Interaction

As stated in Chap. 2 energy bands are strongly affected by spin–orbit interaction.
It is shown in Chap.2 that the triply degenerate valence bands split into degenerate
heavyhole and light hole bands and spin–orbit split-off band.Here an interpretation of
spin–orbit interaction based on a semi-classical treatment is described. The spin–orbit
interaction is given by solving the Dirac equation.6 Here a semi-classical treatment
of spin–orbit interaction is given for the purpose of introduction. Since the spin–orbit
energy is usually given in units of [CGS] in many textbooks, it is derived here in
units of [SI] and equations are also shown in units of [CGS].

Let’s consider a simple system consisting of an electron −e moving with the
velocity v around the nucleus Ze with its relative position r . The system is equiva-
lently interpreted from the view point of the electron as that the nucleus is moving
with the velocity−v around the electron as shown in Fig.H.1. The nucleus of charge
Ze moving with velocity −v will produce a current

j = −Zev [SI], j = − Zev

c
[CGS] (H.1)

6The spin–orbit energy is derived by the Dirac equation. See, for example, L. I. Schiff, Quantum
Mechanics, 2nd edition (McGraw–Hill, New York, 1955) Chapter XII, Sect.44, p.332.

http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_9
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Fig. H.1 a Bohr orbital
motion of an electron −e
with the velocity v as seen by
the nucleus Ze is interpreted
from the point of view of the
electron as b the nucleus Ze
is moving with velocity −v

around the electron

(a) (b)

The charge motion produces a magnetic field at the position of the electron, which
is given by Biot-Sabart law,

B = μ0

4π

j × r
r3

= −μ0Ze

4π

v × r
r3

[SI], H = − Ze

c

v × r
r3

[CGS] .

(H.2)

Electric field E acting on the electron is given by Coulomb’s law

E = + Ze

4πε0

r
r3

[SI], E = +Ze
r
r3

[CGS] . (H.3)

Therefore the magnetic field is given by

B = − 1

c2
v × E [SI], B = −1

c
v × E [CGS] , (H.4)

where c = 1/
√

ε0μ0.
The magnetic field given by (H.2) interacts with the magnetic moment of the

electron (the spin magnetic moment μS),

μS = −2
μB

�
S = − e

m
S [SI] , (H.5a)

μS = −2
μB

�
S = − e

mc
S [CGS] , (H.5b)

where the approximated factor 2 is used instead of the observed value  2.002319
and μB = e�/2m (= e�/2mc in [CGS]) is called Bohr magneton. The interaction
energy is evaluated as the scalar product of the magnetic moment and the magnetic
field acting on the electron. A relativistic effect requires an additional factor of one-
half 7 in the interaction energy, and thus using (H.4)

7See L. H. Thomas, “The Motion of the Spinning Electron,” Nature 117 (1926) 514.
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Hso = −1

2
μS ·

(
1

c2
v × E

)
= 1

2

μS

m
· (E × p) = −1

2

1

mc2
1

r

dφ

dr
(r × p) · μS

= − e

2m2c2
1

r

dφ

dr
L · S = 1

2m2c2
1

r

dV

dr
L · S , (H.6)

where we used the angular moment L = r× p, and the following relations. The final
expression is exactly the same for the [CGS] unit. and related to the negative gradient
of the potential, E = −dφ/dr . The potential energy is given by V (r) = −eφ(r).

Let’s estimate the spin–orbit interaction energy of hydrogen in the state of n = 2,
l = 1 state.The potential energy V (r) for the electron is

V (r) = − e2

4πε0r
(H.7)

and the gradient of the potential energy is

dV (r)

dr
= e2

4πε0r2
. (H.8)

Therefore we obtain

Δso = e2

4πε0

1

2m2c2
1

r3
S · L . (H.9)

The magnitude of the spin–orbit interaction energy is estimated by assuming L · S 
�
2, and the average value of 1/r3  1/23a3B for the quantum number n = 2, where

aB = 4πε0�
2/me2,

Δso ∼ (4πε0e)2

2m2c2
m3e6

23�6
∼ 10−4[eV] , (H.10)

and thus the spin–orbit energy is expected to be of the order of 0.1 meV.
From the treatment shown above we find that the spin–orbit interaction depends

on the orbital wave function and on the angular momentum through the term L · S.
In order to get insight into a detailed interaction, we define the total momentum J
by

J = L + S . (H.11)

From this relation we find

J2 = L2 + S2 + 2L · S (H.12a)

2L · S = J 2 − L2 − S2 . (H.12b)

Then the spin–orbit interaction energy is given by
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Hso = 1

4m2c2
1

r

dV

dr
(J 2 − L2 − S2) (H.13)

It is well known from quantummechanics that the operators J 2, L2, and S2 commute
with each other. Let define an atomic state by the quantum numbers, the principal
quantum number n, the total angular momentum number j , the angular momentum
number l and the spin quantum number s. Operating the first two operators in the
parentheses to the eigenfunction, we obtain unique eigenvalues, and operation of
the spin term to the spin state results in (3/4)�2. Therefore the energy of spin–orbit
interaction is written as

〈Hso〉nl = 1

4m2c2

〈
1

r

dV

dr

〉
nl

[
j ( j + 1) − l(l + 1) − s(s + 1)

]
�
2

= 1

4m2c2

〈
1

r

dV

dr

〉
nl

[
j ( j + 1) − l(l + 1) − 3

4

]
�
2 . (H.14)

Using the resultswemay estimate the spin–orbit splitting energy. Firstwe consider
a case of the electronic state l �= 0 of a free atom. Such a state is a doublet with
j = l ± 1/2, the spin–orbit splitting energy of the doublet is then given by

Δso = �
2

4m2c2
(2l + 1)

〈
1

r

dV

dr

〉
nl

. (H.15)

Therefore the energy separation between the states of (l = 1, j = 3/2) and (l =
1, j = 1/2) is given by

Δso,3/2−1/2 = 3�2

4m2c2

〈
1

r

dV

dr

〉
nl

. (H.16)

The above results are well known as the separation of the D–lines of sodium atom
(P3/2– and P1/2–states). An analysis of the spin–orbit interaction of the valence bands
is dealt in Sect. 2.3 of Chap.2, where the valence band states Γ ′

25 without spin–orbit
interaction are six-fold degenerate with angular momentum lz = 1, 0, −1 and spin
sz = +1/2, −1/2.

Next we will show how to calculate energy bands taking account of the spin–orbit
interaction. Hamiltonian of an electron with the spin–orbit interaction is defined as

H = − �
2

2m
∇2 + V (r) + 1

2m2c2
1

r

dV

dr
L · S . (H.17)

The spin–orbit interaction term (spin–orbit Hamiltonian) is rewritten as

Hso = �

4m2c2

(
∇V × p

)
· σ , (H.18)

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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where σ is Pauli spin matrix given by (2.50) of Sect. 2.3 in page 80 and we used the
following relations

E × p = −(∇φ) × p = 1

e

(
∇V

)
× p , (H.19a)

S = �

2
σ . (H.19b)

Now the energy band structure is calculated by utilizing the pseudopotential method.
The matrix elements of the Hamiltonian is then written as by following Melz [2]

H(k)G,G′ = �
2

2m

(
k + G

)2

δG,G′ + VG,G′ + Δ(k)G,G′ , (H.20)

where

VG,G′ = [
V S(Q) cos(Q · τ ) + iVA(Q) sin(Q · τ )

]
Q=G−G′ (H.21)

Δ(k)G,G′ = iσ · [G × G′ − k × (G − G′)
]

× [
λS cos(Q · τ ) + iλA sin(Q · τ )

]
Q=G−G′ . (H.22)

The first two terms of the matrix elements given by (H.20) are the kinetic energy and
the pseudopotential term Vps(G) and the third term is the matrix element of the spin–
orbit Hamiltonian, where k is the electron wave vector in the first Brillouin zone,
G and G′ are the reciprocal lattice vectors. τ is half the vector separating the two
atoms in the unit cell, and Ω0 is half of the atomic volume Ω . The notation V S(Q)

or V A(Q) refers to the symmetric and antisymmetric pseudopotential coefficient,
corresponding to the wave vector Q. The spin–orbit term is derived as follows,

Δ(k)G,G′ = �

4m2c2Ω
〈k + G′|(∇V × p) · σ|k + G〉

= �
2

4m2c2Ω
σ ·

∫
ei(G − G′) · r [∇V × (k + G)]d3r (H.23)

where Ω is the volume of the unit cell in the crystal.
In order to apply the spin–orbit interaction to a zinc blende crystal we define the

potential by a superposition of the atomic potentials located at ±τ in the unit cell
VA(τ ) + VB(−τ ) , and the symmetric and antisymmetric potentials by

V S = 1

2

(
VA + VB

)
, VA = 1

2

(
VA − VB

)
, (H.24)

and then (H.23) is rewritten as

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Δ(k)G,G′ = �
2

4m2c2Ω0
σ ·

{
cos[(G − G′) · τ ]

∫
ei(G − G′) · r

× [∇V S × (k + G)
]
d3r + i sin

[
(G − G′) · τ

]

×
∫

ei(G − G′) · r [[∇V A × (k + G)
]
d3r

}
, (H.25)

where Ω0 is half of the atomic volume Ω .
We approximate the integral of (H.25) by expanding the exponential terms,

ei(G − G′) · r  1 + i(G − G′) · r . (H.26)

Then we find that only the second term will give a non-vanishing value. Using the
following relations [2]

(G − G′) · r[∇V × (k + G)] = (G − G′) × (k + G)∇V · r , (H.27)

and

λS = �
2

4m2c2Ω0

∫
∇V S · rd3r , λA = �

2

4m2c2Ω0

∫
∇V A · rd3r , (H.28)

we obtain the spin–orbit interaction Hamiltonian given by (H.22)

Δ(k)G,G′ = iσ · [G × G′ − k × (G − G′)
]

× [
λS cos(Q · τ ) + iλA sin(Q · τ )

]
Q=G−G′ . (H.29)

This is exactly the same as the expression (18) of Chelikowsky and Cohen [3].

H so
G,G′(k) = (K × K ′) · σs,s ′

{−iλS cos[(G − G′) · τ ]
+λA sin[(G − G′) · τ ]} , (H.30)

where K = k + G, K ′ = k + G′ and k × k = 0.
When we calculate energy band structure including the spin–orbit interaction,

above equation may be used by adjusting the parameters λS and λA so that the calcu-
lated energy bands fit to the experimental data. Here we consider how to manipulate
the spin–orbit Hamiltonian. As an example we will show how to evaluate the matrix
element of the term given below

(G × G′) · σ . (H.31)

The above equation is given by the sum of the x , y, z components

(GyG
′
z − GzG

′
y)σx + (GzG

′
x − GxG

′
z)σy + (GxG

′
y − GyG

′
x )σz . (H.32)
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Since thewave function |χn〉 used in the pseudopotential analysis has spin degeneracy
|χn,↑〉 and |χn,↓〉 and the operation of the spin operators leads to non-vanishing
terms shown as the following

〈↑ |σx | ↓〉 = 〈↓ |σx | ↑〉 = 1 , (H.33a)

〈↑ |σy| ↓〉 = −i, 〈↓ |σy| ↑〉 = i , (H.33b)

〈↑ |σz| ↑〉 = 1, 〈↓ |σz| ↓〉 = −1 . (H.33c)

The above relations are easily obtained by using the relations (2.50) and (2.51)
defined in Sect. 2.3. Then the evaluation of the spin–orbit matrix elements is straight
forward.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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A
AAS effect, 505
AB effect, 496, 504
Absorption coefficient, 158
Acceleration

of electron, 145
Acoustic branch, 268
Acoustic phonon, 268
Acoustic phonon scattering, 292, 329, 347

two-dimensional electron gas, 436
Acoustoelectric effect, 245
Addition energy, 526
Aharonov–Bohm effect, 495, 496, 504
Airy function, 206
Allowed band, 9
Alloy scattering, 323, 324, 344, 360
Amplitude reflection coefficient, 156
Angular momentum, 80
Annihilation operator, 276, 680
Anti-Stokes shifted wave, 221
Artificial atom, 526
Aspnes third-derivative form, 214, 215
Atomic orbital, 37
Atomic units, 36

B
Büttiker–Landauer formula, 498, 501
Ballistic electron transport, 506
Ballistic region, 498
Band discontinuity, 592
Band structure

quasi-one-dimensional, 472
Band tail effect, 556, 557
Band-to-band transition, 158
Basis function, 43
Birefringence, 241

Bloch function, 125
Bloch theorem, 3
Boltzmann distribution function, 284
Boltzmann transport equation, 279, 281
Bonding-anti-bonding splitting, 38
Bose–Einstein distribution, 278, 303, 308
Bose–Einstein statistics, 322
Boson

excitation number, 278
operator, 278, 676

Bound exciton, 563, 564
Bragg reflection, 7
Bragg’s law, 7
Brillouin scattering, 238

resonant, 234, 236, 246
Brillouin zone, 8, 267

fcc, 11
superlattice, 475
symmetry of fcc, 59
wurtzite, 613
zone folding, 474

Brooks–Herring formula, 294, 297, 341

C
Canonical ensemble, 685
Cathode luminescence, 551, 561
Cauchy, 183
Cauchy principal value, 665
Central cell correction, 139, 141
Character table, 37
Charging energy, 538
Chemical potential, 318, 498
Chemical potential difference, 527
Closed pack structure, 611

hexagonal, 611
Collision rate, 288
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Collision term, 281
Commutation relation, 676
Complex conductivity, 157
Complex dielectric constant, 157
Complex dielectric function, 184
Complex refractive index, 155
Composite boson model, 519
Composite fermion model, 519
Conductivity, 284, 288

effective mass, 286, 346
tensor in magnetic field, 374

Conductivity effective mass, 346
Confinement

quantum well, 593
Confinement factor, 586
Continuum model, 274
Conwell–Weisskopf formula, 297, 299, 342
Cooper–Nelson formula, 470
Core potential, 17
Core state, 17
Coulomb blockade, 520–522
Coulomb diamond, 524
Coulomb gap, 522, 523
Coulomb interaction, 526
Coulomb island, 523
Coulomb potential, 294

screened, 294, 323
Creation operator, 276, 680
Critical point, 161

of joint density of states, 161
Critical point energy

ternary alloys of nitrides GaInN, 621
Crystal field, 624
Crystal momentum, 91
Cyclic boundary condition, 3, 272
Cyclotron frequency, 66
Cyclotron mass, 70, 71
Cyclotron motion, 66, 92
Cyclotron radius, 92
Cyclotron resonance, 65, 66

quantum mechanical treatment of, 97

D
Debye screening length, 295, 319
Deformation potential, 193, 311

acoustic phonon, 292
acoustic phonon scattering, 313
constant, 195
degenerate bands, 309
Herring–Vogt relation, 310, 315
hydrostatic, 310
inter-valley phonon scattering, 309, 313

non-polar optical phonon, 303
optical phonon, 302, 303
optical phonon scattering, 313
rigid-ion model, 311
scattering, 292
shear, 310
tensor, 195
theory, 311

Degeneracy, 96
in a magnetic field, 92

Delta function, 663
Density matrix, 683
Density of states, 59, 97

GaAs, 61
indirect transition, 168
Si, 61

Density operator, 681
Density-of-states mass, 286
Depletion layer, 416
DH–LD, 576
Diagram, 230
Diamond structure, 10
Dielectric constant

effective, 300
high frequency, 305
indirect transition, 168
static, 305, 318

Dielectric function, 183
electron screening, 316
indirect transition, 169
Lindhard formula, 316
of exciton, 180
of indirect exciton, 182

Dielectric loss, 157
Diffusion

coefficient, 497
length, 497
region, 498

Dingle temperature, 388
Dirac delta function, 663
Dirac identity, 663, 665
Direct band gaps

ternary alloys of nitrides, 618
Direct exciton, 171
Direct transition, 158, 159
Distribution function

Bose–Einstein, 303, 308
Fermi–Dirac, 318

Donor
excited states, 136
in Ge, 132
in Si, 132
ionization energy, 132
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Donor level, 132
Double heterostructure, 576

confinement factor, 586
Double heterostructure laser diode, 576
Doublet, 138
Drift mobility, 288
Drift motion, 288
Drift term, 280
Drift velocity, 288, 368
Drifted Maxwellian distribution function,

351

E
Edge channel, 516
Edge current, 516
Effective charge, 303
Effective density-of-states mass, 346
Effective electric field, 449, 467
effective g factor, 101
Effective gain factor, 590
Effective ionic charge, 306
Effective mass, 150

conductivity, 286
density-of-states mass, 286, 420

Effective refractive index, 585
Effective-Mass approximation, 127
Effective-mass approximation, 131
Effective-mass equation, 131

for exciton, 174
in a magnetic field, 93

Einstein coefficients, 548, 549
Einstein relation, 548
Elastic compliance constant, 673
Elastic constant, 299, 673
Electrical conductivity, 288
Electro–luminescence, 561
Electro-luminescence, 551
Electro-optic effect, 205
Electroabsorption, 211
Electromechanical coupling coefficient, 338
Electron interference, 495

intensity, 496
Electron mobility, 288
Electron motion, 148

in external force, 145
Electron–electron interaction, 316
Electron–electron scattering, 316
Electron–LO–phonon interaction, 304
Electron–phonon interaction Hamiltonian,

290
Electron–polar optical phonon interaction,

304

Electron-electron interaction, 2
Electronic polarization constant, 303
Electroreflectance, 211, 212, 214
Empirical pseudopotential method, 19
Empty lattice bands, 10
Energy band

AlAs, 28
AlN, 617, 618
AlSb, 28
CdTe, 28
GaAs, 28
GaAs nonlocal pseudopotential, 33
GaAs with spin–orbit interaction, 33
GaN, 617, 618
GaP, 28
GaSb, 28
Ge, 28
InAs, 28
InN, 617, 619
InP, 28
InSb, 28
k.p perturbation with spin orbit, 56
nonlocal pseudopotential method, 33
Si, 26
ternary alloy, 620
ternary alloy AlGaN, 620
ternary alloy AlInN, 620
ternary alloy InGaN, 620
ternary alloys of nitrides, 620
Wurtzite, 611
ZnS, 28
ZnSe, 28
ZnTe, 28

Energy band gap, 9
bowing of ternary alloys of nitrides, 619

Envelop function, 594
Envelope function, 131
Exact diagonalization, 531
Exciton, 171, 190, 254

bound exciton, 563
bound state of, 177
bound to ionized acceptor, 564
bound to ionized donor, 564
bound to neutral acceptor, 564
bound to neutral donor, 564
complex dielectric function, 180
continuum state, 178
envelop function, 175
exciton molecule, 565
free exciton, 562
longitudinal, 255
longitudinal-transverse splitting, 255
luminescence, 562
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polariton, 254, 255
transverse, 255
wave function, 172

Exciton molecule, 565
Expectation value

of electron velocity, 142
Extended zone representation, 8
Extended zone scheme, 10
Extinction coefficient, 156

F
Fabry–Perot, 588
Fermi distribution function, 284
Fermi energy, 318
Fermi golden rule, 231
Fermi wavelength, 497
Fermi–Dirac distribution function, 284, 318
Filling factor, 511
Flux quanta, 496, 504, 512
Forbidden band, 9
Fourier coefficient, 670
Fourier transform, 669
Fractional quantum Hall effect, 509, 519
Franz–Keldysh effect, 207, 208, 210
Free electron band, 13

wurtzite, 614
Free exciton, 562

luminescence, 562
Free-carrier absorption, 257, 260
Free-electron bands, 10
Free-electron model, 1
Frolich coupling

Fröhlich coupling constant, 307

G
g factor, 101
Galvanomagnetic effect

quantum, 381
Γ function, 671
GaN

electron mobility, 361
GaN lasers, 610
Group velocity

of electron, 142, 145

H
Hall angle, 366
Hall coefficient, 366, 376
Hall effect, 365

scattering factor, 367, 376
tensor, 374

Hall field, 366
Hall mobility, 368
Hall resistance, 511
Hamiltonian

electron–phonon interaction, 290
Harmonic approximation, 270
Heavy hole, 75

band, 83
HEMT, 431
Hermite conjugate, 275
Hermite operator, 275
Hermite polynomials, 94
Herring–Vogt relation, 310
Heterostructure, 426, 576
High electron mobility transistor, 431
High-field domain, 246
High-frequency dielectric constant, 252, 305
Hot electron, 398
Hund’s rule, 526, 538
Hydrostatic deformation potential, 310

I
Impurity level, 132

of Ge, 135
of Si, 135
shallow, 132

Impurity scattering
Conwell–Weisskopf, 299

Indirect exciton, 180
luminescence, 563

Indirect transition, 165
Integer quantum Hall effect, 509
Inter-atomic matrix element, 479
Inter-subband transition, 435
Inter-valley phonon scattering, 308, 339,

353, 400
f-process, 309
g-process, 309
two-dimensional electron gas, 439

Inter-valley scattering
Herring–Vogt relation, 310

Interband transition
effect of electric field, 208

Intra-subband scattering, 442
Intra-subband transition, 435
Inverse effective mass, 150
Inversion layer, 416
Ionized impurity scattering, 294, 341, 356

two-dimensional electron gas, 446
Irreducible representation, 43
Isoelectronic trap, 570
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J
Joint density of states, 160

K
K.p Hamiltonian, 36, 79

6 × 6, 115
6 × 6 matrix, 84
8 × 8, 115

K.p parameters, 45
K.p perturbation, 35, 75, 77

k.p Hamiltonian, 48
matrix elements, 54
momentum matrix elements, 45
with spin orbit interaction, 54

Kerr effect, 205
Kramers–Kronig relations, 184
Kramers–Kronig transform, 184
Kramers-Kronig transform, 213
Kronecker delta function, 5
Kronig–Penney model, 471

L
Löwdin orbital, 477
Löwdin’s method, 477
Lamor frequency, 528
Landau gauge, 93
Landau level, 90

of non-Parabolic band, 98
of valence bands, 104
quantum number of, 94

Landauer formula, 498, 499
Landé g factor, 101
Laser diode, 576
Laser gain, 554
Laser oscillation, 588
Lattice match, 426
Lattice vibration, 265

acoustic mode, 265
continuum model, 274
optical mode, 265

LD, 576
LED, 576
Light absorption

by excitons, 176
Light emitting diode, 576
Light hole, 75
Light-hole

band, 83
Lindhard dielectric function, 681
Lindhard formula, 316
LO phonon

plasmon coupled mode, 262
Local electric field, 303
Local pseudopotential, 16, 23
Longitudinal magnetoresistance, 384
Longitudinal mode frequency, 591
Longitudinal optical phonon, 251, 304

angular frequency, 251
Lorentz force, 65, 365
Lorentz function, 179, 664
Luminescence, 561

band to band transition, 561
bound exciton, 564
donor–acceptor pairs, 564
exciton, 562
exciton bound to acceptor, 564
exciton bound to ionized donor, 564
exciton bound to neutral acceptor, 564
exciton bound to neutral donor, 564
free exciton, 562
indirect exciton, 563
N trap, 570
via impurity, 565

Luttinger Hamiltonian, 113, 114, 595, 599
Luttinger parameters, 106, 107, 114, 116,

594, 596
Lyddane–Sachs–Teller equation, 251

M
Magnetic focusing, 507
magneto–optical absorption, 110
Magneto–absorption, 111
Magnetoconductivity tensor, 374
Magnetophonon resonance, 390

Barker’s formula, 396
impurity series, 398
inter-valley phonon series, 399
two-TA-phonon series, 398
under high electric and magnetic fields,
403

Magnetoresistance, 370
Magnetoresistance effect, 372
Magnetotransport, 365
Many valleys, 72
Many-valley semiconductor, 340
Many-valley structure, 72, 310
Matrix element

acoustic phonon scattering, 293
electron–electron scattering, 323
electron–hole scattering, 323
for transition, 158
ionized impurity scattering, 295
non-polar optical phonon scattering, 303
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piezoelectric potential scattering, 301
plasmon scattering, 321
polar optical phonon, 308
transition, 289

Mean free path
acoustic phonon scattering, 331

Mesoscopic, 494
region, 496
system, 496

Mini-band, 474
Mobility, 284, 288, 345

acoustic phonon scattering, 347
alloy scattering, 360
Brooks–Herring formula, 356
Conwell–Weisskopf formula, 356
Cooper–Nelson formula, 470
hole in Ge, 350
inter–valley phonon scattering, 353
ionized impurity scattering, 356
neutral impurity scattering, 358
non-polar optical phonon scattering, 347
piezoelectric potential scattering, 353
plasmon scattering, 358
polar optical phonon scattering, 351, 352
remote ionized impurity scattering, 459
two-dimensional electron gas, 464
universality of MOSFET mobility, 468

Mode gain, 592
Mode refractive index, 579
Modulation doping, 429
Modulation spectroscopy, 205, 211
Molecular beam epitaxy, 426
Momentum conservation, 159
Momentum matrix element, 42, 44, 45
Momentum matrix elements, 45
Momentum operator, 91

commutation relation of, 91
MOSFET, 416

N
N trap, 570
Nearly free electron approximation, 5
Neutral impurity scattering, 343, 358
Non-parabolic band, 89
Non-parabolicity, 87
Non-polar optical phonon

scattering strength, 303
Non-polar optical phonon scattering, 302,

334, 347
two-dimensional electron gas, 436

Non-radiative recombination, 551
Nonlocal pseudopotential, 16, 23, 26

Normal process, 292
Number operator, 277

O
Optical branch, 269
Optical dielectric constant, 252
Optical phonon, 279

longitudinal, 304
Optical transition

in quantum well, 597
Orthogonal plane wave, 17

P
Pauli spin matrix, 80
Phase coherence length, 497
Phase relaxation time, 497
Phonon

absorption, 167
acoustic, 268
emission, 167
optical, 269
polariton, 250, 253, 254

Photoelastic constant, 238
Photoelastic effect, 238
Photoluminescence, 484, 551, 561
Photoreflectance, 212, 484
Piezobirefringence, 192

coefficient, 193
tensor, 192

Piezoelectric constant, 223
effective, 300

Piezoelectric effect, 626
Piezoelectric field, 624
Piezoelectric potential, 300
Piezoelectric potential scattering, 299, 337,

353
two-dimensional electron gas, 444

Piezoelectricity, 223, 299
fundamental equations, 299

Piezoreflectance, 212
Planck’ radiation theory, 549
Plasma frequency, 258, 317
Plasma oscillation, 320

longitudinal, 258
Plasmon, 257, 258

LO phonon coupled mode, 262
Plasmon scattering, 316, 343, 358
Pockels effect, 205, 238
Pockels electro-optic tensor, 205
Point contact, 506
Poisson summation formula, 383
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Polar optical phonon scattering, 303, 335,
351

two-dimensional electron gas, 440
Polariton, 250

exciton, 254
phonon, 250, 254

Polaron, 407
effect, 407
polaron mass, 411

Population inversion, 554
Power loss, 157
Principle of detailed balance, 282

degenerate case, 284
Propagator, 230
Pseudomorphic growth, 426
Pseudopotential, 18

antisymmetric, 23, 32
empirical, 19
for Ge and Si, 26
for zinc blende, 26
form factor, 20
Hamiltonian, 20
local, 16, 23
local atomic, 22
nonlocal, 16, 23
symmetric, 23, 32
Wurtzite, 614

Pseudopotential form factor, 20
AlN, 617
GaN, 616, 617
InN, 617
Wurtzite, 615
wurtzite, 616, 617

Pseudopotential Hamiltonian, 20
Pseudopotential method, 16
Pseudopotentials, 25

Q
Quantum dot, 526
Quantum Hall effect, 415, 508
Quantum liquids, 519
Quantum structure, 415
Quantum well, 428
Quantum well laser diode, 577
Quasi-direct transition, 484
Quasi-static approximation, 237
QUILLS, 403
QW–LD, 577

R
Raman scattering, 219

first-order, 225, 228

quantum mechanical theory, 230
resonant, 230, 234–236
second-order, 224, 228
selection rule, 225

Raman tensor, 222, 224
Randomphase approximation, 316, 681, 682
Randomizing collision approximation, 334
Reciprocal lattice, 4

wurtzite, 612
Reciprocal lattice vector, 4, 11, 12, 612

wurtzite, 612
Recombination, 561
Reduced zone representation, 9
Reduced zone scheme, 9, 10
Reflection coefficient, 155, 156
Refractive index, 155, 156

effective, 585
Relaxation approximation, 282
Relaxation time, 281, 282, 290, 325, 326

acoustic phonon, 329
acoustic phonon scattering, 331
alloy scattering, 344
impurity, 295
inter–valley phonon scattering, 340
ionized impurity scattering, 297, 341
neutral impurity scattering, 343
non-polar optical phonon scattering, 335
piezoelectric potential scattering, 337
piezoelectric scattering, 338
plasmon scattering, 343
polar optical phonon scattering, 336
remote ionized impurity scattering, 456
screened Coulomb, 295

Remote ionized impurity scattering, 454
degenerate 2DEG, 459
delta-doped heterostructure, 459
non-degenerate 2DEG, 460

Repulsive potential, 16, 18
short range, 18

Reservoir, 498
Rigid-ion model, 311
Rydberg constant, 36

S
Scattering

acoustic phonon, 292, 329
alloy, 323
Brooks–Herring, 294
Conwell–Weisskopf, 297
deformation potential, 292
impurity, 295
inter–valley phonon, 308
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ionized impurity, 294
non-polar optical phonon, 302
piezoelectric, 299, 301
plasmon, 321
polar LO phonon, 308
polar optical phonon, 303

Scattering probability, 289, 290
Scattering rate, 288, 325

acoustic phonon in Ge, 333
acoustic phonon in Si, 333
acoustic phonon scattering, 329
electron–electron, 316
electron–electron scattering, 323
electron–hole, 323
inter–valley phonon, 339
inter–valley phonon scattering, 340
ionized impurity scattering, 341
neutral impurity scattering, 343
non-polar optical phonon, 334
piezoelectric potential scattering, 337
plasmon, 316, 322
polar optical phonon, 335
polar optical phonon scattering, 336
remote ionized impurity scattering, 454
two-dimensional electron gas, 436
two-dimensional system, 436

Scattering time, 325
Schrodinger, 5
Screened Coulomb potential, 295
Screening effect

static screening, 308
two-dimensional electron gas, 448, 451

Screening length
Debye, 319
Debye–Hückel, 319
Debye-length, 295
Thomas–Fermi, 319

Screening wavenumber
Debye–Hückel, 319
Thomas–Fermi, 319

Self-consistent calculation, 429
Self-Consistent method, 423
Seraphin coefficient, 213
SET, 523
Shear deformation potential, 310
Sheet electron density, 467
Shell filling, 530
Shubnikov–de Haas effect, 380
Simple harmonic oscillator, 93
Single electron transistor, 520, 523, 525
Singlet, 138
Singularity

of critical point, 161

of joint density of states, 161
Skipping motion, 515
Slater determinant, 531, 535
Snell law, 241
Spin momentum, 80
Spin orbit interaction

antisymmetric, 52
symmetric, 52

spin–orbit interaction, 30, 51
spin–orbit splitting, 33
Spin–angular orbital interaction, 79
Spin–orbit Hamiltonian, 52, 693
Spin–orbit interaction, 51, 79, 80, 488
Spin–orbit split-off band, 83
Spin–orbit splitting energy, 82
Spin-flip, 169
Spin-orbit Hamiltonian, 694
Spin-orbit interaction, 690
spin–orbit Hamiltonian, 32
spin–orbit interaction, 31
Split-gate, 506
Spontaneous emission, 549, 550
Static dielectric constant, 305, 318
Stimulated emission, 549, 550
Stokes shifted wave, 221
Stradling–Wood formula, 392
Strain, 299

tensor, 310, 673
Stress, 299

tensor, 673
Structure factor, 22

antisymmetric, 22
symmetric, 22
Wurtzite, 614

Subband, 420
energy, 420

Superlattice, 426, 471
Brillouin zone, 475
energy bands, 481
period, 472
strained-layer, 426
types, 428

Surface roughness scattering
two-dimensional electron gas, 449

Susceptibility tensor, 183

T
TE mode, 580, 582
Thermoreflectance, 212
Third-derivative form, 214
Third-derivative modulation spectroscopy,
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Tight binding approximation, 477
sp3s∗, 479, 480
second nearest-Neighbor sp3, 486

TM mode, 581
Transducer, 245
Transition

matrix element, 158, 289
probability, 289

Translational vector, 3
Transmission coefficient, 155
Transmissivity, 589
Transverse electric mode, 580, 582
Transverse magnetic mode, 581
Transverse magnetoresistance, 387
Transverse optical phonon, 250

angular frequency, 251
transverse resonance frequency, 252

Triangular potential approximation, 418
Triplet, 138
Two-band approximation, 89
Two-Dimensional electron gas, 416
Two-dimensional electron gas, 417, 429

density of states, 420

U
Umklapp process, 292
Uniaxial stress, 673

V
Valence bands, 74, 85

dispersion, 85
Landau level, 104
Luttinger parameters, 107, 114
parameters of, 107, 114
strain effect, 624

Valley degeneracy, 420
Valley–orbit interaction, 137, 138
Van Hove singularities, 162
Variational principle, 133, 422
Vector potential, 91
Vegard’s law, 619, 620
Vertex, 230
Virtual-crystal approximation, 324
Von Klitzing constant, 509

W
Wannier exciton, 172
Wannier function, 125
Wurtzite semiconductor, 610

Z
Zinc-blende structure, 10
Zone-folding effect, 474
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